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Abstract

Background: The increased severity of disease associated with the NAPI strain of Clostridium
difficile has been attributed to mutations to the tcdC gene which codes for a negative regulator of
toxin production. To assess the role of hyper-production of Toxins A and B in clinical isolates of
Clostridium difficile, two NAP|-related and five NAP| non-related strains were compared.

Methods: Sequencing was performed on tcdC, tcdR, and tcdE to determine if there were
differences that might account for hyper-production of Toxin A and Toxin B in NAPI-related
strains. Biological activity of Toxin B was evaluated using the HFF cell CPE assay and Toxin A
biological activity was assessed using the Caco-2 Trans-membrane resistance assay.

Results: Our results confirm that Toxin A and Toxin B production in NAP|-related strains and
ATCC 43255 occurs earlier in the exponential growth phase compared to most NAPI-nonrelated
clinical isolates. Despite the hyper-production observed in ATCC 43255 it had no mutations in
tedC, tcdR or tedE. Analysis of the other clinical isolates indicated that the kinetics and ultimate final
concentration of Toxin A and B did not correlate with the presence or lack of alterations in tcdC,
tcdR or tcdE.

Conclusion: Our data do not support a direct role for alterations in the tcdC gene as a predictor
of hyperproduction of Toxin A and B in NAP|-related strains.

Background CDAD versus 535 total cases of infectious diarrhea due to
Toxigenic Clostridium difficile causes C. difficile-associated  all other bacterial enteric pathogens combined [16].
diarrhea (CDAD) which is a predominant nosocomial

infection in Canada as well as other countries [1-15]. In  Recently published data indicates that although CDAD
Manitoba, in 2008, there were 890 lab-confirmed cases of ~ incidence varies by geographic region there is evidence
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that overall it is increasing [2,4,5,7,12-15,17]. In Quebec
there were 35.6 cases per 100,000 population in 1991 ver-
sus 156.3 cases per 100,000 in 2003 [2]. The severity of
infection as assessed by mortality rates has increased in
certain geographic locations [2-4,7,8,15,18,19]. The C.
difficile strain designated NAP1 (equivalent to PCR
ribotype 027) was the most prevalent strain associated
with the Quebec outbreak of CDAD [4,5,7,8,15] and it
has been found in other parts of Canada as well [20]. The
significant increase in incidence and disease severity
reported for the Quebec outbreak have prompted investi-
gations to determine if this strain has some unique viru-
lence characteristics. This strain has the gene (cdtB)
encoding binary toxin [4,18,21,22] and this has been sug-
gested to contribute to disease severity [15,23,24]. The
tcdC gene is the putative negative regulator for toxin pro-
duction within the pathogenicity locus (PaLoc) of C. diff-
icile [3,4,15,20,25] and deletions in this gene have been
suggested to affect the regulatory function and account for
the apparent high levels of toxin production of the NAP1
outbreak strain [4,20,25]. The initial studies used in vitro
ELISA to quantify the production of Toxin A and B relative
to the growth curve for the a collection of NAP1 strains
that were toxinotype Il compared to the a collection of
clinical isolates that were toxinotype O [4]. Because there
may be differences in the biological activity versus antigen
detected, further data evaluating the biological levels of
Toxins A and B are needed.

The objective of this study was to provide correlation
between the kinetics of toxin production using functional
assays and the growth kinetics of various clinical strains of
C. difficile. The primary focus of this study was to evaluate
the effects of the tcdC region deletions that have been
described (18 bp and 1 bp deletions) on the kinetics of
biologically active Toxin A and B production. This was

Table I: Primers used in this evaluation.
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done in the context of clinical isolates, thereby evaluating
the role of this gene in the overall kinetics of toxin A and
B production. Genetic analysis of the tcdR and tcdE
regions was also performed to determine if deletions or
mutations in these genes accounted for differences in
toxin A and B production.

Methods

Bacterial strains

Eight strains of C. difficile were selected for analysis of the
growth dynamics and toxin production. Three historical
clinical isolates (strains1083, 81A330, and 79A292) were
obtained from the culture collection at the National
Microbiology Laboratory (NML). Two NAP1-related clin-
ical isolates (strains 57A, 83) were provided by Dr. Paul
Levett at the Saskatchewan Provincial Health Laboratory.
Strains from the American Type Culture Collection
included; ATCC 43255, ATCC 43594 (both are toxigenic
strains) and ATCC 700057 (non-toxigenic strain).

Polymerase chain reaction and sequencing

PCR was carried out with AmpliTaq Gold in PCR Buffer II
(Applied Biosystems) with 0.2 mM dNTPs, 3 mM MgCl,,
and various primer concentrations, at an annealing tem-
perature of 58°C. The primers used in this study are listed
in Table 1.

Strains were confirmed as C. difficile and putative toxi-
genic status determined by two PCR multiplexes, [26] one
consisting of the tpi-F/R primers (C. difficile triose phos-
phate isomerase housekeeping gene) and the tcdA-F/R
primers (toxin A), and one consisting of the Pal15/16
primers (tcdC), cdtB-pos/rev primers (binary toxin subu-
nit B), and tcdB-3/4 primers (toxin B).

Sequence primer Gene Reference
AAAGAAGCTACTAAGGGTACAAA tpi-F tpi [26]
CATAATATTGGGTCTATTCCTAC tpi-R [26]
AGATTCCTATATTTACATGACAATAT tcdA-F tcdA [26]
GTATCAGGCATAAAGTAATATACTTT tcdA-R [26]
AATGCATTTTTGATAAACACATTG tcdB-3 tcdB this study
AAGTTTCTAACATCATTTCCAC tcdB-4 this study
TCTCTACAGCTATCCCTGGT PaLl5 tedC [12]
AAAAATGAGGGTAACGAATTT Pall6é [12]
TTTCATACATTTGTGCTGGG cddl-A tcdC this study
AATGCATTTTTGATAAACACATTG tcdC-3 this study
TTCTAGATTTCATAAAAGATAC TPR-1 tcdR this study
CTGACATATTATGATATTCTTC tcdB-UP this study
GTTGTTTAGATTTAGATGAAAAGA Loké tcdE [33]
CTTGGTCTAATGCTATATGCGAG PrimexA [34]
CTTAATGCAAGTAAATACTGAG cdtB-pos cdtB [24]
AACGGATCTCTTGCTTCAGTC cdtB-rev [24]
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Genes and flanking regions were amplified for sequence
analysis (Table 2) with primers TPR-1/tcdB-UP (tcdR),
Lok6/PrimexA (tcdE), and cdd1-A/tcdC3 (tcdC). Oligonu-
cleotides were synthesized, and dideoxy cycle sequencing
carried out by the Genomics Core Facility of the NML.

Selective regions of the Toxin A and B were analyzed fol-
lowing [27] toxinotyping procedure using the B1C and
B2N primers to amplify region B1 and A3C and A4N
primers to amplify region A3.

Binary toxin PCR was performed following [28] proce-
dure using the cdtB primers cdtBpos and cdtBrev.

Growth conditions

C. difficile strains were grown on Tryptic soy agar contain-
ing 5% sheep blood (BA) (Oxoid Nepean, ON) that were
incubated at 37°C in a Bactron anaerobic chamber (Shel-
don Manufacturing Cornelius, OR). Prior to each experi-
ment, 48 hour pure cultures on BA were subcultured into
pre-reduced Brain Heart Infusion broth (BHI) (Difco
Kanasas City, MO). After overnight growth at 37°C each
culture was used to inoculate BHI (10 mls) or to provide
a final bacterial concentration of ~103 cfu/ml. The inocu-
lated BHI culture in Hungate tubes (screw cap with a rub-
ber septum facilitated aspiration of samples) was
incubated at 37°C and samples were taken at various time
frames over 60 hours to determine viable count and toxin
A and B titres using the methods described below.

Bacterial Quantitation

Samples were serially diluted 1:10 in BHI and then 0.1 ml
of each dilution was inoculated onto Clostridium difficile
Moxalactam Norfloxacin (CDMN) agar plates (Oxoid
Nepean, ON) using the spread plate technique. All counts
were performed in triplicate after 48 hours incubation and
the average + standard deviation was determined.

Table 2: GeneBank Accession numbers for genes sequenced.

Strain accession no. for gene region

tcdR tcdE tcdC
ATCC 43594 DQ912170 DQ902560 DQ870674
1083 DQ9I2171 DQ902562* DQ272240**
79A292 DQ9I2172 DQ902561 DQ970676
81A330 DQ912173 n.d. DQ870675
57A DQ912174 DQ902559 DQ272239
83 DQ912175 n.d.c n.d.e

an.d., not deposited as the sequence for this region was 100%
identical to the same region from strain 57A.

* The | bp deletion is at position 272 of the DQ902562 gene
sequence. The deletion causes a frameshift resulting in an in-frame
stop codon at position 275-277 of the DQ902562 sequence.

** The | bp substitution that results in a transversion of C to A is at
position 695 of the DQ272240 sequence.

http://www.biomedcentral.com/1471-2334/9/103

Spores were detected using alcohol shock and quantitative
count using the CDMN spread plate technique.

Cell Culture

Human foreskin fibroblast (HFF) cells, were used for the
Toxin B cytotoxin assay as described by Du et al. [30].
Cells were examined for cytopathic effect (CPE) at 48
hours and a monolayer with at least 50% cell rounding
was considered positive for CPE [29]. The titer was
reported as the reciprocal of the highest dilution positive
for CPE. All results for Toxin B titres were reported as
mean + standard deviation from triplicate experiments.
Purified Toxin B (Techlab Blackburg, VA), and myeloma
media were included as positive and negative controls
respectively. Bartel's (Carlsbad, CA) Toxin B control was
also used as a positive control.

The Caco-2 cells (ATCC HTB 37), were maintained and
used for the Toxin A tight-junction assay, in Transwell
inserts (Corning Costar Corning, NY) as described by Du
et al. [30] as modification of Grasset et al. [31] method.
The transepithelial resistance (TER) was measured using
Millicell-ERS (Millipore) and the monolayer was consid-
ered to be confluent when the TER was > 400 Q/cm2 [30].
Samples were considered positive for Toxin A if a 50%
drop in resistance was seen within 360 minutes of inocu-
lating the insert. Purified Toxin A, Lot 0195005 (Techlab
Blackburg, VA) at 460 ng/ml and cell culture media alone
were included as positive and negative controls respec-
tively.

Results

The objective of this study was to evaluate a variety (Figure
1) of clinical strains of C. difficile (NAP1 related and NAP1
non-related) to determine if there was a correlation
between the genetic changes detected in the putative neg-
ative regulator gene (tcdC) and the growth kinetics and
toxin production. The relatedness of strains was assessed
by pulsed-field gel electrophoresis (Figure 1) using Smal
as the restriction enzyme following the method of [32].

The seven strains were assessed to confirm that both Toxin
A and B genes were present and to ensure that there were
not any large deletions within the B1 or A3 regions
[27,33] of the pathogenicity locus (PaLoc). In addition
sequencing was used to evaluate any changes in the posi-
tive regulator gene tcdR, the putative toxin secretory gene
tcdE, as well as the putative negative regulator gene tcdC.
The results of these analyses are shown in Figure 1.

The results of the growth kinetic studies are shown in Fig-
ure 2. A clear segregation of strains was observed, as such
strains were considered to be high-level producers (HLP)
if the titre of Toxin B was > 103 CPE units per ml by 48
hours incubation. The ATCC 43255 strain and the NAP1-
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tcdC characteristics
.0/.° . Predicted  Deletion Predicted Allele
similarity cdfB truncating beyond TedC length  genotype*
40 60 80 100 Strain PCR" mutations? stop codon® (amino acids)
IS W . N |
I 1083 + CI191A Yes(36bp) 63 tcdC-sc18
| | | | | | ATCC 43255 - None None 232 wild type
79-A-292 - None No (18 bp) 226 tcdC-sc19
[ LI
81-A-330 + None No (18 bp) 226 tcdC-sc20
| ]
| | | || | | | 57A(NAP1b) + A117A Yes (18 bp) 65 tedC-sc1
| | | || | | | 83 + A117A Yes (18 bp) 65 tedC-sc1
| | |||| ” l | ATCC 43594 - None None 232 tcdC-sc3

' 4+, positive, presumed to produce binary toxin.

2 The C191A mutation creates a TAA stop codon at position 190-192.

3 Yes signifies a deletion is present after the stop codon that was introduced as the consequence of the mutation
(sizeof deletion is given in brackets). No signifies an in-frame deletion (size of deletion is given in brackets).

4 The tcdC genotype as defined by Curry et al (2007) who defined up to type tcdC-sc17. We have assigned genotypes

tcdC-sc18 to tcdC-sc20 here.

Figure |

Characteristics of Clostridium difficile strains. All strains had tcdA and tcdB as the appropriate size of A3 and Bl amplicon
was detected.[27] To assess NAPI relatedness, PFGE analysis was performed using Smal as outlined by[32].

related clinical isolates all produced high titres of biolog-
ically active Toxin B in broth culture whereas ATCC 43594
and the other three clinical isolates did not. The clinical
strain 1083 was the slowest Toxin B producer (Figure 2G)
and this was confirmed using multiple repeated growth
curves (data not shown).

To determine if these strains had differing levels of biolog-
ically active Toxin A production, samples from cultures of
each strain under the same growth conditions were evalu-
ated at 24 and 48 hours post-inoculation. The ATCC
43255 strain produced more biologically active Toxin A
than any of the other strains when 24 hour cultures were
evaluated. By 48 hours (Figure 3), both NAP-related
strains (83 and 57A) had reduced the trans-membrane
resistance to < 30% whereas this TER was not seen for
NAP1-unrelated strains.

Alcohol shock was used to determine what portion of the
total viable count was in the spore form (Figure 4). The
only major difference in spore formation noted was that
strain 43255 had < 1 Log,, of spores after 24 hours incu-

bation whereas all the other strains tested had between
102 to 105 spores/ml. By 48 and 72 hours incubation all
strains had ~10> spores/ml from a total population of
~107 cfu/ml (i.e. viable count is predominantly in the veg-
etative form).

The promoter region of tcdC (-35 to -10 bp upstream of
the tcdC gene as described by Hunsdsburger et al. [34])
was sequenced to determine if the strains evaluated had
any differences. An alignment of the sequences showed
that all strains had identical promoter sequences (data not
shown). Sequencing of the tcdC gene itself demonstrated
that there were deletions that would lead to a premature
termination codon in the protein sequence that would
affect the expected length of the protein product (Figure
1). Alignment of the amino acid sequences is shown in
Figure 5. It is apparent that for strains 1083, 57A and 83
that the proteins transcribed and translated from the tcdC
gene would be substantially shorter compared to the
other strains evaluated that had no deletions or premature
stop codons. Although the truncated proteins are some-
what similar in length (63 vs 65 amino acids long), the
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Figure 2

Toxin B production over time for various strains of C. difficile. The viable count (line) and Toxin B production (black
bars) were determined over 60 hours for isolates grown in BHI broth. The strains evaluated included; ATCC 43255 (A),
ATCC 43594 (B), NAPI clinical strain 57A (C), NAPI clinical strain 83 (D), historical clinical strains 79A292 (E), 81 A330 (F)
and 1083 (G).
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Figure 3

Toxin A activity of C. difficile strains grown in BHI broth culture. The Toxin A activity for 48 hour culture superna-
tants was determined using the trans-membrane resistance assay. The positive control consisted of purified Toxin A (460 ng/
ml) and the negative control was BHI broth. Strain 700057 is a strain that in a non-toxin producing strain.

position of the 1 bp change leads to very different amino
acid sequence changes. Strain 1083 has a 1 bp substitu-
tion at position 191 that results in a C to A transversion
that creates a premature stop codon and results in a 63
amino acid long protein that has an unchanged amino
acid sequence up to position 174. Whereas the 1 bp dele-
tion at position 117 in strains 57A and 83 results in a
frame shift that leads to an altered amino acid sequence
from position 117 onwards and a premature stop codon
at positions 187-189 resulting in a predicted product of
65 amino acids.

The sequence analysis of the tcdR genes of the seven
strains were identical (data not shown). Sequence analysis
of tcdE revealed that only strain 1083 had any deletions.
This 1 bp deletion in strain 1083 causes a frame-shift and
leads to a stop codon after 18 amino acids compared to

expected protein product of 166 amino acids for all other
strains (Figure 1).

Because cdtB was detected by PCR, binary toxin was pre-
sumed to be produced by the NAP1-related strains 57A
and 83 as well as 81A330 and 1083 which are NAP1-unre-
lated strains by PFGE (Figure 1).

Discussion

Our results demonstrated that deletions in the tcdC gene
cannot be used to predict hyperproduction of Toxin A or
B in clinical isolates. Assessment of deletions in this gene
could be very misleading if used as a diagnostic approach
in patients with CDAD to try to predict who will have
more severe disease. Furthermore, our data suggested that
tcdC deletions may not be the sole factor responsible for
the increased toxin production observed in the NAP-1 iso-
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Figure 4

Sporulation activity of C. difficile strains grown in BHI broth culture. Spore production by strains of C. difficile grown
in BHI broth for 24 (A), 48 (B) and 72 hours (C). The total viable count of C. difficile ((J) was determined as well as an assess-
ment using alcohol shock (as described in the Materials and Methods) to determine what portion was in the spore form (H).
Each bar represents the average of triplicate testing. The 24 hour levels for strain 43255 were tested in triplicate on two sepa-
rate occasions to verify that spore levels were consistently < | Log,,.
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Figure 5

Amino acid sequence alignment from tcdC gene of various strains of C. difficile. Amino acids identical to the ATCC
43225 sequence (shown) are indicated by periods, differences are shown, and the region of the six amino acid deletions
(dashes) in strains 79A292 and 81A330 are boxed. The transmembrane helical regions (TMH) are indicated by a line.

lates. Studies of toxin production using isogenic mutants
are warranted to confirm our results.

There are a number of possible explanations for what has
been referred to as "hyperproduction” of toxins by some
C. difficile strains and not by others. If the positive regula-
tor tcdR was genetically altered in various strains it might
result in differing toxin expression between strains. Our
sequencing data indicates that the tcdR gene in all strains
is identical ruling out genetic differences in the positive
regulator gene as an explanation of differences in Toxin A
and B production. An alternative mechanism for "hyper-
production" might be that the putative negative regulator
tcdC is mutated thereby allowing earlier and more effi-

cient expression of toxin due to the lack of a functional
negative regulator. Although there were multiple changes
found in tcdC in various strains of C. difficile (e.g. 57A, 83,
and 1083) that resulted in predicted truncated proteins
that are likely not active, these defects do not always cor-
relate with increased toxin expression. Furthermore, strain
ATCC 43255 does not have deletions or mutations in tcdC
yet it has the highest levels of Toxin B and Toxin A produc-
tion in vitro (higher even than the NAP1-related clinical
isolates). Strains can differ in the proportion of the popu-
lation that is in the spore form and this might explain the
differences in secreted toxin levels. However, the growth
conditions in our study did not result in variation in spore
levels for the different strains evaluated. Therefore, the dif-
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ferences in toxin production observed cannot be
explained by differences in spore form population. Our
data therefore suggest that alterations in the tcdC gene
sequence are not accurate predictors of hyper-production
of Toxin B or Toxin A.

The ATCC 43255 strain is a known hyperproducer of
Toxin B [6,10,36] and our data for biologically active
toxin production in BHI broth culture support this deter-
mination. The use of ATCC 43255 as the "type strain" may
be misleading as Warny et al. [4] assessed 25 Toxinotype
0 clinical isolates (non NAP1-related) and reported that
hyperproduction of toxin is not common in non-NAP1
clinical isolates.

The TcdC protein has a predicted transmembrane domain
[34] which was lost for the truncated product and altered
amino acid sequence for strains 57A and 83. However, the
transmembrane folding motif for TcdC was retained for
strain 1083 despite the truncation of this protein. Despite
this retained transmembrane motif for strain 1083 it is
unlikely that the TcdC protein is fully functional when
only a predicted 63 of the total 232 amino acids are
present.

Another possible explanation for increased toxin activity
in our experiments might be that secretion of the toxins
outside the bacterial cell is increased in "hyperproducing"”
strains. Sequencing of tcdE indicates that there are no dif-
ferences in this gene in the strains evaluated except for
strain 1083 that has a 1 bp deletion that results in a trun-
cated product of 18 amino acids compared to the expected
size of 166 amino acids. If secretion was negatively
impacted because the TcdE protein product was non-func-
tional (i.e. unable to secrete toxins properly), this might
explain why the levels of Toxin B were low in this strain
despite the truncation to the tcdC gene that is suspected to
predict toxin hyperproduction. Our study evaluated the
levels of secreted toxin B, therefore, the levels of toxin
detected in our assays would be low if the strain had
decreased ability to secrete toxin. However, there are other
strains (e.g. 79A292 and 81A330) that are low toxin pro-
ducers that do not have defects in tcdE. Furthermore, nei-
ther ATCC 43255 nor the NAP1-related clinical isolates
have defects in tcdE yet they produce high titres of biolog-
ically active Toxin B in broth culture.

Our data confirms previous reports [4,37] as near maxi-
mal biologically active Toxin B production was reached
earlier in the growth curve (24 hours) of "hyperproduc-
ing" strains in BHI compared to "non-hyperproducing”
strains (36 to 48 hours). We found that "hyperproducing”
strains produced 100 to 1000 fold more Toxin B at 24 and
48 hours in BHI compared to "non-hyperproducing”
strains. Our studies focused on biological activity of Toxin

http://www.biomedcentral.com/1471-2334/9/103

A and B whereas, Warny et al. [4] assessed total protein
concentration irrespective of functionality, so this may
explain the difference in ratios between "hyperproducing”
and "non-hyperproducing” strains. Both studies assessed
the culture supernatant from broth cultures as the source
of secreted toxin. We used BHI broth and Warny et al. [4]
used an Acambis proprietary broth media, so there may be
some differences in the kinetics of toxin production due
to different growth medium. In our studies C. difficile
strain 43255 produced the highest levels of biologically
active Toxin B in BHI broth culture compared to all other
strains tested, yet it has no deletions in tcdE, tcdC or tcdR,
therefore, our data do not support the conclusion by oth-
ers [4,35] that the mutations found in tdC of NAP1
strains accounts for their higher Toxin B production.

The recent study of Matamouros et al. [37] used cloning
experiments and concluded that tcdR, which is a positive
regulator for Toxin A and B production, was under the
negative regulatory control of tcdC. They concluded that
the TcdC protein product does not directly interact with
the Toxin A promoter but rather interacts with TcdR to
prevent it from functioning properly and thereby causing
a negative impact on Toxin A production (i.e. it acts as a
sigma-factor antagonist). They suggest that their data pro-
vide the first proof that tcdC is a negative regulator and
furthermore, they suggest that epidemic strains have
mutations in tcdC that result in hyper-production of toxin.
Despite their elegant data to show how TcdR is negatively
impacted by TcdC, their data do not provide an explana-
tion for why the C. difficile ATCC strain 43255 is a hyper-
producer of Toxins A and B (it has no tcdC mutations and
has an intact tcdR). Furthermore, C. difficile strain 1083
has a predicted truncated TcdC yet it does not hyper-pro-
duce Toxin A or B. Whether the use of the glutamate dehy-
drogenase promoter for tcdC in these studies (rather than
the actual tcdC promoter) has any role in the finding is
unknown (all other genes cloned were under control of
their natural promoter) [37].

The assays used in our study to assess biological activity
are different so we cannot directly compare the titres of
Toxin B to those of Toxin A. Despite this limitation our
data does allow comparison of relative production of each
toxin across a range of C. difficile strains. Strain 43255 pro-
duced significantly higher titres of biologically active
Toxin B and Toxin A in broth culture compared to all
other strains. Differences in the binding avidity, or kinet-
ics of glucosyltransferase activity of Toxin A and B was not
assessed. Previous studies have reported that mutation of
tryptophan-101 in Toxin A (a similar effect was also seen
for Toxin B) resulted in reduced glucosyltransferease activ-
ity [38]. Our results demonstrated that there was approxi-
mately 100-1000-fold higher titres of biologically active
Toxin B production after 24 and 48 hours in broth culture
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for "hyper" versus "non-hyper" producing clinical iso-
lates. Our results were obtained from the analysis of a
small number of isolates that were chosen to represent
sub-types of C. difficile that have been associated with
CDAD. The control strains, ATCC 43255, 43594 and
700057, included the wild-type strain, a second toxigenic
strain and a non-toxigenic strain respectively. It is not pos-
sible from our data or any of the currently published data
to conclusively determine what gene(s) (if any) are
responsible for "hyperproduction" of toxins in some
strains of C. difficile. Furthermore, the significance of in
vitro "hyperproduction" of Toxin A and B may or may not
reflect what occurs in vivo. There have been no evaluations
of humans infected with "hyperproducing" strains to
establish that the titre of Toxin A or B/gram of stool is
higher compared to levels in patients infected with non-
hyper producing strains of C. difficile. However, the recent
study by Freeman et al. [39] using the human gut model
showed that post-exposure to clindamycin, the level of
Toxin B production was similar for NAP1-related strain
and a ribotype 001 strain.

Our data would suggest that the Caco2 transmembrane
resistance assay is an insensitive test method for Toxin A
as > 460 ng/ml was needed to give a detectable trans-
membrane electrical resistance drop whereas > 150 ng/ml
of Toxin B produced detectable CPE in HFF cells. Alterna-
tively Toxin A activity may degrade more rapidly in BHI
broth culture compared to Toxin B activity.

Conclusion

In summary, our data do not support the role of muta-
tions in tcdC as the sole basis for NAP1-related strains
being hyper-producers of Toxins A and B. The production
of isogenic C. difficile mutants has been described by [40]
and this approach may be necessary to clarify the role of
tcdC.
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