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Abstract

Background: Hepatitis A (HA) is a low-incidence, non-endemic disease in Canada and the United
States (US). However, a large difference in HA incidence between Canada and HA-endemic
countries has made travel an important contributor to hepatitis A prevalence in Canada. There is
also a (smaller) incidence differential between Canada and the US. Although the US has only
moderately higher HA incidence, the volume of travel by Canadians to the US is many times higher
than travel volume to endemic countries. Hence, travel to the US may constitute a source of low
to moderate risk for Canadian travelers. To our knowledge, travel to the US has never been
included as a potential risk factor for HA infection in Canadian epidemiologic analyses. The
objective of this study was to use dynamic models to investigate the possible effects on hepatitis A
incidence in Canada due to (I) implementing vaccination in the US, and (2) varying the volume of
travel by Canadians to the US.

Methods: We developed and analyzed age-structured compartmental models for the transmission
and vaccination of hepatitis A, for both Canada and the US. Models were parameterized using data
on seroprevalence, case reporting, and travel patterns. The potential effect of hepatitis A
prevalence in the US on hepatitis A prevalence in Canada was captured through a term
representing infection of Canadians due to travel in the US.

Results: The model suggests that approximately 22% of HA cases in Canada in the mid 1990s may
have been attributable to travel to the US. A universal vaccination programme that attained 70%
coverage in young children in the US in the mid 1990s could have reduced Canadian incidence by
21% within 5 years.

Conclusion: Since not all necessary data were available to parameterize the model, the results
should be considered exploratory. However, the analysis shows that, under plausible assumptions,
the US may be more important for determining HA prevalence in Canada than is currently
supposed. As international travel continues to grow, making vaccination policies ever more
relevant to populations beyond a country's borders, such multi-country models will most likely
come into wider use as predictive aids for policy development.
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Background

Wealth varies dramatically across countries, and with it,
the disease burden for many infectious diseases [1]. One
example is HIV, where prevalence is 6% in sub-Saharan
Africa but only 0.3% in Western Europe [2]. A less striking
but still significant example is hepatitis A (HA). HA is a
non-endemic, low-incidence disease in the US and Can-
ada, but is highly endemic in many other countries [3-6].
The average reported HA incidence in Canada was 6.3 per
100,000 per year from 1980 to 1994 [7], and the average
reported HA incidence in the US was 10.5 per 100,000 per
year from 1980 to 1999 [8]. By comparison, in 1990,
reported incidence ranged from 20 to 60 per 100,000 per
year in Africa and the Middle East (depending on the
country), 10 to 30 in Asia, and 20 to 40 in Central and
South America [9]. Moreover, reported incidence signifi-
cantly underestimates actual incidence due to under-
reporting and subclinical infection [6,8,10]. Because sub-
clinical infection is more common in children, who are
infected more frequently in developing countries than
developed countries, the global differential in true infec-
tion levels is much higher than for reported incidence.

This incidence differential between Canada and HA-
endemic countries, combined with increasing air travel,
makes travel by Canadian residents to HA-endemic coun-
tries a significant source of HA infection in Canada
[11,12]. Travel to endemic countries is also a source of
infection in the US, with 10% of reported infections
attributable to travel in HA-endemic countries in 2001
[13].

Hepatitis A vaccine has been available in Canada and the
Us since 1995 [14]. In Canada, the average reported inci-
dence from 1995 to 2003, while a targeted vaccination
programme was in place, declined to 3.8 per 100,000 per
year [7]. The vaccination policy in Canada is still targeted
and includes high-risk groups, such as men who have sex
with men, intravenous drug users, members of First
Nations communities, and travelers to endemic countries,
among others. In the US, after vaccination was imple-
mented (with universal vaccination in the states with
highest incidence), the reported incidence had declined to
3.7 per 100,000 per year by 2001 [14,15]. The true inci-
dence of infection (including both clinical and subclinical
infection) has been underestimated by approximately 8-
fold in Canada and 10-fold in the US [8,16].

There also exists an incidence differential between Canada
and the US, with the US having somewhat higher inci-
dence (Figure 1). Hepatitis A incidence tends to rise and
fall at the same time in the US and Canada. In fact, the
reported incidence in the two countries is positively corre-
lated with a correlation coefficient +0.54 (Figure 1) [7,8].
Interestingly, outbreaks of hepatitis A in men who have
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sex with men (MSM) in Montreal often follow outbreaks
in MSM in New York by 1 or 2 months (Vladimir Gilca,
Institut national de santé publique du Québec, pers.
comm.). The two countries are also bound together by
very high travel volume. For instance, in 1995, the
number of person-trips by Canadian residents returning
to Canada from the US was 4 times the number to all
other countries combined, and 9 times the number made
to all HA-endemic countries combined [16]. Similarly, on
average from 1987-2006, outbound travel from Canada
to the US was 10 times that to all other countries com-
bined [17].

Given these observations, it is worth posing the question:
how does HA epidemiology in the US influence HA epi-
demiology in Canada? This issue has implications for pol-
icy, since it implies that health interventions in one
country may potentially influence health outcomes in
other countries. This question also has implications not
only for hepatitis A but for many diseases such as SARS, as
burgeoning air travel turns local problems into global
problems. In this paper, we develop mathematical (age-
structured compartmental) models of hepatitis A trans-
mission and vaccination in Canada and the US. We use
travel data to couple the two countries epidemiologically
through travel. We focus on these two countries (rather
than attempting a global model) because of the relatively
good availability of data for the US and Canada and the
close relationship of Canada to the US. The coupled
model allows us to analyze how transmission and vacci-
nation in the US may be affecting HA incidence in Can-
ada.
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Figure |
Reported incidence (per 100,000 per year) of hepatitis A
infection in the United States and Canada, 1978-2001.
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Methods

We begin with a description of hepatitis A epidemiology,
which will motivate our choice of mathematical model. In
Canada and the US, unlike most developing countries,
hepatitis A is transmitted mostly by person-to-person con-
tact, by the fecal-oral route [10]. Unlike in many coun-
tries, foodborne outbreaks are very infrequent in Canada
[18]. Children play an important role in transmission due
to their higher rates of subclinical infection and poor
hygiene [19]. Clinical illness typically lasts four weeks,
there is no chronic state of infection [20], and natural
immunity is lifelong. Although 70% of infected post-ado-
lescents develop jaundice, many do not seek medical
attention [10,21]. Individuals with symptomatic HA
infection experience nausea, loss of appetite, fatigue,
fever, abdominal pain and jaundice [21]. Hepatitis A
infection is more severe in older individuals or those with
co-morbidities such as chronic liver disease [22,23]. The
most serious possible complication of hepatitis A infec-
tion is fulminant hepatic failure. The rate of mortality
attributable to HA varies from 0.2% in symptomatic
young adults to 1.7% in symptomatic individuals 60 years
and older [24].

Given the predominance of person-to-person contact,
lifelong immunity, and the importance of children in
transmission, a suitable mathematical model is an age-
structured compartmental model. This widely-used class
of models has been shown to be particularly useful in
assessing the effects of universal vaccination programmes
against diseases with acquired immunity transmitted hor-
izontally through person-to-person contact, and has been
shown to provide good agreement with pre- and post-vac-
cination age stratified case reports and seroprevalence sur-
veys for infectious diseases such as measles [25,26].

Our age-structured SEIRV compartmental model stratifies
individuals according to epidemiologic status (Suscepti-
ble-Exposed-Infectious-Recovered-Vaccinated) and age
class (ages 0-4, 5-9, 10-19, 20-29, 30-39, 40-59, 60+).
Age classes are chosen to reflect age categories in available
sources of demographic and epidemiologic data. Flow
rates between compartments are defined by model param-
eters. Exposed individuals enter the infectious compart-
ment at rate &, and infectious individuals of age class i
enter the recovered compartment at rate y, thereafter

retaining lifelong immunity. Individuals in age class i are
vaccinated at per capita rate )/,-US thereby entering the vac-
cinated compartment. The 'US' superscript denotes that
this parameter value is specific to the US. Vaccinated indi-
viduals lose their immunity at per capita rate f, re-entering
the susceptible compartment. Individuals are born sus-
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ceptible at rate bUS, die at rate 6"°, and age at rate a;.

Maternal immunity is short-lived and affects relatively few
individuals in a non-endemic country such as Canada, so
we do not include it [10]. Since HA in Canada and the US
is spread primarily person-to-person, we do not model
foodborne or waterborne outbreaks [10]. The model
equations appear in Appendix A and the parameterization
is described in Appendix B. A diagram of the model
appears in Figure 2.

The United States and Canada are both large countries
and one may consider that a model by states would be
more appropriate. However, despite their close proximity,
there is more travel within Canada than between Canada
and the US: from 1998 to 2004, there were 4.6 times as
many person-trips made within Canada (across prov-
inces) as between Canada and the US [17].

Table 1 gives the parameter values used for the US model
and their data sources [8,13,24,27-30]. Demographic and
epidemiologic parameter values are from the pre-vaccine
era, 1980-1994. Demographic parameters such as birth
rates and age-specific death rates were taken from demo-
graphic data. Clinical and epidemiologic literature on
hepatitis A were used to determine the durations of latent
and infectious periods, vaccine efficacy, and duration of
vaccine-derived immunity. The rate at which a susceptible
person is infected due to travel in endemic countries

(z5), and the rate at which a susceptible person is
infected by infectious persons due to domestic US trans-

mission ( 1-?]5 ) were computed simultaneously using: (1)

published data on the true incidence of hepatitis A in the
Us, adjusted for under-reporting and the probability of
jaundice [8], (2) data on the age-specific proportion of
cases attributable to travel in endemic countries [13], and
(3) an assumed form for a "Who Acquires Infection From

Whom" matrix consisting of the ﬂijus parameters [31].

This method of computation, which uses the model equa-
tions and does not require explicit knowledge of the force
of infection or seroprevalence data (although those were
necessary to estimate the true incidence in this particular
case), is described in Appendix B.

Hepatitis A is not endemic in the US, and the US incidence
of HA is only modestly higher than that of Canada. How-
ever, there is such a greater volume of travel to the US than
to HA-endemic countries that it makes sense to make
allowance for infection due to travel to the US in the
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Schematic diagram of model with flows between compartments; see text for definitions of variables and parameters.

Canadian model. Hence, the Canadian model is identical
except there are three possible sources of infection instead

of two: domestic transmission ( ﬂnc ), travel to endemic

countries (Tﬁnd ), and travel to the US (Tfus ). There are

no data on what proportion of reported HA cases in Can-
ada are attributable to travel in the US. Hence, we must

estimate Tfus from Tfend using assumptions relating

travel volume, duration of stay, and relative incidence lev-
els in the US to the same parameters in endemic countries:

c yUsy© el'US wiUS

Tius = Tiend yend_yC gend  end
1 1

(1)

where YUS (resp. Yend, YC) is the incidence in the US (resp.
endemic countries, Canada) where eius (resp. Gf”d) is
the annual volume of travel by individuals in age class i to

the US (resp. endemic countries), and where a),-us (resp.

@) is the average duration of stay by travelers in the US

(resp. endemic countries). These parameters can be
obtained from published data [3] or from travel data
available on government agency websites [32]. The differ-
ence between Canadian incidence and US/endemic inci-
dence is used since that is proportional to the marginal
increase in infection risk to Canadian residents traveling
in other countries. For instance, if Canadian incidence
were 5 per 100,000 per year, and US incidence changed
from 10 per 100,000 per year to 15 per 100,00 per year
(due to more foodborne outbreaks in that country, for
example), then the additional risk of infection per year
that Canadian residents assume upon themselves due to
travel to the US would double. We note that Equation 1
does not take all possible factors into account. For
instance, individual behaviour may vary, since Canadian
residents are perhaps more risk-averse when traveling in
an endemic country than when traveling in the US. The

: c C . .
Canadian parameters 7;,,; and f;; are estimated using
the same method as for the corresponding US parameters
Ti,uesnd and ﬁi]L.’S , except that the force of infection due to

travel to the US is first subtracted from the total force of
infection, and Canadian seroprevalence, case reporting,

Page 4 of 15

(page number not for citation purposes)



BMC Infectious Diseases 2008, 8:23

http://www.biomedcentral.com/1471-2334/8/23

Table I: Definitions of parameters and variables, and parameter values used for the age-structured US model.*

Variable/Parameter Definition Values Reference
yUs Number of susceptible individuals in the United States ata ~ N/A (not applicable) N/A
i given time t in age class i
us Number of exposed (infected but not yet infectious) N/A N/A
E; individuals in the United States at a given time t in age class i
us Number of infectious individuals in the United States at a N/A N/A
I; given time t in age class i
us Number of recovered individuals in the United States at a N/A N/A
R; given time t in age class i
Vus Number of vaccinated individuals in the United States at a N/A N/A
i given time t in age class i
Vi Mean duration of infectious period 3.5,3.0,25,25, 2.5, 2.5, 2.5 weeks [27,28]
o Mean duration of latent period 2 weeks [27,29]
f Rate of waning vaccine-derived immunity 0.58% per year [24]
a Rate at which an individual in age class i ages (enters age 0.2,0.2,0.1, 0.1, 0.1, 0.05, O per year for age ~ N/A
class i+1) classes I, 2, ..7
bus Birth rate 0.015 per year [30]
5iUS Rate at which an individual in age class i dies 0,0,0,0,0,0.0167, 0.0750 per year [30]
us Rate at which a susceptible individual in age class i becomes  1.90 x 10-3,8.06 x 104, 1.42 x 104,889 x 10- [8,13]
Tiend exposed due to travel in endemic countries 5,5.94 x 105, 1.76 x 10-3, 1.80 x 105 per year
us Rate at which an infectious person in age class j infects a See Appendix See Appendix;
ij susceptible person in age class i (domestic transmission) [8,13]
us Rate at which a susceptible individual in age class i becomes  Varies according to scenario N/a
Yi vaccinated
[\j'iuS Population size of age class i 20, 20, 40, 40, 40, 60, 40 (millions) [30]

* The superscript 'US' denotes that the parameter values is speific to the US. Lack of superscript indicates that the same value is used for Canada

and the US.

and travel data are used (see Appendix B). The resulting

C

values for TEUS, ij and Tﬁnd appear in Table 2.

The age-structured model for Canada has identical struc-
ture to the US model except for the additional term repre-
senting infection attributable to travel in the US (see
Appendix A). We wish to make the force of infection
attributable to travel to the US a function of the number
of infectious individuals at any given time in the US, in
order to study the effects of differing vaccine coverage in
the US and differing travel volume to the US. Hence,

instead of TEUSSiC, the term in the age-structured Cana-

dian model takes the form Ti,CUSSiC , where

27._1IUS
TC = 1€ =1 (2)
ius = Tius 7US,1980-94
J=1j

The function T, is the time-varying force of infection

attributable to travel to the US and is a function of the

, the number of infectious individuals

model variable I ]US

of age class i at a given time in the US. The quantity

I jUS’1980_9 * is the average number of infectious individu-

als at any given time in the US in age class j in the pre-vac-
cine era (1980-1994) as predicted by the age-structured

model, and 735 is the force of infection attributable to
travel in the US during the pre-vaccine period 1980-2004.
The function T,—%s therefore couples the two countries

and reflects our assumption that when the number of
infected individuals in the US increases (resp. decreases),
the number of Canadian individuals becoming infected
due to travel in the US also increases (resp. decreases).

The demographic and epidemiological parameter values
for Canada are listed in Table 2. Parameter values relating
to disease progression in infected individuals are the same
as those for the US and so are not listed. Some parameters
(such as the birth rate) are very similar in the two coun-
tries. The number of residents of the US who become
infected while traveling in Canada is likely very small due
to the relative population sizes of the two countries, and
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Table 2: Definitions of parameters and variables, and parameter values used for the age-structured Canadian model.*

Variable/Parameter Definition Values Reference
sC Proportion of susceptible individuals in Canada at a given N/A (not applicable) N/A
i time t in age class i
EC Proportion of exposed (infected but not yet infectious) N/A N/A
i individuals in Canada at a given time t in age class |
8 8
i€ Proportion of infectious individuals in Canada at a given N/A N/A
i time t in age class i
RC Proportion of recovered individuals in Canada at a given N/A N/A
i time t in age class i
C Proportion of vaccinated individuals in Canada at a given N/A N/A
Vi time t in age class i
q, Rate at which an individual in age class i ages (enters age 0.2, 0.2, 0.1, 0.1, 0.1, 0.05, O per year for age N/A
I
class i+1) classes I, 2, .7
bc Birth rate 0.015 per year [43]
dC Rate at which an individual in age class i dies 0,0,0,0,0,0.0167,0.0750 per year [30]
1
C Rate at which a susceptible individual in age class i becomes  2.69 x 103, 1.90 x 10-3, 4.04 x 10-4,3.19 x 10~ [15,43,44,45]
Tiend exposed due to travel in endemic countries 4,281 x 104, 1.14 x 104, 4.02 x 10-> per year
Rate at which a susceptible individual in age class i becomes  9.56 x 104, 6.59 x 104, 7.89 x 10-5,4.25 x 10- [15,43,44,45
C
Tius exposed due to travel in the United States 5,4.34 x 103, 1.77 % 105, 6.43 x 106 per year
C Rate at which an infectious person in age class j infects a See Appendix [15,43,44,45]
ﬁij susceptible person in age class i (domestic transmission)
C Rate at which a susceptible individual in age class i becomes Varies according to scenario N/A
8i vaccinated
NE Population size of age class i 2,2,4,4,4, 6,4 (millions) [43]
1

* The superscript 'C' denotes that the parameter values is speific to Canada. Lack of superscript indicates that the same value is used for Canada

and the US.

so a similar term was not introduced in the US equations.
However, we note that this assumption could become
invalid under certain situations. For instance, if US vacci-
nation coverage is high and Canadian vaccination cover-
age is low, then travel to Canada could, in principle, be a
risk factor for US residents (particularly those living close
to the border). However, Figure 1 suggests that this is
unlikely in practice, as Canadian incidence has remained
below US incidence before and after the vaccine was
licensed in both countries in the mid 1990s.

Results

Here we describe the predicted incidence of hepatitis A in
Canada under various vaccination scenarios in the US,
and for various volumes of travel to the US. The adjusted
incidence values reported here are the predicted incidence
of reported cases adjusted for subclinical infection and
under-reporting. Hence, the adjusted incidence represents
the true incidence of all HA infections. If reported inci-
dence were plotted instead, the qualitative results would
be the same and the quantitative results would be similar
except for a scaling due to the adjustment for under-
reporting and subclinical infection.

Figure 3 shows the adjusted incidence in Canada at the
equilibrium state of the dynamic model as a function of
vaccination coverage in the 0-4 age class in the US. As the
vaccine coverage in the US increases, the adjusted HA inci-
dence in Canada decreases significantly. For instance, uni-
versal vaccination in the US at 70% coverage in the 0-4
age class causes a 21% decline in the adjusted Canadian
incidence, across all age classes. Hence, this allows us to
infer that approximately 21% of Canadian incidence was
attributable to travel in the United States, in the years for
which the model was parameterized (1980 to 1994).

Implementing a universal vaccination programme in the
US soon shows its effects in Canadian incidence. Figure 4
shows the adjusted incidence in the US and Canada when,
initially, there is no vaccination in either country, but in
1995, a strategy of vaccinating 70% of children in the US
in the 0-4 age class begins. Within a few years of the start
of the US vaccination programme, adjusted incidence has
also declined in Canada significantly. The choice of 1995
as the year that vaccination begins is motivated by the fact
that 1994 was the last year before HA vaccine became
widely available in the US and Canada. We also note that
the model was parameterized using data from 1980 (the
earliest year of availability for certain data) to 1994 inclu-
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Figure 3

Adjusted incidence in Canada versus US vaccination coverage
(in the 0—4 age class), at the equilibrium state of the model
dynamics. The adjusted incidence is the reported incidence
adjusted for asymptomatic infection and under-reporting.

sive. Figure 5 shows the adjusted US and Canadian inci-
dence, stratified by age «class, before and after
implementing universal vaccination in 1995 at 70% cov-
erage in the 0-4 age class in the US. In the US, incidence
declines rapidly not only in the 0-4 age class, but also in
the other unvaccinated age classes due to the indirect pro-

300 : : .

United States
Canada =

250}

200

150

100

Adjusted Incidence

50

| L L
JQ) 90 1995 2000 2005
Year

Figure 4

The effect of implementing universal vaccination in the
United States on the incidence in Canada. Universal vaccina-
tion is implemented in 1995 in the United States by vaccinat-
ing 70% of individuals in the 0—4 age class. The adjusted
incidence is the reported incidence adjusted for asympto-
matic infection and under-reporting.
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Figure 5

Adjusted incidence by age classes in the US (top) and Canada
(bottom) upon initiation of a universal vaccination pro-
gramme in the US at 70% coverage in all age classes in 1995.

tective effects of herd immunity. Likewise, incidence
declines in all age classes in Canada upon initiation of
universal vaccination in the US.

Similarly, the effect of an instantaneous 50% increase in
the US adjusted incidence in 1995 is soon reflected in a
10% increase in Canadian incidence (Figure 6). Although
this scenario of such a rapid increase in incidence is only
hypothetical, the example serves to illustrate how closely
coupled the countries are. The time difference between the
US peak and the Canadian peak in Figure 5 is about 14
days. As noted already, the observed time delay between
outbreaks of hepatitis A in gay men in New York with out-
breaks in gay men in Montreal is 1-2 months (Vladimir
Gilca, INSPQ, pers. comm.). Other scenarios where the
effects of fluctuating US incidence on Canadian incidence
are studied, such as sinusoidal variation in the US, give
rise to lags between US and Canadian incidence peaks of
approximately 2 months.

As the annual volume of travel by Canadian residents to

the US increases, the adjusted incidence in Canada also
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Figure 6
Adjusted incidence in the US and Canada after a sudden
increase in US incidence. In 1995, the number of infected

individuals in the United States is instantaneously increased
by 50%.

increases in almost direct proportion (Figure 7). The
adjusted incidence in Canada when there is no travel to
the US is 22% less than the adjusted incidence in Canada
at the actual volume of travel in 1995 (indicated in Figure
7). Hence, approximately 22% of infected individuals in
Canada in 1995 may have acquired the disease through
travel to the US, insofar as Equation 1 is correct.

400 . . . ;

350 A

300

250

200

Adjusted Canadian Incidence

L | L

L
400 600 800
Travel Volume to United States (10,000s)

1

1 1
1005 200

Figure 7

Adjusted incidence in Canada at the equilibrium state of the
model dynamics, as a function of the total annual volume of
Canadian travel (number of trips per year) to the United
States. The "X" denotes the actual volume of travel to the US
in 1995.
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Figure 8 is a surface plot of adjusted incidence in Canada

versus the US vaccination rate (g™) and the force of

infection due to travel to the US (7). The travel axis

us

(7)) is the weighted average of the 7/"® for all the age

classes, which are scaled uniformly to get these results.
The plot indicates that both a reduction in travel to the US
and an increase in vaccination levels in the US cause a

decrease in HA incidence in Canada. If both 78 and g\’

us

;> or small increases

are large, then small reductions in 7
in ¢t have a significant impact on incidence. However,
. us - us - .

if 7, is already small or g;" is already large, reductions
in 7;° andincreasesin g;° resultin much smaller reduc-

tions in incidence. Given ,L_ius and g% at some point in
time, this plot also indicates the path of steepest descent,
i.e.,, the combination of parameters Tl_us and g% such

that the incidence can be reduced most quickly.

Discussion

Although HA incidence is much lower in the US than in
HA-endemic countries, it is still somewhat higher than in
Canada. This, coupled with the enormous annual volume
of Canadian travel to the US compared to endemic coun-
tries, means that the US could be a more significant source
of travel-related infection (particularly for hepatitis A)
than previously recognized. Indeed, the results in the pre-
vious section illustrate the potential impact of hepatitis A
transmission and vaccination in the US on HA prevalence
in Canada. Simulation results based on the assumptions
in Equation 1 show that a significant proportion (22%) of
HA incidence in the mid 1990's, before vaccination was
introduced, may have been attributable to travel in the
US. Hence, some of the declines in HA incidence observed
after 1994 in Canada (Figure 2) may partly be due to the
start of universal vaccination in the higher-incidence
regions of the US in the mid-1990s.

We speculate that detecting travel to the US as a risk factor
is difficult because (1) the incidence is only moderately
higher in the US than in Canada (hence the risk to an indi-
vidual is only modestly increased when traveling to the
us), and (2) due to high travel volume, travel to the US
becomes a commonplace and under-reported event in the
lives of many Canadians. However, this modelling study
suggests that future epidemiological studies of risk factors
for HA infection should include travel to the US as a vari-
able in risk factor analysis.
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infection rate tau~US

Surface plot of adjusted incidence in Canada, versus vaccination rate g%ls and travel-related transmission rate TiUS . Values in

legend are adjusted incidence per 100,000 per year.

There are several limitations to the methodologies used in
this paper. Firstly, these results assume the contribution
due to travel in the US is similar to the contribution due
to travel to endemic countries, adjusted for the total pas-
senger-days in those respective destinations as well as the
difference in incidence between Canada and the respec-
tive destination (Equation 1). Moreover, here we have
neglected cohort effects for the sake of simplicity [33]. In
reality, the age-structured seroprevalence profile for hepa-
titis A exhibits a cohort effect, whereby the seroprevalence
in older age classes is higher than can be explained by the
current force of infection (thus implying that the force of
infection was higher in the past). The existence of a cohort
effect influences how the disease can be modeled. In par-
ticular, if the cohort effect is neglected and it is assumed
that transmission rates have always been constant, then
the dynamic model will overpredict the average popula-
tion incidence both before and after vaccination, and will
also overpredict the percentage reduction in incidence due

to vaccination [33]. Finally, there is social heterogeneity
within countries in risk factors and transmission patterns
for hepatitis A that may be important for modelling cer-
tain aspects of disease transmission. Geographical hetero-
geneity in travel destinations of Canadian traveling to the
US may also be important.

The actual HA incidence in the US and Canada appeared
to oscillate on a non-seasonal seven-year cycle before the
vaccine era (Figure 1). However, our model solutions do
not oscillate. Non-seasonal oscillations in models are
often associated with endemic diseases, and the period of
oscillation (time between peaks) can even be predicted
successfully from models [31]. In the case of these mod-
els, setting the travel transmission rates to zero for both
the US and Canada caused the infection to die out, sug-
gesting that hepatitis A was not endemic in these two
countries for the period 1980-1994, the time for which
the model was parameterized. The fact that HA incidence
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oscillated during this time suggests that some third
endemic region with a natural period of seven years was
driving both the US and Canada. This endemic region
may be constituted by Mexico, the Caribbean, and Central
American countries, with which both the US and Canada
have strong travel links. Possible extensions of the present
work include a multi-region model where one region is
endemic and drives outbreak patterns in other regions.
This would allow the model to capture, for instance, US
residents who return from endemic countries and travel to
Canada shortly thereafter. However, the data require-
ments for such a model would be significantly greater.

There have been at least eight hepatitis A transmission
models in recent years that have assessed hepatitis A trans-
mission and/or vaccination in various populations and
have included herd immunity effects [3,14,15,33-37].
Like the present model, these models have mostly been
deterministic, age-structured compartmental models.
Some have structured the population along social [34] or,
like the present study, geographic lines [14,36]. Those
models predicting or estimating the effects of universal
vaccination report declines in incidence due to universal
vaccination that are similar in magnitude to those found
by the present model [14,15,36,37]. Several of the models
also included a cost-effectiveness or cost-utility analysis
[35,37]. Van Effelterre and colleagues included transmis-
sion across regions in the United States in a preliminary
way, as part of the sensitivity analysis of their model of US
hepatitis A transmission and vaccination [36]. They found
that the benefits of universal vaccination across the entire
Us, compared to the benefits of region-specific strategies
according to regional HAV incidence, were less important
with transmission among regions than without. However,
there were still benefits in terms of the number of cases
averted by universal vaccination across the entire US with
transmission among regions. They did not incorporate
travel data into their model. To our knowledge, the
present model is the first to incorporate transmission of
hepatitis A between countries due to international travel
by residents.

The worldwide SARS coronavirus outbreaks exemplified
how a public health problem in one population can
quickly become a problem in others, due to strong travel
connections between countries. The example of hepatitis
A transmission in Canada and the US represents the (sig-
nificantly less spectacular) flipside to that of SARS: the
decline of hepatitis A in Canada may partly be attributable
to universal vaccination in the US. Other modelling work
illustrates how nonvaccinators in a population can "free-
ride" by taking advantage of the herd immunity provided
by vaccinators [38-41]. This has been compared to a Pris-
oner's Dilemma (wherein vaccinators are "cooperators”
and nonvaccinators are "defectors") and analyzed using

http://www.biomedcentral.com/1471-2334/8/23

game theory [39-41]. In the same way, entire countries
can also "free-ride" by benefiting from vaccination pro-
grammes carried out in and funded by other countries. As
international air travel continues to increase, vaccination
policies and public health policies in one country will
become increasingly important to other countries. In the
future, multi-country or multi-regional models may come
into more common usage.

Conclusion

This study illustrates that changes in hepatitis A vaccina-
tion or incidence in the US, or changes in the volume of
travel by Canadians to the US, may all have significant
and rapidly-realized impacts on the prevalence of hepati-
tis A in Canada. The possibility of such a connection is
also supported by other evidence, such as the positive cor-
relation in hepatitis A incidence in the US and Canada
from 1980 to 1994 (Figure 1). Hence, declines in reported
incidence since the mid-1990s observed in Canada may
be partially attributable to vaccination in the US. Future
epidemiological studies of risk factors for HA infection
should include travel to the US as a variable in risk factor
analysis. Should travel to the US be found as a significant
risk factor, then it should be included as such in vaccine
recommendations.
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Appendix A: Model Equations
The model equations for the US are:
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SUS US

us us J us ous us us us us us
=S Zﬁ = TigaSi —&Si +fVi© —dSi" +a;48i] - a;S;

us

E
sus us us us us us us us
— Zﬁ ] ; +TienaSi —OE;” —diE;” +a; 1By — a;E;
arts
{;t =y 1US £ GEUS g 1US g, 1US _ g qUS
us
dR:
us us us us
an yili® —diRC +a R - aiRG
us
dav;
us us _ 4 y,US us us
dlt g —fVio —dVi® +ai Vi —aV;

(A1)

The definitions of the variables and parameters are given
in Table 1. Note that a,S, = bN to represent recruitment
into the youngest age class through birth, and a, = 0. The
simulations took as initial conditions S, = E;=R,=V,=0
and I,>0, however, equilibrium solutions are analyzed
throughout the results section and hence the initial values
are not relevant to the analysis.

The Canadian equations are identical except for the Sus-
ceptible and Exposed compartmental equations:

C
dS i . .
- s‘Eﬁq—-r,ms TG )SE -85S+ JVE ~dCS +aSC, - aE

Zﬁc 1 4 75aSE + T (1%)SE = SEE — dCEE +a,EE, - a,EC,
Ny
(A2)
The model was simulated in Matlab, and the fourth-order
Runge-Kutta method was used to numerically integrate
the equations.

Appendix B: Model Parameterization

The model is parameterized using incidence and demo-
graphic data from 1980 to 1994, since seroprevalence data
is readily available for years after 1980, and since vaccina-
tion introduced in 1995 altered outbreak patterns and
hence transmission probabilities.

US Demographic Parameters

The size of each age class from the 1994 US Census data
[30] is approximately N, = N, = 20,000,000, N;= N, = N5
=N, =40,000,000, Ny= 60,000,000. The number of births
in the US in 1994 was approximately 4,000,000 [42].

The ageing parameter, a;, is simply the inverse of the time
spent in each age class, hence a, =a,=1/5 = 0.2 year!, a,4
=a,=das=1/10=0.1year!, ag=1/20 = 0.05 year'}, a, =0
yearl.

http://www.biomedcentral.com/1471-2334/8/23

The death rates are obtained by requiring the size of each
age class to remain constant over time (by balancing the
inflow and outflow for each age class). This is expressed
by the equations

bUSNUS =a, NUS +dUSNUS

us _ U NUS (Bl)
aiNi N1+1 + d 1+1

i=1.6
Solving these equations using the above values for bUs,

NS, and a;

yields

dS = d¥s = a¥s =4S = alS =0,d% =1/60 year™,d"¥S =3 /40 year™

We note that, in principle, it would be possible to include
demographic parameters that change over time according
to real-world patterns. For instance, the changing sizes of
age classes might be incorporated. However, because the
primary purpose of the model is to illustrate the effects of
travel coupling between the US and Canada rather than to
exactly predict future incidence, the introduction of extra-
neous processes corresponding to the additional parame-
ters may make the model output more difficult to
interpret.

US Clinical Parameters

Clinical and epidemiological literature on Hepatitis A was
used to estimate the durations of the latent and infectious
periods. The mean duration of the latent period, 1/5, is
approximately 2 weeks [27,28]. The mean duration of the
infectious period for the different age groups is 1/, = 3.5
weeks, 1/, =3.0weeks, 1/y5=1/y,=1/ps=1/y,=1/p,=2.5
weeks [27,28,36]. The longer durations in younger age
classes reflect the fact that virus is shed for longer in chil-
dren than adults.

US Transmission Rate Attributable to Travel to Endemic
Countries

Let A" be the total force of infection (the probability per

year that a susceptible person in age class i becomes
infected, or approximately, the number of infected indi-
viduals in a given year in age class i divided by the suscep-
tibles in that age class at the start of that year). The force
of infection consists of contributions from travel to
endemic countries and from infection within the US,
hence:

. US
us us _J
+ Y B (B2)
=7 NS
]
Also we note that 715 = k"1, where « is the pro-

portion of reported HA cases in the US whose infection
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can be attributed to travel to endemic countries. Thus
278 =55 /155 Substituting this into Equation B2, it fol-

lows that

j US
us
- (B3)
Ngfs s

o]

j=1

This is substituted into Equation Al at equilibrium with
no vaccination (i.e. =0, f = 0) to obtain the system of lin-
ear equations

US
us qus us us
US —d;i°S;” +a; S5 — a8 =
K
US
us _ USpUS us us
US —-0E;° —d;’E;”> +a,,E;5; —a,E;° =0
K
TS+ SEXS —a®S1IS g, 18 — a1 =0
I USRI +a RS~ a R =0

(B4)

To solve these equations for 71, it is necessary to know

xS and I"® (d, a, 5and y,are already known).

In 1995, 4.8% of infected HA cases in the US acquired the
disease through international travel [13]. Here it is
assumed that, when the disease was acquired through
international travel, it was acquired by traveling to
endemic countries. To obtain age-specific values of the
proportion of cases attributable to travel in endemic

countries for 1995 (the xS values to be used in the

model), the available age-specific number of cases for
2001 [13] were adjusted for the population sizes of age
classes [30] and the resulting incidence values by age for
2001 were multiplied by the ratio of the overall propor-
tion of cases attributable to travel in 1995 compared to
2001, yielding

us

o =¥ =0.1328,k¥ =0.0731, kS = k¥ = 0.0333, kS = kU = 0.0254

To estimate the number infectious at any given time dur-
ing the year, I lusl we adjust the reported incidence per
year per 100,000 in age class i, yUS for subclinical infec-
tion and under-reporting, yielding the adjusted incidence

Y This is then modified using the typical duration of

http://www.biomedcentral.com/1471-2334/8/23

infectiousness to obtain [ iUS . The reported incidence per

year per 100,000 for the years 1980-1999 is, by age class,

us us us

=187,y =12.2,y{ =18.5,y% us

y9S =8.2,Y =122,y =47,y =47
[8]- The incidence in each age class is then divided by the
probability of jaundice by age class P;: P, =0.11, P, = 0.34,
P,=0.70, P, = Py = Py= P, = 0.81 [15] and multiplied by
the under-reporting factor of 10.4 [8] to obtain the

adjusted incidence values Y (Yius = 10.4 x observed

incidence/P;). Finally, we must modify Y,-US once again

since it represents the number of cases per 100,000 per
year, not the total number of cases at a given time during
the year. For this, following formula is used,

175 = ySNY /100,000y, . In other words, the number

of infectious individuals at any given time during the year
is the annual incidence adjusted for the size of the age
group divided by the average number of intervals of infec-
tiousness that can occur within a year. Therefore

1 =10,456,15° = 6,590, 15° = 3,491, 13 =
4,560,15% =3,016,19° =1,750,15° =1,167

Thus the system of linear equations (System B4) can be
solved to obtain the values for US transmission rate attrib-
utable to travel to endemic countries (see Table 1 for val-
ues).

Domestic US Transmission Rate

Next, ﬁ,%ls is found from Equation B3. Since there are
more unknowns (7 x 7 = 49) than knowns (7), we make
additional assumptions about the 1515 values:
U? us _ pus us us
=B 23" = Biz = By = By
_ QUS _ US _ pUS _ pUS _ pUS
13_13_23_33_32_31’
ﬁus US _ pUS _ pUS _ pUS _ US
—24—34—44—43—42—41

, etc. Similar assumptions have been made for other dis-
eases modeled with age-structured compartmental mod-
els [31]. Expressed as a matrix, this becomes a "Who
Acquires Infection from Whom" matrix. The values
obtained by solving the linear system of equations (B3)
are found in Table 3.

US Vaccination Parameters

The rate of waning vaccine-derived immunity was
obtained by fitting an exponential curve to the estimated
proportion of vaccinated individuals retaining immunity
after 10, 20, 30, 50 and 70 years (95%, 90%, 81%, 74%,
and 68% respectively), obtained using the Delphi method
[24], yielding f = 0.005795 year-!.
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Table 3: Estimated domestic transmission rates in the US.

Parameter Value
us -1
1 9.18 year
ng 5.54 year-!
léjs 1.48 year-!
ZAILJS 2.31 year!
%éls 1.50 year-!
us -1
e 0.57 year
ng 0.58 year-!

In our simulations, only individuals in the first age class
were vaccinated, hence g5 = g¥¥ =... = ¢S = 0.

To determine g% such that 70% of individuals are vacci-
nated at a given age each year in the 0-4 age class, we set
f=0, 7 =0,E*(0) = 1"(0) = 0, applied the condition

7

7
Z VIS = 0.702 NUS

i=2 i=2

(B5)

to System Al and solved it analytically to obtain glus =7/
15 year'l.

Canadian Demographic Parameters

The average size of the age classes from 1980-1994 in
Canada were approximately
N =N§ =2,000,000,N§ =N§ =N§ = NS =4,000,000, N¢ = 6,000,000
[43]. The average number of births per year during this
time was approximately 400,000 [43]. The death rates,
ageing parameters, and duration of the latent infectious
periods are the same as in the US model.

Canadian Transmission Rate Attributable to Travel to
Endemic Countries

The Canadian rate of infection due to travel to endemic
countries (Tfend ) was computed using the same method

as for the US, except that there is an additional contribu-

http://www.biomedcentral.com/1471-2334/8/23

tion to the travel transmission rate, Tfus, from travel to

the US. Hence, the total force of infection in Canada is

7 1€
c__c c c
A" = Tiona + Tius + E Bij %
= N

C

Again using the fact that 7;,,;, = k“AL, we have that

7 IC T C
B¢ ] _‘iend _c _ _cC
i Cc-_ C Tiend —Ti,us
= Ny
TLCeHd is found following the same method as for the US

case, but using Canadian incidence and travel data. The
values appear in Table 2.

Canadian Transmission Rate Attributable to Travel to the
us
The parameter Tfus is obtained from Equation 1. The vol-

ume of travel (annual number of trips) by Canadian resi-
dents using any mode of transport in 1995 to the US and
endemic countries is available from published data [16].

Estimates of age-specific travel volumes to the US (6/°)

and endemic countries (Of"d) are obtained from these

data by assuming travel volume to be distributed across

Table 4: Travel volume (number of trips per year) to the US and
to HA-endemic countries, 1995.

Parameter Value Parameter Value
01 554,000 o 33,000
04 542,000 g 33,000
955 767,000 0 ;nd 83,000
ous 1,553,000 0™ 246,000
0L 2,627,000 g 360,000
0" 5,559,000 o 757,000
ous 3,061,000 e 404,000

7
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the age classes according to the sizes of the age classes
[43], yielding the results in Table 4.

The average duration of travel to the US and to endemic
regions are @ = 7.20 nights and ©™ = 18.30 nights

respectively [16]. The incidence per 100,000 per year in
the US, Canada and endemic countries, adjusted for
under-reporting and subclinical infection, are estimated
as YUS=215.56, YC=156.83, YEnd = 1250.00 [3,8,15]. All
these values are substituted into Equation 2 to obtain the
values appearing in Table 2.

Local Canadian Transmission rate

The parameter ,Bijc is found using the same methods as

for the US model, yielding values for ch (see Table 5).

Canadian Vaccination Parameters

The rate of loss of vaccine derived immunity is the same
as for the US model, f = 0.005795 year! [24]. The vaccina-
tion policy in Canada is currently targeted vaccination
toward high-risk groups. A previous study estimates that,
to date, about 7% of the Canadian population has been
vaccinated under this programme (which also vaccinates
travelers to endemic countries) (Bauch et al, unpublished
data). Hence, we assume in this paper a 7% coverage rate
for each age class. Although the actual coverage rates
across age classes under the current targeted policy may be
dissimilar, the available data do not allow us to stratify the

Table 5: Estimated domestic transmission rates in Canada.

Parameter Value
7(1C 5.54 year-!
%2(: 3.25 year!
Xsc 0.62 year-!
%4C 0.88 year-!
x 5C 1.04 year-!
%GC 0.47 year-!
x5 0.24 year-!

http://www.biomedcentral.com/1471-2334/8/23

vaccine coverage rates by age. Hence, we have assumed the
same vaccination rate applies to each age class. We note
that there are also other heterogeneities in vaccine cover-
age (e.g., social) that the present model was not designed
to address. The values of g; are obtained from imposing f

=0, 77 =t™ =0 as for the US case, as well as the con-

straints

i=1

7 7
ZViC =0.07 ) Nf
i=1

giC =g© for i=1.7

on System A2, and solving System A2 to yield g€ =
0.001937 yearl.
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