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Abstract
Background: Planning public health responses against pandemic influenza relies on predictive
models by which the impact of different intervention strategies can be evaluated. Research has to
date rather focused on producing predictions for certain localities or under specific conditions,
than on designing a publicly available planning tool which can be applied by public health
administrations. Here, we provide such a tool which is reproducible by an explicitly formulated
structure and designed to operate with an optimal combination of the competing requirements of
precision, realism and generality.

Results: InfluSim is a deterministic compartment model based on a system of over 1,000
differential equations which extend the classic SEIR model by clinical and demographic parameters
relevant for pandemic preparedness planning. It allows for producing time courses and cumulative
numbers of influenza cases, outpatient visits, applied antiviral treatment doses, hospitalizations,
deaths and work days lost due to sickness, all of which may be associated with economic aspects.
The software is programmed in Java, operates platform independent and can be executed on
regular desktop computers.

Conclusion: InfluSim is an online available software http://www.influsim.info which efficiently
assists public health planners in designing optimal interventions against pandemic influenza. It can
reproduce the infection dynamics of pandemic influenza like complex computer simulations while
offering at the same time reproducibility, higher computational performance and better operability.

Background
Preparedness against pandemic influenza has become a
high priority public health issue and many countries that
have pandemic preparedness plans [1]. For the design of
such plans, mathematical models and computer simula-
tions play an essential role because they allow to predict
and compare the effects of different intervention strategies
[2]. The outstanding significance of the tools for purposes

of intervention optimization is limited by the fact that
they cannot maximize realism, generality and precision at
the same time [3]. Public health planners, on the other
hand, wish to have an optimal combination of these
properties, because they need to formulate intervention
strategies which can be generalized into recommenda-
tions, but are sufficiently realistic and precise to satisfy
public health requirements.
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Published influenza models which came into application,
are represented by two extremes: generalized but over-
simplified models without dynamic structure which are
publicly available (e.g. [4]), and complex computer simu-
lations which are specifically adjusted to real conditions
and/or are not publicly available (e.g. [5,6]). The com-
plexity of the latter simulations, however, is not necessary
for a reliable description of infection dynamics in large
populations [7]. A minimum requirement for a pandemic
influenza planning tool is a dynamic modelling structure
which allows investigation of time-dependent variables
like incidence, height of the epidemic peak, antiviral avail-
ability etc. The tool should, on the other hand, be adjust-
able to local conditions to adequately support the
pandemic preparedness plans of different countries which
involve considerably different assumptions (Table 1).

Here we describe a publicly available influenza pandemic
preparedness planning tool [8] which is designed to meet
the requirements in preparedness planning. It is based on
an explicitly formulated dynamic system which allows
addressing time-dependent factors. It is sufficiently flexi-
ble to evaluate the impact of most candidate interventions
and to consider local conditions like demographic and
economic factors, contact patterns or constraints within
the public health system. In subsequent papers we will
also provide examples and applications of this model for
various interventions, like antiviral treatment and social
distancing measures.

Implementation
The model is based on a system of 1,081 differential equa-
tions which extend the classic SEIR model. Demographic
parameters reflect the situation in Germany in 2005, but
can be adjusted to other countries. Epidemiologic and
clinic values were taken from the literature (see Tables 1,
2, 3, 4, 5, 6 and the sources quoted there). Pre-set values
can be varied by sliders and input fields to make different
assumptions on the transmissibility and clinical severity
of a new pandemic strain, to change the costs connected
to medical treatment or work loss, or to simply apply the
simulation to different demographic settings. Model
properties can be summarized as follows. The mathemat-
ical formulation of this model is presented in detail in the
online supporting material. The corresponding source
code, programmed in Java, and further information can
be downloaded from [8].

According to the German National Pandemic Prepared-
ness Plan [9], the total population is divided in age
classes, each of which is subdivided into individuals of
low and high risk (Table 2). Transmission between these
age classes is based on a contact matrix (Table 3) which is
scaled such that the model with standard parameter val-
ues yields a given basic reproduction number R0. Values

for the R0 associated with an influenza strain with pan-
demic potential are suggested to lie between 2 and 3 [10].
This value is higher than the effective reproduction
number which has been estimated to be slightly lower
than 2 [11,12]. As a standard parameter, we use R0 = 2.5
which means that cases infect on average 2.5 individuals
if everybody is susceptible and if no interventions are per-
formed.

Susceptible individuals who become infected, incubate
the infection, then become fully contagious and finally
develop protective immunity (Table 4). A fraction of cases
remains asymptomatic; others become moderately sick or
clinically ill (i.e. they need medical help). Depending on
the combination of age and risk group, a fraction of the
clinically ill cases needs to be hospitalized, and an age-
dependent fraction of hospitalized cases may die from the
disease (Table 5). This partitioning of the cases into four
categories allows combining the realistic description of
the transmission dynamics with an easy calculation of the
resources consumed during an outbreak. The degree and
duration of contagiousness of a patient depend on the
course of the disease; the latter furthermore depends on
the age of the patient (Table 5). Passing through the incu-
bation and contagious period is modelled in several stages
which allows for realistic distributions of the sojourn
times (Table 4). The last two stages of the incubation
period are used as early infectious period during which
the patient can already spread the disease. Infectiousness
is highest after onset of symptoms and thereafter declines
geometrically (Table 6). Clinically ill patients seek medi-
cal help on average one day after onset of symptoms. Very
sick patients are advised to withdraw to their home until
their disease is over, whereas extremely sick patients need
to be hospitalized and may die from the disease (Table 4).
After the end of their contagious period, clinically ill
patients go through a convalescent period before they can
resume their ordinary life and go back to work (Table 4).

Results
We provide some examples of model output of InfluSim
[8], version 2.0, by means of four sensitivity analyses; fur-
ther investigations will be presented elsewhere. Figure 1
shows the graphical user interface of the software which is
divided into input and output windows. The user may set
new values in the input fields or move sliders to almost
simultaneously obtain new results for the course of an
epidemic in a given population. Figures 2A and 2B show
pandemic waves which result from varying the basic
reproduction number from 1.5 to 4.0. Using the standard
parameter values as given in Tables 2, 3, 4, 5, 6 and omit-
ting all interventions in a town of 100,000 inhabitants
results in a pandemic wave which lasts for about ten
weeks (Figure 2A, with R0 = 2.5). The peak of the pan-
demic wave is reached after six to seven weeks, with a daily
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incidence of up to 2,340 influenza patients seeking medi-
cal help, with up to 280 hospital beds occupied by influ-
enza cases and with up to 14,000 out of 60,000 working
adults unable to go to work because of illness or convales-
cence. These results depend on the assumptions concern-
ing the yet unknown contagiousness and pathogenicity of
the virus. Figures 2C and 2D show how the shape of the
curves depends on the course of contagiousness: the pan-
demic wave proceeds relative slowly if the contagiousness
does not change during the infectious period (x50 = 50%),
but proceeds quickly if the contagiousness is highest after
onset of symptoms and decreases thereafter (x50 > 50%).

Discussion and Conclusion
The influenza pandemic preparedness planning tool
InfluSim stands between simple spreadsheet models and
sophisticated stochastic computer simulations. It
describes a pandemic wave within a homogeneously mix-
ing population like a town or city, but surprisingly pro-
duces the same dynamics as individual-based simulations
which explicitly consider geographic spread through the
US (cf. [6] and [5] with Figure 2 using R0 = 2). Similar
observations were made with a simple deterministic com-
partmental model [7]. Stochastic models are known to
behave quasi-deterministically when the simulated popu-
lation becomes very large.

A further reason for the congruence of complex stochastic
and simple deterministic models must lie in the incredi-

bly quick way in which pandemic influenza spreads geo-
graphically. Unless being controlled at the place of origin
[12,13], a pandemic starting in a far-off country will lead
to multiple introductions [14] into the large industrial-
ized nations where it can be expected to quickly spread to
neighbouring towns and to rural areas. The large popula-
tions which have to be considered susceptible to a pan-
demic virus and the quick geographic spread tend to
diminish the differences between the results of sophisti-
cated individual-based and simple deterministic models.

However, a deterministic model like InfluSim cannot reli-
ably represent effects originating from stochasticity, from
effects in small populations, or from heterogeneities.
Examples are: (i) a geographically limited spread and
fairly effective control measures can imply that the epi-
demic affects only a small population and thus, may be
strongly influenced by stochastic events [15-17]; (ii) trans-
mission which predominantly occurs in households or
hospitals, or which is driven by other substantial features
of the contact network is not in agreement with the
assumption of homogeneous mixing in the deterministic
model cannot reliably predict the spread of infection [18-
23]. In particular, (iii) super-spreading events can sub-
stantially change the course of an epidemic compared to
the deterministic prediction [24-27]. Apart from such fac-
tors, the predictability of intervention success is generally
subject to uncertainties in the choice of parameter values,

Table 1: Pandemic preparedness plans of some countries

Attack rate Outpatients per 100.000 population Hospitalizations per 100.000 population Deaths per 100.000 population Reference

Germany 15% 15,859 437 117 [9]
USA
- moderate 30%* 15,000 320 77 [31]
- severe 30%* 15,000 3,666 705 [31]
- CDC 35%* 17,718 277 78 [4]
GB 25% 25,000 140 90 [32]
France 25% 25,000 99 20 [33]
Netherlands 30% 30,000 64 26 [34], [35]
Japan 25%* 13,077 41 13 [36]
Canada 35%* 16,066 359 137 [37]

Assumed scenarios and outcomes of pandemic preparedness plans. * Gross attack rate (i.e. clinically ill and moderately ill cases).

Table 2: Age distribution and risk categories

children working adults elderly

0–5 6–12 13–19 20–39 40–59 60 +

Population size Na 5,272 6,773 7,952 25,959 29,127 24,917

A population of N = 100,000 inhabitants of Germany is subdivided according to age a and risk category r. We assume that all age groups are fully 
susceptible at begin of the outbreak. A fraction of Fa = 6% of all children (age < 20 years) are regarded as being under high risk (r = r1) after an 
influenza infection whereby the remaining 94% are under low risk (r = r2). The high risk fractions of working adults (ages 20–59) and elderly (ages 
60+) are Fa = 14% and Fa = 47%, respectively. Source: [9]
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demanding additional efforts like Bayesian approaches
[28] to evaluate the reliability of predictions [29].

Pandemic preparedness plans must consider constraints
and capacities of locally operating public health systems.
The time-dependent solutions of InfluSim allow assessing
peak values of the relevant variables, such as outpatients,
hospitalizations and deaths. Various interventions may be
combined to find optimal ways to reduce the total
number of cases, to lower the peak values or to delay the
peak, hoping that at least part of the population may ben-
efit from a newly developed vaccine.

Special care was taken when implementing a variety of
pharmaceutical and non-pharmaceutical interventions
which will be discussed in subsequent papers. Despite its
comprehensible structure, the model does not suffer from
over-simplifications common to usual compartment
models. Instead of implicitly using exponentially distrib-
uted sojourn times, we have implemented realistically dis-
tributed delays. For example, the model considers that
individuals may transmit infection before onset of symp-
toms, and that some cases may remain asymptomatic, but
still infecting others. Such features have serious implica-
tions for the success of targeted control measures.

InfluSim is freely accessible, runs on a regular desktop
computer and produces results within a second after
changing parameter values. The user-friendly interface
and the ease at which results can be generated make this
program a useful public health planning tool. Although

we have taken care of providing a bug-free program,
including the source code, the user is encouraged to treat
results with due caution, to test it, and to participate in
bug-reports and discussions on the open-source platform
[30] which also provides regular updates of InfluSim.

Availability and requirements
Project name: InfluSim version 2.0

Project home page: http://www.influsim.info

Sourceforge: http://sourceforge.net/projects/influsim

Operating systems: Platform independent

Programming language: Java

Other requirements: e.g. Java 1.5 or higher

License: CPL

Any restrictions to use by non-academics: none
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Table 3: WAIFW matrix

0–5 6–12 13–19 20–39 40–59 60 +

0–5 169.14 31.47 17.76 34.50 15.83 11.47
6–12 31.47 274.51 32.31 34.86 20.61 11.50
13–19 17.76 32.31 224.25 50.75 37.52 14.96
20–39 34.50 34.86 50.75 75.66 49.45 25.08
40–59 15.83 20.61 37.52 49.45 61.26 32.99
60 + 11.47 11.50 14.96 25.08 32.99 54.23

The who-acquires-infection-from-whom matrix  shows the frequency of contacts (per week per person) between different age classes. 

Source: [38].

Ka as i,

Table 4: Sojourn times

Period average duration stages coefficient of variation

Latent period DE = 1.9 days A n = 7 37.8% A

Fully contagious period
asymptomatic and moderately sick adults 4.1 days A m = 19 22.9% A

others 7.0 days B m = 19 22.9% C

Period of convalescence DR = 5 days D j = 9 33.3% C

Distribution of sojourn times (the last two stages of the latent period are used as early infectious period with an average duration of DL = 0.5 days). 
Sources:A [11], B [39, 40], C assumed, D [41]
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health requirements of the software. All authors read and
approved the final manuscript.

Appendix: Description of the transmission 
dynamics of InfluSim version 2.0
Susceptible individuals Sa, r are infected at a rate λa(t)
which depends on their age a and on time t. Infected indi-
viduals, Ea, r, incubate the infection for a mean duration
DE. To obtain a realistic distribution of this duration, the
incubation period is modelled in n stages so that progres-
sion from one stage to the next one occurs at rate δ = n/DE.
The last l incubation stages are regarded as early infectious
period during which patients may already spread the
infection (this accounts for an average time of lDE/n for
the "early infectious period" which is about half a day for
the standard set of parameters). After passing through the
last incubation stage, infected individuals become fully
contagious and a fraction of them develops clinical symp-
toms. The course of disease depends on the age a of the
infected individual and on the risk category r to which he
or she belongs: a fraction ca, r(A) becomes asymptomatic
(Aa), a fraction ca, r (M) becomes moderately sick (Ma), a
fraction ca, r (V) becomes very sick (Va) and the remaining
fraction ca, r (X) becomes extremely sick (Xa) and need hos-
pitalization (i.e., ca, r(A) + ca, r (M) + ca, r (V) + ca, r (X) = 1
for each combination of a and r). The rationale for distin-

guishing very sick and extremely sick cases is that only
extremely sick cases can die from the disease and need to
be hospitalized; in all other aspects, both groups of severe
cases are assumed to be identical. The duration of the fully
contagious stage depends on the course of the disease and
on the age of the case. Sojourn times are DA, a and DM, a for
asymptomatic and moderately sick cases, respectively,
and DV, a for both groups of severe cases. To obtain realis-
tic distributions of these sojourn times, the contagious
classes are modelled in m stages each so that progression
from one stage to the next occurs at rate γA, a = m/DA, a, γM,

a = m/DM, a and γV, a, U = m/DV, a, respectively. Severe cases
seek medical help on average DD days after onset. Assum-
ing that the waiting time until visiting a doctor is expo-
nentially distributed, we use a constant rate α = 1/DD for
doctoral visits. Very sick patients (Va) who visit a doctor
are advised to withdraw to their home (Wa) until the dis-
ease is over whereas extremely sick cases (Xa) are immedi-
ately hospitalized (Ha). A fraction fV (t) of all severe and a
fraction fX (t) of all extremely severe cases who visit the
doctor within DT days after onset of symptoms are offered
antiviral treatment, given that its supply has not yet been
exhausted. As our model does not explicitly consider the
age of the disease (which would demand partial differen-
tial equations), we use the contagious stages to measure
time since onset and allow for treatment up to stage ma, T

Table 6: Contagiousness

Basic reproduction number R0 = 2.5

Relative contagiousness during the early infectious phase bL = 50%
Relative contagiousness of asymptomatic cases bA = 50%
Relative contagiousness of moderately sick cases bM = 100%
Relative contagiousness of very sick cases bV = 100%
Concentration of the cumulative contagiousness during the first half of 
the symptomatic period

x50 = 90%

Sources: Contagiousness of asymptomatic cases: [11]; degree of contagiousness during the early infectious period and equality of the 
contagiousness of moderately and severely sick cases: assumed.

Table 5: Clinical course

under 20 20 to 59 60 and older

Hospitalized fraction ha, r of 
untreated severe cases

low risk group (r = r1) 0.187% 2.339% 3.560%
high risk group (r = r2) 1.333% 2.762% 7.768%

Case fatality da of hospitalized 
cases

5.541% 16.531% 39.505%

Independent of age a and risk group r, a fraction ca, r (A) = 33% of infections result in asymptomatic cases, a fraction ca, r (M) = 33.5% become 
moderately sick and the remaining fraction develops severe disease. An age- and risk-dependent fraction ha, r of untreated patients with severe 
disease needs hospitalization. An age-dependent fraction da of hospitalized cases dies. Sources: fraction of asymptomatic cases: [11]; 50% of 
symptomatic cases see a doctor: [9]; hospitalizations per severe case: [9]; case fatality of hospitalized, but untreated patients calculated from [4].
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(see below for details). This imposes some variability to
the maximum time until which treatment can be given,
which may even improve the realism of the model with
respect to real-life scenarios. Antiviral treatment reduces
the patients' contagiousness by fI percent and it reduces
hospitalization and death by fH percent. Extremely sick
patients, whose hospitalization is prevented by treatment,
are sent home and join the group of treated very sick
patients(Wa, T). The remaining duration of disease and
contagiousness of treated cases is reduced by fD percent so
that their rate of progressing from one stage to the next has
to be changed to γV, a, T = m/((1 - fD)DV, a). Extremely sick
and hospitalized cases die at rates τa, depending on their
age a. Whereas asymptomatic (Aa) and moderately sick
patients (Ma) who have passed their last stage of conta-
giousness are considered healthy immunes (I), very sick

and extremely sick patients (classes Va, Wa, U, Wa, T, Xa, Ha,

U and Ha, T) first become convalescent (Ca) for an average
duration of DC days before they resume their ordinary life.
To obtain a realistic distribution of this sojourn time, con-
valescence is modelled in j stages so that progression from
one stage to the next occurs at rate ρ = j/DC. Fully recov-
ered patients who have passed through their last stage of
convalescence join the group of healthy immunes I; work-
ing adults will go back to work. Further interventions,
describing the reduction of contacts, will be discussed
after the presentation of the differential equations.

Differential equation model describing the transmission 
dynamics
Susceptible individuals

InfluSim user interfaceFigure 1
InfluSim user interface. Graphical user interface of InfluSim. Parameter values can be varied within different tabs (left hand 
side), divided into General settings (demography by age and risk group, contact matrix, economics), Disease (sojourn times, 
symptoms, hospitalizations, case fatality), Contagiousness (R0, infectivity over time and by disease severity), Treatment (therapeu-
tic window, treatment schedules, antiviral properties), Social distancing (isolation schedules, general contact reduction, closing 
day care centres and schools, cancelling mass gatherings) and Costs (work loss, hospitalization, treatment). Time-dependent 
model output (right hand side) visualizes Infection prevalence (susceptible, exposed, asymptomatic, moderately sick, severely 
sick, dead, immune), Resource use (work loss, outpatients, hospital beds, antivirals), Cumulative numbers of the latter, and Costs.
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Infected individuals who incubate the infection

Asymptomatic infectious individuals

Moderately sick individuals

Very sick individuals who have not yet visited a doctor

Treated very sick individuals

Untreated very sick individuals
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InfluSim outputFigure 2
InfluSim output. Examples of InfluSim output for a population of 100,000 citizens. A: Number of hospital beds required during 
an influenza pandemic for values of R0 ∈ {1.5, 1.75, 2, 2.5, 3, 4}. B: Cumulative number of deaths for values of R0 as in A. C: 
Number of hospital beds for values of x50 ∈ {50, 60, 70, 80, 90, 95%} (e.g. x50 = 95% means that 95% of the cumulative conta-
giousness is concentrated during the first half of the contagious period, see Table 6). D: Cumulative number of deaths for val-
ues of x50 as in C. All other parameters as listed in Tables 2-6.
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Extremely sick individuals who have not yet visited a doc-
tor

Hospitalized and treated cases

Hospitalized, but untreated cases

Contact rates and basic reproduction number
Contact matrix

For the mixing of the age classes, we employ a who-

acquires-infection-from whom matrix 

which gives the relative frequency of contacts of infective
individuals of age ai with other people of age as. In this

paper, we assume bi-directional contacts (e.g. children
have the same total number of contacts with adults as
adults with children). Multiplication of this matrix with

an appropriate constant scaling factor κ (see below)
results in the matrix of crude contact rates

.

Contagiousness of the different types of disease
In the absence of interventions, we have to multiply these
contact rates with the contagiousness factors bL, bA, bM and
bV to obtain the effective contact rates:

during the early infectious period,

of asymptomatic cases,

of moderately sick cases,

of (untreated) very sick cases.

Day care centres and schools

To assess the effect of day care centre and school closing
on the transmission of an infectious disease, we have to
first make an assumption on what fraction rsch of the con-

tacts among healthy children who are in the same age
class occurs in day care centres and schools. The contact
rates between very sick or hospitalized children (who do
not attend day care centre or school) and other children
need, therefore, be reduced to

 (contact rate between

healthy and very sick children in the same age class, i.e. ai

= as).

As very sick children have to be taken care of by adults at
home or in hospital, their contact rate to adults increases

by a factor FHC (contact rate between

very sick children of age ai and adults of age as).

Contacts between very sick children and other children in
a higher or lower age class remain unchanged:

 (contact rate between healthy chil-

dren of age as and very sick children of a different age ai).

Closing of day care centres and schools

Closing day care centres and schools at time t will not nec-
essarily prevent all the contacts that would have happened
with other children. During the closing of schools and day
care centres, the contact rates between susceptible chil-
dren of age as and infected children of age ai who are in

their late incubation period ( ), who are asympto-

matic ( ), or who are moderately sick ( )

are reduced by the factor rsch if the children are in the same

age class:

where 1sch (t) is a function which indicates when schools
and day care centres are opened or closed:
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While day care centres and schools are closed, children
(age ai) need adult supervision at home. Their contact
with susceptible adults (age as) increases by the "child care
factor" FCC:

Child care at home also increases the exposure of healthy
children (age as) to contagious adults (age ai):

Cancelling of mass gathering events
Cancelling mass gathering events effects only the contacts
of adults who are healthy enough to attend such events.
Assuming that such an intervention at time t reduces con-
tacts by a fraction rmass, we get for all contacts between sus-
ceptible adults of age as and infectious adults of age ai the
following contact rates:

where 1mass (t) is a function which indicates when mass
gathering events are possible or when they are closed:

As contacts with adults who are too sick to attend such
mass gathering events cannot be prevented by this meas-
ure it is

.

General reduction of contacts
During some time in the epidemic, the general popula-
tion may effectively reduce contacts which can be a result
of wearing facial masks, increasing "social distance",
adopting improved measures of "respiratory hygiene" or
simply of a general change in behaviour. This will be
implemented in the program by reducing the contacts of
susceptible individuals at that time t by factor rgen (t). The
adjusted contact rates are:

for cases in the late

incubation period,

for asymptomatic

cases,

for moderately

sick cases,

for very sick cases,

where 1gen (t) is a function which indicates when the pop-
ulation reduces their contacts:

Partial isolation of cases

If cases are (partly) isolated, their contact rates are reduced

by factors ,  and , respec-

tively, resulting in contact rates

for moderately

sick cases,

for very sick cases

at home,

for hospitalized

very sick cases,

where 1iso (t) is a function which indicates when mass
gathering events are possible or when they are closed:
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The contact rates of cases in the late incubation period and
that of asymptomatic cases remain unchanged:

for infected individuals in the

late incubation period,

for asymptomatic cases.

Course of contagiousness

To allow for a contagiousness which changes over the
course of disease, we multiply each contact rate with a

weighting factor  whereby k is the stage

of contagiousness. This leads to the following contact
rates:

for asymptomatic cases in

stage k,

for moderately sick cases in

stage k,

for very sick cases in stage k,

for hospitalized cases in stage

k.

For x = 1, contagiousness is equally high in all stages; for
x = 0, only the first stage is contagious; for 0 <x < 1, the
contagiousness decreases in a geometric procession. We
make the simplifying assumption that contagiousness
does not change during the late incubation period

 for cases in stage k = n - l,..,n of the

incubation period.

Next generation matrix and basic reproduction number
At time t = 0 and in the absence of interventions, the next
generation matrix has the following elements

where  is the fraction of untreated extremely severe

cases who die from the disease (see below for details). The
dominant eigenvalue of this matrix is called the basic

reproduction number R0. If κ (which determines the value

of the contact rates ) is given, the eigenvectors of

this matrix can numerically be calculated. The user-speci-
fied value of R0 is now used to determine numerically the

scaling factor κ. Let  be the eigenvector which has

the largest eigenvalue R0.

Force of infection

To calculate the force of infection  to which suscepti-

ble individuals of age as are exposed at time t, we have to

first calculate the product of the number of contagious
individuals with the corresponding contact rates and then
to sum up these products over all ages ai, all risk categories

r, all courses of the disease and all stages. Assuming that
the contagiousness of cases who have received antiviral
treatment is reduced by the factor (1 - fC), the force of

infection is given by

Differential equations for various model output
Cumulative number of deaths

Convalescent (but non-contagious) cases

Immune and fully recovered individuals

Number of people who are unable to work because of
influenza

where aW denote all age classes of working adults (to
avoid infinite contributions to the work loss, the decision
was made that cases who die from influenza do not con-
tribute any further to the total work loss).

1iso t( ) =
1

0

while isolation measures are performed

while no issolation measures are performed.
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Cumulative doses of antiviral treatment

Initial values

Using the user-specified numbers of people Na in the age

classes and the fractions Fa of people under high risk

within each age class (Table 2), we obtain the initial pop-

ulation sizes according to age and risk class:  (0) = Na

(1 - Fa) and  (0) = NaFa. The total population is,

therefore, given by .

At time t = 0, one infection is introduced into an otherwise
fully susceptible population. To avoid biasing the simula-
tion one way or the other, the initial infection is distrib-
uted over all classes, weighted by the probability that an
individual in one class acquires the infection (i.e. by the

component of the eigenvector  of the next gener-

ation matrix):

Ak, a (0) = Mk, a (0) = Vk, a (0) = Wk, a, U (0) = Wk, a, T (0)

= Xk, a (0) = Hk, a, U (0) = Hk, a, T (0) = 0

Ck, a (0) = 0, D (0) = I (0) = U (0) = T (0) = 0.

Using these initial values, the set of differential equations
is solved numerically with a Runge-Kutta method with
step-size control.

Abbreviations
Model variables
Transmission variables
Sa, r number of susceptible individuals

Ek, a, r number of incubating individuals (stage k); the last
two stages are contagious

Ak, a number of asymptomatic individuals (stage k)

Mk, a number of moderately sick individuals (stage k)

Vk, a number of very sick individuals who have not yet seen
a doctor (stage k)

Wk, a, T number of treated very sick individuals (withdrawn
to home; stage k)

Wk, a, U number of untreated very sick individuals (with-
drawn to home; stage k)

Xk, a number of extremely sick individuals who have not
seen a doctor (stage k)

Hk, a, T number of hospitalized and treated individuals
(stage k)

Hk, a, U number of hospitalized but untreated individuals
(stage k)

Output variables
Ck, a number of convalescent (non-contagious) cases
(stage k)

I number of fully recovered and immune cases

D number of people who die of influenza

U number of people who are unable to work because of
influenza

T cumulative number of antiviral treatment doses used

Parameters concerning the demography
Na total population size by age class a, whereby a = a1
denotes children, a = a2 denotes adults of working age and
a = a2 denotes elderly, respectively.

Fa fraction of the population in age class a which is under
high risk from this, Na, r is calculated such that Na, r = Fara

 the contact matrix gives the weekly number of con-

tacts between an individual of age class ai with individuals

of age class as. From this, the contact rates ,

,  and  are calculated as

explained above

Parameters concerning the natural history of the disease
Number of stages
n number of stages used to model the latent period
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l number of stages used to model the early infectious
period

m number of stages used to model the (symptomatic)
infectious period

j number of stages used to model convalescence

Sojourn times
DE average duration of the incubation period;

δ is calculated such that δ = n/DE

the last l stages are used as early infectious period

(average duration: DL = DEl/n)

DD average time after onset when a severe case seeks med-
ical help;

α is calculated such that α = 1/DD

DA, a average infectious duration for asymptomatic cases

γA, a is calculated such that γA, a = m/DA, a

DM, a average infectious duration of moderately sick cases

γM, a is calculated such that γM, a = m/DM, a

DV, a average duration of infectivity of untreated very or
extremely sick cases;

γV, a, U is calculated such that γV, a, U = m/DV, a

DC average duration of convalescence;

ρ is calculated such that ρ = j/DC

Course of disease
ca, r (A) fraction of asymptomatic infections (given age a
and risk r)

sa, r fraction of severe cases among symptomatic ones

ha, r fraction of severe cases who need hospitalization
(unless treated) the fraction of infected cases who

- develops moderate disease is ca, r (M) = (1 - sa, r)(1 - ca, r
(M))

- becomes bed-ridden at home is ca, r (V) = sa, r (1 - ha, r)(1
- ca, r (M))

- become extremely severe cases is ca, r (X) = sa, rha, r (1 - ca,

r (M))

da fraction of untreated extremely severe cases who die;

from this, τa is chosen such that

Parameters concerning the contagiousness of the infection
bL relative contagiousness of cases in the late incubation
period

bA relative contagiousness of asymptomatic cases

bM relative contagiousness of moderately sick cases

bV relative contagiousness of severely sick cases

x50 parameter regulating the course of contagiousness

x50 = 1 only the first stage after onset of disease is conta-
gious

0.5 <x50 < 1 contagiousness decreases after onset of disease

x50 = 0.5 equal contagiousness during the whole course of
disease

0 <x50 < 0.5 contagiousness increases after onset of disease

from this, x is calculated such that

 if m is an even number or

 if m is an

odd number, respectively

R0 basic reproduction number; the contact rates

, ,  and  are

calculated from R0 and from the contagiousness factors as

explained above

λa (t) force of infection for susceptible individuals of age a
at time t (see calculation above)

Parameters concerning contact reduction

 fraction of contacts of moderately sick patients that

are prevented by partial isolation
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 fraction of contacts of very sick patients that are pre-

vented by partial isolation

 fraction of contacts of hospitalized patients that are

prevented by partial isolation

rgen general fraction of contacts that are prevented at time t

rmass fraction of contacts among (healthy) adults that are
prevented by cancelling events of mass gatherings at time t

rsch fraction of contacts among (healthy) children of the
same age class that occurs in day care centres or schools

FHC factor by which the contacts between adults and
severely sick children increase because of child health care

FCC factor by which the contacts between adults and chil-
dren increase when children are taken care off at home
because schools are closed

Parameters concerning antiviral treatment
Tmax available number of antiviral treatment doses

DT time after onset until when antiviral treatment can still
be given; the latest infectious stage ma, T during which
treatment can be given, is chosen such that ma, T/γV, a, U ≤
DT ≤ (ma, T + 1)/γV, a, U

fV fraction of severe cases eligible to receive antiviral treat-
ment; treatment will be given only in the user-specified
time window and only as long as supplies last:

fX fraction of extremely severe cases eligible to receive anti-
viral treatment; treatment will be given only in the user-
specified time window and only as long as supplies last:

fD fraction by which the duration of infectiousness is
reduced by antivirals; γV, a, T is calculated from this such
that γV, a, T = m/((1 - fD)DV, a)

fI fraction by which the infectiousness of treated cases is
reduced by antivirals

fH fraction of hospitalizations prevented by antiviral treat-
ment
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