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Abstract
Background: The tick-borne intracellular pathogen, Anaplasma phagocytophilum (Rickettsiales:
Anaplasmataceae) causes human granulocytic anaplasmosis after infection of polymorphonuclear
leucocytes. The human Sp110 gene is a member of the nuclear body (NB) components that
functions as a nuclear hormone receptor transcriptional coactivator and plays an important role in
immunoprotective mechanisms against pathogens in humans. In this research, we hypothesized that
Sp110 may be involved in the infection of human promyelocytic HL-60 cells with A. phagocytophilum.

Methods: The human Sp110 and A. phagocytophilum msp4 mRNA levels were evaluated by real-
time RT-PCR in infected human HL-60 cells sampled at 0, 12, 24, 48, 72 and 96 hours post-
infection. The effect of Sp110 expression on A. phagocytophilum infection was determined by RNA
interference (RNAi). The expression of Sp110 was silenced in HL-60 cells by RNAi using pre-
designed siRNAs using the Nucleofector 96-well shuttle system (Amaxa Biosystems, Gaithersburg,
MD, USA). The A. phagocytophilum infection levels were evaluated in HL-60 cells after RNAi by real-
time PCR of msp4 and normalizing against human Alu sequences.

Results: While Sp110 mRNA levels increased concurrently with A. phagocytophilum infections in
HL-60 cells, the silencing of Sp110 expression by RNA interference resulted in decreased infection
levels.

Conclusion: These results demonstrated that Sp110 expression is required for A. phagocytophilum
infection and multiplication in HL-60 cells, and suggest a previously undescribed mechanism by
which A. phagocytophilum modulates Sp110 mRNA levels to facilitate establishment of infection of
human HL-60 cells.

Background
Anaplasma phagocytophilum (Rickettsiales: Anaplasmata-
ceae) is an obligate intracellular tick-borne pathogen that

causes human granulocytic anaplasmosis (HGA), tick-
borne fever of ruminants, and equine and canine granulo-
cytic anaplasmosis [1]. HGA, first described in 1994 in the
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United States, has become a predominant form of ana-
plasmosis and among the most common tick-borne path-
ogens in the United States and Europe [2]. HGA is
characterized by fever, headache, myalgia, and malaise, as
well as leukopenia, thrombocytopenia, and elevated lev-
els of C-reactive protein and liver transaminases, which
are indicators of inflammatory response and hepatic
injury, respectively [2]. Although the disease is usually
self-limiting, severe complications can result, including
prolonged fever, shock, seizures, pneumonitis, acute renal
failure, hemorrhage, rhabdomyolysis, opportunistic
infections and death [2].

A. phagocytophilum initiates infection of polymorphonu-
clear leucocytes by adhesion to host cells, a process which
involves adhesins, such as the human P-selectin glycopro-
tein ligand-1 (PSGL-1) that bind cooperatively to neu-
trophil ligand molecules [2]. After infection, A.
phagocytophilum undergoes a developmental cycle in para-
sitophorous vacuoles that includes reticulated and dense
forms, and this infection modulates host cell growth and
differentiation [3].

While the main vector for A. phagocytophilum are tick spe-
cies belonging to the Ixodes ricinus complex, the pathogen
multiplies in a broad range of terrestrial vertebrates [2,4].
In the laboratory, A. phagocytophilum can be propagated in
undifferentiated human promyelocytic HL-60 cells. Infec-
tion of HL-60 cells with A. phagocytophilum results in mod-
ulation of host cell gene expression (see for example [5,6].

Sp110 is a member of the nuclear body (NB) components
that functions as a nuclear hormone receptor transcrip-
tional coactivator [7]. Sp110 and other NB-associated pro-
teins, induced by type I (α/β) and type II (γ) interferons
(IFNs), play a role in IFN response and virus replication
[8]. Sp110 expression is induced in human peripheral
blood leukocytes and spleen but not in other tissues [8].
Sp110 inhibits vesicular stomatitis virus and influenza
virus replication, confers resistance to human Foamy
virus, and gene polymorphisms or mutations have been
associated with susceptibility to the Hepatitis C virus and
immunodeficiency and hepatic veno-occlusive disease [8-
10].

Recently, the mouse Sp110 homologue, the intracellular
pathogen resistance 1 (Ipr1) gene, was shown to control
susceptibility to Mycobacterium tuberculosis in mice [11]. As
in mice, Ipr1-like expression was higher in European wild
boar resistant to natural M. bovis infection [12]. Pan et al.
[11] proposed that Ipr1-related proteins may play a role in
integrating signals generated by intracellular pathogens or
viruses with host cell mechanisms that regulate gene
expression and cell death, thus modulating host suscepti-
bility to infection. However, recent publications have doc-

umented that polymorphisms in Sp110 gene are not
associated with susceptibility to tuberculosis in humans
[13-15]. These results suggest that Sp110 may have a dif-
ferent role during infection by intracellular bacterial path-
ogens in humans.

In the study reported herein, we hypothesized that Sp110
may be involved in the infection of human promyelocytic
cells with A. phagocytophilum and used a combination of
real-time RT-PCR and RNA interference (RNAi) to test this
hypothesis.

Methods
Determination of Sp110 mRNA levels in uninfected and 
infected HL-60 cells
Human HL-60 cells were cultured and infected with A.
phagocytophilum as previously described (multiplicity of
infection, MOI = 2) [5]. Uninfected and infected cultures
were sampled at 0, 12, 24, 48, 72 and 96 hours post-infec-
tion (hpi) and Sp110 and major surface protein 4 (msp4)
mRNA levels were determined by real-time RT-PCR using
human Sp110 (Genbank accession number NM_004509)
and msp4 [4] sequence-specific primers (Sp110, forward:
5'-cttcctatgaacggcagagc; reverse: 5'-ggcgactcactcaggatctc;
msp4, APMSP4RT5: 5'-tgacaggggaggatcttacg and
APMSP4RT3: 5'-tctagctccgccaatagcat) and the QuantiTec
SYBR Green RT-PCR kit (Qiagen, Valencia, CA, USA) in a
Bio-Rad iQ5 thermal cycler (Hercules, CA, USA) follow-
ing manufacturer's recommendations. mRNA levels were
normalized against human β-actin (forward: 5'-tga-
tatcgccgcgctcgtcgtc; reverse: 5'-gccgatccacacggagtact) [5]
and displayed in mRNA arbitrary units. Sp110 mRNA lev-
els were compared between infected and uninfected cells
by ANOVA test (P = 0.05).

RNA interference in HL-60 cells
The expression of Sp110 was silenced in HL-60 cells by
RNAi using a combination of two different pre-designed
siRNAs to Sp110 (siRNAs IDs 145432 and 241448) and to
actin-related protein 3 (ARP3) (NM_020445; siRNAs IDs
127242 and 127243) and P-selectin glycoprotein ligand-
1 (PSGL-1) (NM_003006; siRNAs IDs 12441 and
142575) as negative and positive controls, respectively
(Ambion, Austin, TX, USA). In a 96-well plate, 4 × 105

cells/well were nucleofected with 1 µg of siRNA using the
Nucleofector 96-well shuttle system (Amaxa Biosystems,
Gaithersburg, MD, USA) with kit SF and program 96-EN-
138 following manufacturer's instructions (efficiency of
transfection, 87 ± 13% after 24 hours). After nucleofec-
tion, cells were divided into two 96-well plates. Twenty
four hours after nucleofection, cells were collected from
one plate for cell viability and morphology assessment of
Giemsa-stained cytospin smears and RNA extraction
(RNeasy 96 kit, Qiagen) and analysis of gene expression
by real-time RT-PCR as described above. The second plate
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was incubated for 24 hours with cell-free A. phagocy-
tophilum (MOI = 10) prepared as described by Thomas
and Fikrig [16]. This level of infection corresponds to
approximately 72 hpi in Figure 1. The cells were then
washed 3× with PBS and total DNA was extracted (Wizard
SV 96 genomic DNA purification system, Promega, Madi-
son, WI, USA). The A. phagocytophilum infection levels
were evaluated in HL-60 cells after RNAi by real-time PCR
of msp4 and normalizing against human Alu sequences
[17] using the QuantiTec SYBR Green PCR kit (Qiagen) in
an iQ5 thermal cycler (Bio-Rad) as described above.
Known amounts of the full length A. phagocytophilum msp4
PCR were used to construct a standard curve for the real-
time PCR. Sp110 and PSGL-1 mRNA levels were deter-
mined after RNAi by real-time RT-PCR, normalized
against human β-actin using the comparative Ct (delta
delta Ct) method and compared between Sp110 or PSGL-
1 siRNA- and ARP3 siRNA-treated control cells by Stu-
dent's t-Test (P = 0.05). A. phagocytophilum msp4 DNA lev-
els were compared between cells nucleofected with Sp110
or PSGL-1 siRNAs and control cells treated with ARP3
siRNA by Student's t-Test (P = 0.05).

Results and discussion
The Sp110 mRNA levels increased in HL-60 cells after 24
hpi with A. phagocytophilum and reached 2× induction at
96 hpi (Fig. 1). The increase in Sp110 mRNA levels coin-
cided with pathogen multiplication and increasing infec-

tions (Fig. 1) and may reflect a protective cellular response
to limit rickettsial infection or the result of the manipula-
tion by A. phagocytophilum of host gene transcription to
promote pathogen multiplication.

To test these hypotheses, the effect of Sp110 silencing by
RNAi was evaluated on A. phagocytophilum infection of
HL-60 cells. Twenty four hours after RNAi, 63 ± 1% cells
were viable and cell morphology was not affected in all
treatments. Furthermore, the expression of Sp110 and
PSGL-1 were shown to be silenced by 85 ± 9% and 61 ±
18% (P < 0.05; N = 8), respectively when compared to
ARP3 siRNA-nucleofected controls. After RNAi, cells were
infected with A. phagocytophilum at a MOI equivalent to
approximately 72 hpi in Figure 1. The results of RNAi
showed a reduction in A. phagocytophilum DNA in cells
nucleofected with Sp110 siRNA, similar to results
obtained in positive control cells transfected with PSGL-1
siRNA (Fig. 2). If Sp110 has a role in the control of A.
phagocytophilum infection in humans, we would have
expected higher infection levels in HL-60 cells with knock-
down Sp110. However, although Sp110 protein levels
were not determined, the results of RNAi suggested that
Sp110 was required for A. phagocytophilum infection and/
or multiplication in HL-60 cells.

The studies of Sp110 function demonstrated that this pro-
tein has an important role in immunoprotective mecha-

Effect of Sp110 on A. phagocytophilum infection of human HL-60 cellsFigure 2
Effect of Sp110 on A. phagocytophilum infection of human HL-
60 cells. A. phagocytophilum msp4 DNA levels were deter-
mined by real-time PCR in infected HL-60 cells with knock-
down Sp110, PSGL-1 (positive control) and ARP3 (negative 
control). A. phagocytophilum msp4 DNA levels were normal-
ized against human Alu sequences and infection levels were 
compared between cells nucleofected with Sp110 or PSGL-1 
siRNAs and control cells treated with ARP3 siRNA by Stu-
dent's t-Test (*P < 0.05; N = 8).
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Expression kinetics of Sp110 in human HL-60 cells infected with A. phagocytophilumFigure 1
Expression kinetics of Sp110 in human HL-60 cells infected 
with A. phagocytophilum. Human Sp110 (solid and dotted 
lines) and A. phagocytophilum msp4 (broken line) mRNA levels 
were determined by real-time RT-PCR in uninfected and 
infected HL-60 cells. mRNA levels were normalized against 
human β-actin and displayed in mRNA arbitrary units. Sp110 
mRNA levels were compared between infected (solid line) 
and uninfected (dotted line) cells using an ANOVA test (*P < 
0.05; N = 3).
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nisms against pathogens in humans [9]. However, Sp110
is also used by some viruses such as Epstein-Barr virus, to
enhance replication in infected cells [18]. As shown here
for A. phagocytophilum, Sp110 transcription is induced by
some DNA viruses, suggesting that this mechanism may
represent an evolutionary adaptation that facilitates path-
ogen replication [18].

Conclusion
In summary, we have shown that A. phagocytophilum
increases Sp110 mRNA levels in infected human promye-
locytic HL-60 cells. These results suggest a new mecha-
nism by which A. phagocytophilum modulates gene
expression through NB-associated proteins. Furthermore,
silencing of Sp110 expression reduced pathogen infec-
tion/multiplication, thus suggesting that A. phagocy-
tophilum can modulate the transcription of Sp110 to
facilitate infection of human HL-60 cells. The mechanism
by which A. phagocytophilum modulates the transcription
of Sp110 to enhance infection of human HL-60 cells will
require further study.
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