

## **EPOSTER PRESENTATION**

**Open Access** 

# Computational modelling, green synthesis and biological activity of arylsulfonilamides as NNRTIs against HIV-1

Anuradha Singh<sup>1</sup>, Madhu Yadav<sup>1</sup>, Nidhi Singh<sup>1</sup>, Ritika Srivastava<sup>1</sup>, Rajinder Kaur<sup>2</sup>, Satish K Gupta<sup>2</sup>, Ramendra K Singh<sup>1\*</sup>

From 2nd International Science Symposium on HIV and Infectious Diseases (HIV SCIENCE 2014) Chennai, India. 30 January - 1 February 2014

### **Background**

The development of new and potent anti-HIV compounds has become almost obligatory for the scientific community due to rapid emergence of drug resistant mutations. In pursuance of developing new anti-HIV molecules, we herein report the design, synthesis and anti-HIV properties of a series of potent arylsulfonilamide derivatives as NNRTIs.

#### **Methods**

Development of arylsulfonilamides as NNRTIs involved both the computational and synthetic methods. On the basis of extensive docking experiments, ten promising compounds out of **55** initially taken were synthesized using green protocols and their *in vitro* anti-HIV activity assessed in TZM bl cells by luciferase assay and reverse transcriptase (RT) inhibition assay against wild type HIV-1 RT.

#### **Results**

The compounds showed very promising *in silico* results as reflected by their lower  $\Delta G$  values-high binding affinity, significant scoring functions high RT- ligand stabilization energy and close interatomic contacts through strong H-bonds with Lys103, His235, Tyr318, Lys101 and Val179; pi-pi interaction with Tyr181 and pi-cation interaction through Lys101, which all together predicted high EC<sub>50</sub> values. However, the molecules showed unimpressive inhibitory action against HIV-1 under *in vitro* conditions. The encouraging part of this study was that these

compounds behaved as NNRTIs as per our expectations, on the basis of results obtained during HIV-RT assay.

#### **Conclusions**

In the present study, it has been observed that promising *in silico* results are not always corroborated by the desired *in vitro* results. Nevertheless, it is a part and parcel of drug discovery process, where successful drug development is nearly a hard nut to crack.

#### Authors' details

<sup>1</sup>Nucleic Acids and Antiviral Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad- 211002, India. <sup>2</sup>National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India.

Published: 27 May 2014

doi:10.1186/1471-2334-14-S3-E4

Cite this article as: Singh *et al.*: Computational modelling, green synthesis and biological activity of arylsulfonilamides as NNRTIs against HIV-1. *BMC Infectious Diseases* 2014 14(Suppl 3):E4.

# Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit



Full list of author information is available at the end of the article



<sup>\*</sup> Correspondence: rksinghsrk@gmail.com

<sup>&</sup>lt;sup>1</sup>Nucleic Acids and Antiviral Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad- 211002, India