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Abstract

Background: Humans vary in their susceptibility to acquiring Staphylococcus aureus infection, and research suggests
that there is a genetic basis for this variability. Several recent genome-wide association studies (GWAS) have identified
variants that may affect susceptibility to infectious diseases, demonstrating the potential value of GWAS in this arena.

Methods: We conducted a GWAS to identify common variants associated with acquisition of S. aureus bacteremia
(SAB) resulting from healthcare contact. We performed a logistic regression analysis to compare patients with
healthcare contact who developed SAB (361 cases) to patients with healthcare contact in the same hospital who did
not develop SAB (699 controls), testing 542,410 SNPs and adjusting for age (by decade), sex, and 6 significant principal
components from our EIGENSTRAT analysis. Additionally, we evaluated the joint effect of the host and pathogen
genomes in association with severity of SAB infection via logistic regression, including an interaction of host SNP with
bacterial genotype, and adjusting for age (by decade), sex, the 6 significant principal components, and dialysis status.
Bonferroni corrections were applied in both analyses to control for multiple comparisons.

Results: Ours is the first study that has attempted to evaluate the entire human genome for variants potentially
involved in the acquisition or severity of SAB. Although this study identified no common variant of large effect size to
have genome-wide significance for association with either the risk of acquiring SAB or severity of SAB, the variant
(rs2043436) most significantly associated with severity of infection is located in a biologically plausible candidate gene
(CDON, a member of the immunoglobulin family) and may warrant further study.

Conclusions: The genetic architecture underlying SAB is likely to be complex. Future investigations using larger
samples, narrowed phenotypes, and advances in both genotyping and analytical methodologies will be important
tools for identifying causative variants for this common and serious cause of healthcare-associated infection.
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Gram-positive bacterial infections, Polymorphism, single-nucleotide, Infections, Nosocomial, Cross infection

Background

Although most persons are colonized with Staphylococ-
cus aureus during their lifetimes, only a small percentage
will develop infection [1]. The initiation and severity of
S. aureus infections is complex and influenced by at least
3 characteristics: bacterial virulence factors, host genetic
factors, and the environment in which the host and
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pathogen interact. In previous studies, our group and
others have shown the critical role of healthcare contact
as the primary environmental risk factor for the acquisi-
tion of S. aureus infection [2-4]. For example, 85% of
patients with invasive methicillin-resistant S. aureus
(MRSA) infection had healthcare-associated infection
[3]. Bacterial genetic characteristics also influence dis-
ease type and severity. For example, we have recently
shown [5] and externally validated [6] that certain strains
of S. aureus (e.g., clonal complex 30 and potentially
clonal complex 5) are significantly associated with
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the development of endocarditis and osteoarticular
infections.

A variety of research findings suggest that there is a gen-
etic basis for human susceptibility to S. aureus. Evidence
that human genetic characteristics influence susceptibility
to S. aureus infection include: 1) higher rates of S. aureus
infections in distinct ethnic populations, including African
Americans [3,7], New Zealand Maori [8], Pacific Islanders
[8], Australian Aboriginals [9], and Canadian Aboriginal
peoples [10]; 2) familial clusters of S. aureus infection [11];
3) rare genetic conditions associated with susceptibility to
S. aureus [12-14]; 4) the impact of host genetic variation
on persistent S. aureus carriage [15]; and 5) variable sus-
ceptibility to S. aureus infections among inbred mice [16]
and cattle [17].

Finally, there is considerable variability within the popu-
lation of patients who develop S. aureus infection, with
some patients recovering and others developing a range of
complications, including death. Some of this variability
can be attributed to the S. aureus strain [5], but this does
not fully explain the breadth of clinical outcomes ob-
served. Host genetic factors and bacterial genetic factors
may interact to influence outcome severity.

While such evidence suggests a genetic basis for host
susceptibility to S. aureus infection, progress in identifying
genes has been slow. Recently, however, several genome-
wide association studies (GWAS) have identified variants
that may affect susceptibility to infectious diseases such as
HIV, viral hepatitis, malaria, tuberculosis, leprosy, menin-
gococcal disease, and Kawasaki’s disease [18], demonstrat-
ing the potential value of GWAS in infectious diseases
despite some unique challenges (e.g., the role of the patho-
gen’s genome; the effect of the environment in which the
host and pathogen interact).

Thus, the primary goal of the present investigation was
to evaluate the association of common genetic variants
with acquisition of S. aureus infections in humans. To ac-
complish this, we performed a GWAS on a large cohort of
patients with healthcare-associated SAB and a set of con-
trols without SAB but with healthcare contact in the same
hospital. A secondary goal of this investigation was to
evaluate the effect of potential interaction of the host and
S. aureus genomes on the severity of clinical outcome.
Thus, we performed a secondary GWAS to evaluate the
joint effect of the host and pathogen genomes on severity
of S. aureus infection in the subset of cases for which both
clinical records and the S. aureus isolate were available.

Methods

Study participants

Our study used a case—control design. Data for cases
were obtained from the S. aureus Bacteremia Group
(SABG) repository [2,5], which has prospectively cata-
loged clinical data, bloodstream S. aureus isolates, and
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human DNA from all consenting patients with SAB
within our institution since 1994. Cases (N =408) were
unique adult white inpatients with healthcare-associated
SAB [19]. A small number of cases (N =30) died prior
to being consented and thus were included in the reposi-
tory as anonymous subjects. Although DNA was avail-
able for these, no S. aureus isolate existed and available
clinical data were limited to age, sex, and race. Nonethe-
less, we felt it was important to include these anonym-
ous subjects in our primary analysis to avoid possible
bias induced by exclusion of subjects who died early of
their SAB. The anonymous subjects were necessarily ex-
cluded from our secondary analysis, which required both
the S. aureus genotype and clinical data sufficient to de-
fine the severity of infection phenotype.

Our study was made both possible and cost-effective
due to the availability of previously genotyped data for
controls [20], identified through a comprehensive review
of electronic health records by an investigator blinded to
the genetic data. While potential bias can result from this
choice, the available controls were nonetheless appropriate
in several ways. First, the controls (N =779) were unique
adult white inpatients undergoing coronary artery bypass
grafting (CABG) in the same hospital from which the
cases were sampled. Thus, the cases and controls were ex-
posed to the same risk factor (hospitalization) but differed
in whether they acquired S. aureus infection during their
hospital stay. Second, by virtue of undergoing major in-
patient surgery, the CABG controls were at increased risk
for S. aureus infection. The fact that they were at high risk
for infection yet remained uninfected makes them suitable
controls for this study. Third, while many risk factors are
not available for comparison, the comorbid burden in both
groups is likely to be considerable. For example, diabetes
(a known risk factor for both coronary artery disease and
susceptibility to S. aureus infection) was common in both
populations (37% among the 331 non-anonymous cases;
30% among controls). Further, the known risk factor, age
(included as a covariate in our analyses), was similar in
both cases and controls (mean 60 years among cases;
59 years among controls). Finally, the genotyping for the
controls was performed in the same laboratory using the
same methods used for the cases. Assessment of potential
bias due to the separate genotyping of cases and controls
was performed and is discussed in sections “Genotyping”
and “Quality control of genotype data”.

This study was approved by the Duke University Insti-
tutional Review Board. All patients provided informed
consent according to IRB policies. DNA from the an-
onymous cases was available from antemortem blood
obtained from clinical diagnostic laboratories at the time
it was scheduled to be discarded. Use of these samples
was fully approved by the Duke IRB under Policies for
Decedent Research.
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Genotyping

All genotyping for both cases and controls was performed
on the Illumina 610-Quad BeadChip (Illumina, Inc., San
Diego, CA, USA) by the Genomic Analysis Facility at
Duke University. As described previously, cases and con-
trols were genotyped separately. Thus, to allow detection
of potential batch effects, 29 of the original CABG control
samples were re-genotyped with the S. aureus case sam-
ples. These control sample replicates were randomly
assigned across all genotyping plates. Additionally, each S.
aureus plate included 2 case interplate replicate samples
and 2 case intraplate replicate samples. All of the expected
sample replicate pairs showed greater than 0.99 genotype
concordance. One unique copy of each replicated sample
was included in the analysis, preferentially retaining the
sample with the higher genotyping call rate.

Quality control of genotype data

DNA samples were excluded for the following reasons:
1) very low intensity or a genotyping call rate <99% as
described elsewhere [21], 2) genotypic sex inconsistent
with reported sex, 3) unexpected duplicates, and 4) un-
expected (‘cryptic’) relatedness. Eleven case samples and
22 control samples failed genotyping and were excluded.
The samples included in these analyses had a genotyping
call rate between 99.2% and >99.99%. Potential sex mis-
matches and cryptic relatedness were identified using
PLINK software version 1.06 [22], as described else-
where [21]. Genotypic sex for 5 cases and 3 controls
were discordant with reported sex; these individuals
were excluded. Samples were evaluated for cryptic re-
latedness through estimation of identity-by-state (IBS)
allele sharing. Four pairs of case samples were shown to
be unexpected duplicates. For these pairs, the sample with
the lower genotyping call rate was excluded. Additionally,
11 pairs of samples showed excessive cryptic relatedness
(IBS allele sharing greater than 0.125), including 2 pairs of
2 S. aureus samples, 3 pairs of 1S. aureus sample and 1
CABG sample, and 6 pairs of CABG samples. For the S.
aureus pairs and the CABG pairs, the sample with the
lower genotyping call rate was excluded. For the mixed
pairs, the CABG sample was excluded in order to maximize
the number of cases for analysis.

SNPs were excluded for the following reasons: 1) low
minor allele frequency, 2) excessive missingness, and 3)
discordant genotype calls between the original CABG
samples and the 29 CABG control samples re-genotyped
on the case plates. SNPs with a minor allele frequency
below 0.01 (N =65,160) that were missing in more than
10% of the samples (N =47,383) or that were discordant
in the 29 pairs of CABG control replicates (n=513)
were excluded. Additionally, PLINK was used to confirm
that there was no systematic difference in SNP missing-
ness between cases and controls.
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Bacterial genotyping

Spa typing and multilocus sequence typing (MLST) were
performed on bacterial isolates as previously described
[5,23]. PCR oligonucleotide primers for the 7 MLST tar-
gets and spa have also been described previously [5]. For
spa typing, eGenomics software (eGenomics, Inc., New
York, NY, USA [24]) was used to scan the primary se-
quence to help identify the orders and names of each re-
peat. The spa type number is representative of the
repeat organization. Clonal complexes (CCs) for the iso-
lates were identified via repeat pattern recognition from
an existing spa type and CC database provided by Drs.
Barry Kreiswirth and José Mediavilla, previously con-
firmed via MLST [23]. Isolates whose spa type did not
map to a known CC underwent MLST typing. For
MLST, the sequence chromatograms for unique alleles
were deposited in the MLST database [25]. Alleles at the
7 loci (arcC, aroE, glpE gmk, pta, tpi, and yqil) were
used to identify a unique sequence type (ST). MLST al-
lele names and STs were derived from the MLST data-
base [25]. Clonal complexes were assigned to groups of
isolates sharing 6 of 7 alleles by using eBURST v3 (Im-
perial College London) [26,27].

Population substructure

We assessed population substructure using EIGENSTRAT
[28]. Thirty-three control samples and 25 case samples
were determined to be population outliers and were ex-
cluded from the analysis. After removing these, there were
6 statistically significant (P-value <0.05) principal compo-
nent axes based on Tracy-Widdom thresholds [21,29].
The values for these 6 principal components were in-
cluded as covariates in our analyses. Our final analysis
dataset included 1060 persons (361 cases; 699 controls)
with 542,410 SNPs per person.

Statistical analysis

To identify variants associated with the acquisition of
SAB, we performed a logistic regression analysis assuming
an additive genetic model, testing the association of the
number of minor alleles at each of the 542,410 SNPs with
case—control status and correcting for age (by decade),
sex, and the 6 significant principal components from the
EIGENSTRAT analysis. We compared 361 individuals
with healthcare contact who developed SAB to 699 con-
trol subjects with healthcare contact but who did not ac-
quire S. aureus infection.

To identify variants associated with severity of S. aureus
infection, we also performed a logistic regression analysis
assuming an additive genetic model among the subset of
cases for whom complete clinical data and bacterial geno-
type were available (N = 324). This secondary analysis ad-
justed for potential effect of bacterial genotype on severity
of infection. Persons with SAB due to isolates belonging to
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either CC5 or CC30 were considered to be at risk for com-
plicated infection, since these bacterial genotypes have
been previously associated with endocarditis and osteoarti-
cular infection [5,6]. A joint test (2 degrees of freedom [df])
of host genotype main effect plus interaction with bacterial
genotype was performed to test this association [30]. Cases
with definite native aortic or mitral valve infective endocar-
ditis (IE), hematogenous bone and joint infections, or both,
were defined as having severe (complicated) infections [5].
Patients with complicated infection were excluded if they
had a cardiac prosthesis (e.g., pacemaker, cardioverter/de-
fibrillator, prosthetic valve, or mitral valve support ring) or
orthopedic arthroplasty. We constructed a binary pheno-
type for this analysis (cases with severe [complicated] infec-
tions versus remaining cases), comparing 76 cases with a
severe (complicated) infection to 248 cases who had an un-
complicated infection. Bacterial genotype was also coded
as binary (cases with virulent S. aureus organisms [CC 5 or
30] versus remaining cases). The full model included the
host genotype main effect, the bacterial genotype (CC)
main effect, and the host X bacterial genotype interaction.
This was compared to a restricted model with only the
bacterial genotype main effect. Additionally, age (by dec-
ade), sex, dialysis status (1 = patient on dialysis; 0 = patient
not on dialysis), and the 6 significant EIGENSTRAT princi-
pal components were included as covariates in both the
full and restricted models. PLINK software was used for
both the primary and secondary analyses.

A Bonferroni correction was applied to adjust the level of
significance for multiple comparisons in both analyses.
Genome-wide significance was defined as P-value <9.2 x 10°®
(0.05/542,410). Results were visualized using the WGA-
Viewer tool [31].

Power

Power calculations were performed for our primary ana-
lysis post hoc using the program Genetic Power Calcula-
tor [32], assuming an additive model and a disease
prevalence of 0.0003 [3].

Results

Acquisition of SAB

After multiple comparisons adjustment of our primary
analysis, no SNP met genome-wide significance for asso-
ciation with acquisition of SAB, adjusting for age (by
decade), sex, and EIGENSTRAT principal components.
This analysis had 0.8 power to detect a genotyped vari-
ant with a relative risk (RR) of at least 2.2 and a minor
allele frequency (MAF) of 0.1. The minimum RR detect-
able over a range of possible minor allele frequencies is
shown in the Figure 1. Table 1 summarizes the distribu-
tion of age and sex for all subjects by case versus control
status. All SNPs with a P-value <10 in this analysis are
listed in Table 2. The strongest association observed was
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575649 (raw P-value = 2.22 x 10°°). None of these SNPs
were in or near a gene known or suspected to have a role
in host susceptibility to infectious disease. Additionally, all
SNPs associated with acquisition of SAB in this analysis
(P-value <10™) were inspected to determine proximity to
candidate genes identified through consideration of hu-
man orthologs of genes associated with susceptibility to S.
aureus infection in a murine model [16,33]. None were lo-
cated in or near a candidate gene of interest identified by
the murine analysis.

Severity of SAB

In our secondary analysis, no SNP met genome-wide sig-
nificance in a joint test of association with severe (compli-
cated) infection plus interaction with bacterial genotype,
after multiple comparisons correction and adjusting for age
(by decade), sex, dialysis status, and the 6 EIGENSTRAT
principal components. Both the strongest association ob-
served and the only SNP with a P-value <107 in this ana-
lysis was rs2043436 (raw P-value = 1.64 x 10°°), which is
included in Table 2. This SNP is located in the CDON gene,
which encodes a cell surface receptor in the immunoglobu-
lin family. Table 3 summarizes the distribution of bacterial
genotype (CC) by complicated versus uncomplicated SAB
infection. Again, as performed for the primary analysis of
acquisition of SAB, all SNPs associated with severity of
SAB in this secondary analysis (P-value <10 were evalu-
ated against the murine model and none were found to be
located in or near a candidate gene of interest identified by
that analysis.

To further assess the potential contribution of bacterial
genotype on severity of infection, we repeated the second-
ary analysis, but excluded the bacterial CC and the inter-
action of SNP with bacterial CC, testing only the impact
of host genotype main effect. Thus, this model included
the host genotype main effect and the age (by decade),
sex, dialysis status, and the 6 significant EIGENSTRAT
principal components as covariates. In this analysis,
rs2043436 remained the strongest association and was
more strongly associated (P-value =2.10 x 107) with the
outcome than it had been when including the interaction
with bacterial genotype, suggesting that the host genotype
main effect is likely the primary driver of the association
of this SNP with severity of SAB infection.

Discussion

To our knowledge, ours is the first study that has
attempted to evaluate the entire human genome for vari-
ants potentially involved in the acquisition or severity of
SAB. Although this study identified no common variant of
large effect size to have a genome-wide significant associ-
ation with either the risk of acquiring SAB or the severity
of S. aureus infection, the most highly associated variant
(rs2043436, an SNP located within CDON) identified in



Nelson et al. BMC Infectious Diseases 2014, 14:83
http://www.biomedcentral.com/1471-2334/14/83

Page 5 of 8

Detectable relative risk

T T T
0.0 0.1 0.2

of 0.0003.

\

Marker allele frequency

Figure 1 Power estimates for identification of SAB risk variants. This graph shows a range of minor allele frequencies and relative risks,
assuming a power of 0.8. The calculations were made using Genetic Power Calculator [32], assuming an additive model and a disease prevalence
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our secondary analysis may provide a biologically plausible
target for further study of host susceptibility to severe
(complicated) infections. While this SNP is not a strong
proxy for a functional variant, there are multiple func-
tional variants in weaker linkage disequilibrium that may
be of interest. Given the key role of adhesion to host pro-
teins in staphylococcal pathogenesis, this may be an inter-
esting protein for future studies.

Our inability to identify common variants significantly
associated with SAB when there is considerable evidence
of a host genetic influence on acquisition of SAB may
result from a number of factors. First, our sample size is
modest when compared to current GWAS in other dis-
eases. As a result, some signals may not have been de-
tectable at genome-wide significance levels, including
those of moderate effect size (RR 1.5-2.2). Thus, our
study cannot preclude the possibility that a common
variant of moderate to small effect size may be associ-
ated with the acquisition of SAB, and such effects may
be represented among the many ‘suggestive” associations
(P-value <0.00001) detected here. Expansion of the sam-
ple set (through meta-analysis or pooled analysis with
other cohorts) could resolve this question. Second, given
that the clinical spectrum of S. aureus bacteremia is
quite broad, it is possible that phenotypic heterogeneity

Table 1 Demographic information

SAB cases CABG controls
(N=361) (N=699)

Male sex, % 57 76

Mean age at enrollment, y (SD) 60 (14.9) 59 (10.2)

CABG: coronary artery bypass grafting.

SAB: Staphylococcus aureus bacteremia.

Data are from patients that were included in the genome-wide association
study (GWAS).

may have further complicated our ability to identify vari-
ants associated with acquisition of S. aureus infection.

Infectious diseases are complex due to interactions
among host genetic variants, pathogen genetic variants,
and factors in the environment within which the organ-
isms interact. Such interactions present unique challenges
for genetic studies. We controlled for the effects of envir-
onmental factors by limiting our analysis to cases and con-
trols having the same healthcare exposure. We also
controlled for the potential effect of bacterial genetic vari-
ability on the severity of infection by including host SNP
interactions with virulent S. aureus CCs. However, we ac-
knowledge that these approaches may be inadequate to
control for mechanisms that are likely much more com-
plex. It is possible that different S. aureus genetic variants
influence risk for complicated infection and that host vari-
ants may interact with these pathogen variants through
more complex mechanisms to modify the observed clin-
ical outcomes. It is also possible that non-genetic factors
that can influence the likelihood of infection (such as dia-
betes, corticosteroids, physical fitness, nutrition) could
have impacted host susceptibility in our study. Our ability
to detect very complex interactions or to adjust for them
was limited. Further, our attempt to control for some of
these complexities through use of a single-center design
engenders a limitation in generalizability as there is poten-
tial regional variation in both patient and S. awureus
characteristics.

It is worth noting that although our control group was
matched for environmental exposure, there are poten-
tially important imbalances in clinical risk factors be-
tween cases and controls. For example, it is unknown
whether there are seasonal or departmental differences
in risk of acquisition or severity of S. aureus infection.
As a result, had genome-wide significant signals been
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Table 2 Variants most strongly associated with either acquisition of SAB or severe (complicated) SAB infection,

presented in rank order of significance

SNP P-value OR L95 U95 Minor F_A? F_U? Chr Coordinate Typeb Closest Locus®
Allele
Acquisition of SAB
rs575649 2.22E-06 062 051 076 C 0398 0017 6 153215558 Upstream RP3-468 K3.1
rs1885359 3.18E-06 166 134 205 A 0342 0267 22 28011067 Intergenic RP1-231P7P.1
rs1353492 3.79E-06 232 162 330 A 0104 0051 5 92446044 Intergenic CTD-2091 N23.1
rs13188341 4.10E-06 230 161 328 A 0.104 0051 5 92443100 Intergenic CTD-2091 N23.1
rs7068684 5.03E-06 182 141 2.35 T 0187 0123 10 106403115 Intronic SORCS3
rs7084834 7.53E-06 180 139 232 C 018 0123 10 106403209 Intronic SORCS3
rs4918120 8.15E-06 168 134 211 T 0226 0153 10 106382358 Intergenic RP11-12704.2
rs2186567 8.92E-06 036 023 056 C 0035 0089 11 70515963 nc_transcript_ SHANK2
variant; intron_
variant
rs2732986 9.10E-06 154 128 187 C 0490 0395 8 5541143 Intergenic RP11-281H11.1
rs13118964 9.13E-06 059 046 074 0.181 0268 4 161039344 Intergenic RP11-6C14.1
Severe (complicated) SAB
rs2043436 1638E-06 385 231 641 T 0283 0024 1 125925478 Intronic CDON

F_A: frequency of the minor allele among cases.

F_U: frequency of the minor allele among controls.

L95: lower bound of the 95% confidence interval for the OR.
OR: odds ratio.

SAB: Staphylococcus aureus bacteremia.

U95: upper bound of the 95% confidence interval for the OR.

“Note that because odds ratios are adjusted for covariates, they cannot be reconstructed directly from the raw allele frequencies reported.

PAnnotations are from WGAViewer [31].

Table 3 Staphylococcus aureus genotype (clonal complex [CC])

Clonal complex SAB complicated SAB uncomplicated

infection infection
(N=76) (N =248)
Virulent S. aureus (CC 5 or 30) 50 (66%) 138 (56%)
Unnamed 2 (3%) 4 (2%)
1 3 (4%) 8 (3%)
5 28 (37%) 92 (37%)
8 9 (12%) 43 (17%)
9 1(1%) 6 (2%)
12 0 6 (2%)
15 4 (5%) 14 (6%)
20 0 1 (<1%)
30 22 (29%) 46 (18%)
45 4 (5%) 17 (7%)
59 3 (4%) 7 (3%)
97 0 2 (1%)
398 0 1 (<1%)
903 0 1 (<1%)

SAB: Staphylococcus aureus bacteremia.

Data are from 324 patients included in the secondary analysis of complicated
infection. Anonymous cases (N = 30), cases with insufficient clinical data to
define severity of infection (N =4), and cases with missing SA isolate (N = 3)
were excluded from this analysis.

detected, a subsequent analysis to evaluate possible clin-
ical confounding would have been necessary in order to
establish the independent association of any finding.
Such an analysis, however, would have been complicated
both by limited data and clinical exclusions for the con-
trol group. Several important risk factors (e.g., active
malignancies; dialysis dependency) were exclusions for
CABG patients, and therefore could not be included as
covariates. Due to the priority to minimize multiple
comparisons for our relatively small sample, we felt an
adjusted analysis was not warranted in the absence of a
genome-wide significant finding.

Finally, while our analysis did not detect a common
SNP significantly associated with SAB acquisition, it re-
mains possible that rare genetic variants are modulating
susceptibility to SAB. Much of the variation in the hu-
man genome occurs at lower frequencies. Indeed, recent
reports suggest that rare genetic variants can drive a
pronounced clinical phenotype, and are more likely than
common variants to have a deleterious effect on a pro-
tein coding sequence and potentially cause a disease
[34]. Our study had limited ability to detect most rare
genetic variation.

Conclusions
The disparity between exposure, colonization, and infec-
tion suggests that humans show varying susceptibilities
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to acquiring SAB. In this first study to evaluate the en-
tire human genome for variants potentially associated
with the acquisition or severity of SAB, no common
variant of large effect size achieved genome-wide signifi-
cance. The genetic architecture underlying SAB is likely
to be complex, reflecting oligogenic effects, genetic het-
erogeneity, and the cumulative effects of multiple rare
variants. Future work in which the phenotype is nar-
rowed by focusing on unique subpopulations of SAB
(e.g., native valve, endocarditis, or osteoarticular infec-
tions) may prove fruitful. Additionally, the use of recent
advances in genotyping technology such as Next Gener-
ation sequencing is certainly warranted. The cost of
whole-genome and whole-exome sequencing is falling
rapidly, and such methods provide the advantage of
near-complete coding sequence variant identification. It
would be especially interesting to sequence those per-
sons who have a more “extreme” clinical outcome, since
it might be easier to identify causative variants in such a
population. Investigations using larger samples and ad-
vances in both genotyping and analytical methodologies
will be crucial to success in unraveling the causal path-
way for this common and serious cause of healthcare-
associated infection.
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