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Abstract

Background: To inform the choice of an appropriate screening and diagnostic algorithm for tuberculosis (TB)
screening initiatives in different epidemiological settings, we compare algorithms composed of currently available
methods.

Methods: Of twelve algorithms composed of screening for symptoms (prolonged cough or any TB symptom) and/or
chest radiography abnormalities, and either sputum-smear microscopy (SSM) or Xpert MTB/RIF (XP) as confirmatory test
we model algorithm outcomes and summarize the yield, number needed to screen (NNS) and positive predictive value
(PPV) for different levels of TB prevalence.

Results: Screening for prolonged cough has low yield, 22% if confirmatory testing is by SSM and 32% if XP, and a high
NNS, exceeding 1000 if TB prevalence is ≤0.5%. Due to low specificity the PPV of screening for any TB symptom
followed by SSM is less than 50%, even if TB prevalence is 2%. CXR screening for TB abnormalities followed by XP has
the highest case detection (87%) and lowest NNS, but is resource intensive. CXR as a second screen for symptom
screen positives improves efficiency.

Conclusions: The ideal algorithm does not exist. The choice will be setting specific, for which this study provides
guidance. Generally an algorithm composed of CXR screening followed by confirmatory testing with XP can achieve
the lowest NNS and highest PPV, and is the least amenable to setting-specific variation. However resource requirements
for tests and equipment may be prohibitive in some settings and a reason to opt for symptom screening and
SSM. To better inform disease control programs we need empirical data to confirm the modeled yield, cost-effectiveness
studies, transmission models and a better screening test.
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Background
The current global rate of decline in TB incidence, at
about 2% annually, is grossly insufficient to reach the goal
of TB elimination by 2050 [1]. Missed and delayed diagno-
sis of active TB helps sustain transmission and is a major
contributor to the slow rate of decline. It also translates
into poor health outcomes in people who get no or too
late access to appropriate treatment [2]. In order to im-
prove early detection of TB, active case finding approaches

may be needed in certain risk groups with high TB preva-
lence or poor access to TB diagnosis. A recently released
WHO guideline provides recommendations on when,
whom and how to screen for active TB [3,4].
TB screening is defined as “systematic identification of

people with suspected active TB in a predetermined tar-
get group, using tests, examinations, or other procedures
which can be applied rapidly” [3]. Screening is offered
systematically to predetermined target groups, and not
only to individuals seeking care for symptoms or signs
[4]. Screening could target both people who seek health
care (with or without symptoms/signs consistent with
TB) and people who do not seek care. In addition to
prerequisites that need to be met regarding TB program
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performance and health system capacity, the decisions
about screening require prioritization of risk groups, an
approach on how to reach the intended populations, and
choices with respect to the screening and diagnostic
algorithm [3].
Such an algorithm will generally be composed of one or

more screening methods and one or more confirmatory
tests (Figure 1). Symptom questionnaires and chest radi-
ography are the most available and best documented
methods to screen for active TB disease [5,6]. Confirma-
tory tests are historically sputum smear microscopy, and
mycobacterial culture, which is the reference standard of
diagnostic testing for TB [7], and the more recently
developed molecular Xpert MTB/RIF assay (Cepheid,
Sunnyvale, CA) [8]. However, culture is often not available
for routine diagnosis in high TB burden countries [9], and
requires a much longer wait for results (2–6 weeks) than
the Xpert MTB/RIF assay (XP) and sputum-smear mi-
croscopy (SSM), both of which can provide final test re-
sults in less than 1 day [8]. In theory, the algorithm could
comprise of one simple and cheap rapid test that can diag-
nose TB with high sensitivity and very high specificity.
However, in practice none of the currently available tests
for TB fulfill this ideal profile [9]. A screening initiative
will thus need to consider which algorithm is the most ap-
propriate for a specific risk group in a specific setting. This
requires balancing the yield of true- and false-positive and
-negative TB, the benefits and risk of each outcome, the
resource requirements, cost-effectiveness, and the feasibil-
ity of reaching and enabling access to full diagnostic work-
up as well as required care for the screened population.
To inform the choice of an appropriate algorithm we

discuss clinical epidemiological principles that are im-
portant for screening and diagnostic algorithms, and we
use a simple mathematical model to compare algorithms
that may likely be considered for TB screening using
currently available screening and diagnostic methods.
We compare the yield, positive predictive value, and
requirements in terms of diagnostic tests.

Methods
Algorithm
In our calculations we consider a population of 100,000
persons who will be screened. The TB prevalence used in
the calculations determines the number of persons in the
total population who truly have active pulmonary TB that
would be detectable by a highly sensitive and specific
bacteriological test like liquid mycobacterial culture. We
compare 12 algorithms, composed of one or more
screening methods and one or more confirmatory tests
[Figure 1]. The 12 combinations of screening methods
and confirmatory tests are listed in Table 1.
Persons with a negative screen would not be further

evaluated. Individuals with a positive screening result

will require one or more diagnostic tests to establish a
final TB diagnosis. Individuals with a positive screen, but
negative confirmatory test would either receive a definite
diagnosis of no TB, or may be advised on follow up care
if warranted.
Six categories of algorithm outcomes are possible

(Figure 2):

A. True positives (TP), who are screen-positive,
confirmatory test-positive, and truly have active TB.
These individuals will benefit from screening
provided that they receive proper TB treatment,
which would not otherwise have been received or
which would have been received after a delay of
clinical importance. There is also potential community
benefit of this outcome, through reduced TB
transmission [10]. The TP may face costs and
inconvenience of screening and diagnostic procedures
as well as adverse health, financial and social effects of
appropriate TB treatment [11,12].

B. False positives (FP), who are screen-positive,
confirmatory test-positive, but do not have active
TB. These individuals may face costs and
inconvenience of screening and diagnosis as well
as adverse health, financial and social effects of
unnecessary TB treatment [11,12].

C. True negatives (TN), who are screen-positive, but
confirmatory test-negative, and do not have active
TB. These individuals will benefit from knowing that
they do not have TB. However, they may face costs
and inconvenience of screening and diagnostic
procedures that could be regarded as unnecessary.
Depending on the type of test, they may be identified
as at higher risk to develop TB disease in the future,
which may be a benefit or a disadvantage.

D. True negatives, who are screen-negative, and do not
have active TB. These individuals will benefit from
knowing that they do not have TB. However, they
may face costs and inconvenience of screening that
could be regarded as unnecessary.

E. False negatives (FN), who are screen-positive,
confirmatory test-negative but actually have active
TB. These individuals remain undiagnosed due to
the limitation of the confirmatory test(s). They may
face costs and inconvenience of screening and of
the confirmatory test(s).

F. False negatives, who are screen-negative but have
active TB. They remain undiagnosed due to the
limitation of the screening test(s).

In both E and F, the negative consequences of a FN diag-
nosis includes false reassurance discouraging care-seeking
and delaying later diagnosis. Negative consequences may
affect the individual, and others who may become infected.
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The extent to which screening correctly identifies all
persons with bacteriologically active TB among the popu-
lation to be screened, i.e. the proportion of cases detected,
is determined by the sensitivity of the screening method

and of the confirmatory test(s), and by acceptance to
participate and adherence to the algorithm. However, we
focus on differences that can be expected from different
algorithms and assume 100% participation for this study.

A

C

B

D

Figure 1 Algorithms composed of one or more screening methods and one or more confirmatory tests. In panel A one screening tool is
applied (e.g. symptoms) and screen positives are further evaluated by one confirmatory test with high sensitivity and high specificity (e.g. Xpert
MTB/RIF). In panel B one screening tool is applied (e.g. symptoms) and screen positives are further evaluated by a confirmatory test with low
sensitivity (e.g. sputum smear microscopy), and persons with a negative test receive a second test or procedure (e.g. clinical diagnosis, or sputum
culture). In panel C two screening tools are applied (e.g. symptoms and chest radiography) and screen positives on either one or on both are
further evaluated with a confirmatory test. In panel D two screening tools are applied sequentially. Screen positives on the first screen (e.g. symptoms)
undergo a second screen (e.g. CXR) and if also positive on the second a confirmatory test is applied. The single confirmatory test in panels C and D
could also be replaced by two-steps as in panel B.
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The prevalence of active TB in the population to be
screened is an important determinant of the tradeoff be-
tween benefits, risks and costs. The latter includes finan-
cial, logistical and human resource requirements as well
as participants’ time and personal expenses. This tradeoff
can be judged by the following three indicators, which all
depend on the TB prevalence: (i) the number needed to
screen (NNS) and thus the resources required to detect
one true TB case. Furthermore (ii) the positive predictive
value (PPV), i.e. the number of true positive cases detected
divided by the sum of true positive cases detected and
false-positive TB diagnoses made, and (iii) the negative
predictive values (NPV), i.e. the number of true negatives
divided by the sum of true negative and false negative
outcomes.

Screening methods
We consider the most available screening methods,
which are symptom questions, chest radiography (CXR),
and serial screening with first a symptom question-
naire followed by CXR if the symptom screen is posi-
tive (Figure 1D). We left out algorithms composed of

symptom and CXR screening in parallel (Figure 1C).
Although this combination is the standard screening
in TB prevalence surveys, it has little advantage for an
active screening program as the sensitivity of symptom
and CXR screening in parallel is only marginally better
compared to the sensitivity of CXR screening for any
abnormality alone, and its specificity is worse [5]. The
sensitivity and specificity of the symptom screens as used in
the model (Table 2) are obtained from a systematic review
and meta-analysis [5]. We examine symptom screening for
‘prolonged cough’ i.e. cough for 2-3 weeks or more, and for
‘any TB symptom’ i.e. presence of any one symptom out of
a combination of 4-7 symptoms suggestive of TB: cough,
productive cough, fever, night sweats, weight loss, chest
pain, haemoptysis. CXR screening distinguishes between
‘any CXR abnormality’, which includes abnormalities that
may not be considered suggestive of active or inactive TB
and ‘abnormalities suggestive of TB’, which could be active
or inactive TB. The two sequential screening algorithms
that we consider are composed of ‘prolonged cough’ or
‘any TB symptom’ respectively as the first screen, and CXR
as a second screening step for individuals with a positive
first screen. Due to limited data, the accuracy of CXR is
assumed to be the same in both algorithms, and reflects
‘any CXR abnormality’ in symptomatic persons [5,13].

Confirmatory tests
As the first confirmatory tests we consider SSM which is
widely available, or XP, whose availability is globally
expanding. Since neither of these tests is 100% sensitive,
clinical diagnosis, which implies a clinician’s judgment of
the patient’s symptoms and signs and/or chest radiog-
raphy findings, possibly re-assessed after a short course
of broad-spectrum antibiotics, is a follow-on in some pa-
tients with a negative first test (in absence of mycobac-
terial culture). For XP we took the predicted sensitivity
(89%) and specificity (99%) of a meta-analysis of XP as
an initial test for TB detection replacing microscopy
[15]. In sensitivity analyses we explored the predicted ra-
ther than the pooled 95% credible intervals for XP sensi-
tivity and specificity, as a better reflection of what may
happen in new situations. For the SSM sensitivity
(Table 2) we use 61% as the point estimate (PE), which
is both the unweighted average and median sensitivity of
30 studies included in two systematic reviews on sputum
smear microscopy and processing techniques [14,19]. In
absence of a prediction interval obtained by meta-
analysis we explored the range across included studies
(31-89%) in sensitivity analysis, to accommodate the
wide variation in patient characteristics, including HIV
status, age, and disease severity, on the referral level
where the test is done, on background epidemiology, on
sputum processing and staining techniques, and skills

Table 1 The 12 combinations of screening methods and
confirmatory tests

Number Screening method Confirmatory test

First Second
(if 1st positive)

First Second
(if 1st negative)

1 Prolonged cough* SSM CD§

2 Prolonged cough* XP CD§

3 Prolonged cough* CXR‡ SSM CD**

4 Prolonged cough* CXR‡ XP CD**

5 Any TB Symptom+ SSM CD§

6 Any TB Symptom+ XP CD§

7 Any TB Symptom+ SSM CD§

8 Any TB Symptom+ CXR‡ XP CD§

9 CXR abnormality
suggestive of TB

CXR‡ SSM CD§

10 CXR abnormality
suggestive of TB

XP CD§

11 Any CXR
abnormality

SSM CD§

12 Any CXR
abnormality

XP CD§

SSM = Sputum smear microscopy; XP = Xpert MTB/RIF; TB = tuberculosis;
CXR = chest X-ray.
CD = clinical diagnosis, which may in addition to clinical judgment include
antibiotic trial and/or CXR for TB abnormalities.
*Cough for 2-3 weeks or longer †Any one out of 4-7 symptoms suggestive
of TB.
§We assume that the proportion of persons who receive a clinical diagnosis
depends on the negative predictive value of the prior algorithm, as explained
in the Methods.
‡Any CXR abnormality.
**All persons with a negative first confirmatory test receive a clinical diagnosis.
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and diagnostic quality [14,19,20]. The specificity PE
(98%) is consistent with a number of reviews [14,19,20].
In clinical settings where mycobacterial cultures are not

part of the routine diagnostic work-up, all or most patients
who report with suggestive symptoms but have negative
smears are expected to be evaluated clinically. In an active
screening initiative we expect patients eligible for confirma-
tory testing to be less ill on average compared to patients
who seek care themselves. We therefore assume that only a
proportion of the persons with a positive screen but nega-
tive confirmatory test be further examined by clinical diag-
nosis [21], and that this proportion will depend on the

probability of TB in a person with a negative SSM or XP
result, i.e. the NPV at that point in the algorithm (Table 2),
except for algorithms 3 and 4 where we assume that 100%
of persons with prolonged cough and a CXR abnormality
and negative confirmatory tests are further evaluated clinic-
ally. In the primary analysis the sensitivity and specificity of
clinical diagnosis reflect settings where not all patients are
examined by CXR [8,16,17]. In sensitivity analysis we
explore the assumption about the proportion of pa-
tients receiving clinical evaluation (0-100%), and alter-
native parameter values for sensitivity and specificity
based on a study where all clinically evaluated patients

Figure 2 Outcomes of an example screening and diagnostic algorithm. Modified after Lonnroth IJTLD 2013. TB = tuberculosis, +ve = positive,
-ve = negative.

van’t Hoog et al. BMC Infectious Diseases 2014, 14:532 Page 5 of 12
http://www.biomedcentral.com/1471-2334/14/532



receive a diagnostic CXR and are considered a to have
TB if the CXR is highly consistent for TB [18].
The sensitivity and specificity of all screens and con-

firmatory tests are relative to sputum culture as the refer-
ence standard, and considered to be independent. Simple
decision trees were constructed in TreeAge software
(TreeAge Software, Inc, Williamstown MA, USA) and
model outputs were transferred to MS-Excel (Microsoft
Corp, Seattle WA, USA) for further analysis. Ethical ap-
proval was not sought, as only secondary data were used.
For each algorithm we calculated the number of TP, FP,

FN, and TN in categories A-F as described above, propor-
tion of true TB cases detected, the PPV, NPV, NNS, the
number of persons requiring confirmatory testing, and the
number of screening CXRs, sputum microscopy examina-
tions and XP tests required for different levels of TB
prevalence in the population.

Sensitivity analysis
In 10 scenarios (Table 3) we examine the effect of uncer-
tainty in the model parameters on case detection, NNS,

PPV, and resource requirements expressed as the number
of CXRs, SSM and XP tests that needs to be done, assum-
ing TB prevalence is 1%. We assume that if the sensitivity
of a screening or confirmatory test increases to the ex-
treme highest value of the uncertainty range, the specifi-
city reduces to the lowest end of the uncertainty range.
We also explore the effect of symptom screening using ac-
curacy estimates from studies in African populations with
high HIV prevalence versus Asian low HIV settings. Since
real life experience with XP is less compared to SSM, we
examine the effect if the specificity of smear microscopy
and XP were the same (98%) in practice [14,20,22].

Results
Sensitivity and NNS
If prolonged cough, which has low sensitivity, is either the
only screen or a first step followed by CXR, the proportion
of true TB cases detected is low: 22% if the confirmatory
test for screen-positives is SSM, and approximately 30% if
XP (Figure 3). The NNS to find a true TB case depends
on the sensitivity of the algorithm and increases with

Table 2 Model Parameters: sensitivity and specificity of screening methods and confirmatory tests

Screen Population (No. of studies)* Sensitivity [95% CI]† Specificity [95% CI]† Reference

Symptom screening

Prolonged Cough (2-3 weeks or longer) Community TB prevalence surveys (8) 0.351 [0.244; 0.457] 0.947 [0.925; 0.968] [5]

SSA-high HIV prevalence§ (4) 0.492 [0.389; 0.597] 0.923 [0.891; 0.956] [5]

Asia-low HIV prevalence§ (4) 0.247 [0.176; 0.317] 0.963 [0.947; 0.979] [5]

Any TB Symptom (out of 4-7 symptoms) Combined (8) 0.770 [0.680; 0.860] 0.677 [0.502; 0.851] [5]

SSA-high HIV prevalence§ (4) 0.842 [0.756; 0.927] 0.740 [0.531; 0.949] [5]

Asia-low HIV prevalence§ (4) 0.698 [0.579; 0.818] 0.606 [0.347; 0.866] [5]

Chest X-ray screening

Any CXR abnormality (3) 0.978 [0.951; 1.00] 0.754 [0.720; 0.788] [5]

CXR abnormality suggestive of TB (4) 0.868 [0.792; 0.945] 0.894 [0.867; 0.920] [5]

Chest X-ray screening as a 2nd screen

Any CXR abnormality (1) 0.90 [0.81; 0.96] 0.56 [0.54; 0.58] [5,13]

Confirmatory test

Sputum Smear microscopy (30) 0.61 [0.31; 0.89] 0.98 [0.93; 1.0] [14]

Xpert MTB/RIF Multi-sites (1) 0.89 [0.63; 0.97] 0.99 [0.90; 1.00] [15]

Clinical Diagnosis (PE), algorithm including
trial of broad spectrum antibiotics and/or
CXR and/or clinical judgment

Smear-negative presumptive TB patients
from India, Uganda, South Africa,
average of 3 sites, Lima

0.24 [0.10; 0.51]‡ 0.94 [0.79; 0.97]‡ [16,17]

Clinical Diagnosis (alternative) based on
CXR highly consistent for TB

(1) 0.49 [0.45; 0.53]‡ 0.90 [0.88; 0.92]‡ [18]

PE = point estimate; NPV = negative predictive value; SSA = Sub-Saharan Africa; TB = tuberculosis; CXR = chest X-ray.
*Number of studies included in the estimate.
†The values in between brackets reflect the 95% confidence interval, except for Xpert MTB/RIF the 95% prediction interval was used, and for SSM the range across
studies (see Methods section).
§the 4 SSA-high HIV prevalence studies are from Zimbabwe, Zambia, South Africa and Kenya. The Asia-low HIV studies are from Vietnam, Myanmar, India
and Cambodia.
‡An assumption is made that in an active screening program only a proportion of patients with a negative confirmatory SSM or Xpert MTB/RIF result receive
clinical diagnosis, and this proportion depends on the NPV (rounded to 2 decimals as follows: (1-NPV)*10 If NPV ≥ 99.5% then the proportion is 5%. This is
equivalent to multiplying the sensitivity parameter by (1-NPV)*10. The number of false-positive diagnoses is adjusted as follows: if S is the specificity parameter,
the proportion of false-positives is [(1-S)*((1-NPV)*10)]. In algorithms 3 and 4 all persons with prolonged cough and a CXR abnormality and negative confirmatory
tests are assumed to be further evaluated clinically.
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decreasing TB prevalence (Figure 4A). Of algorithms using
screening for prolonged cough the NNS is 3-4 times higher
compared to the NNS of the most sensitive algorithm and
exceeds 1000 if the TB prevalence is below 0.5%. The
highest case detection and lowest NNS is achieved if XP is
used for confirmatory testing, and screening is either by
CXR for any abnormality (87%) or TB abnormalities (77%),
or by screening for any TB symptom (69%).
Detailed information on the outcomes of the screening

and confirmatory testing is available in the Additional file 1:
Table S1. For each of the 12 algorithm the number of TP,
FP, TN, FN, PPV, NPV and the number of tests required for
an assumed prevalence in the population to be screened of
0.5, 1.0 and 2.0% are provided with and without clinical
diagnosis following a negative SSM or XP.

Specificity and PPV
The algorithms in which the specificity of the screening test
and/or the confirmatory test(s) is lowest result in more false
positive diagnoses and thus in a lower PPV, especially if the
TB prevalence is low and/or the sensitivity of the algorithm
is low (Figure 4B). If the TB prevalence is 0.5% only four
algorithms attain a PPV greater than 50% (which means
that the number of TP cases exceeds the number of FPs).

Table 3 Scenarios to examine the effect of uncertainty in
the model parameters

Variation in Scenario Reference

1. Accuracy of screening
tests (symptom, CXR)

a. High sensitivity,
low specificity*

[5]

b. Low sensitivity,
high specificity*

[5]

2. Accuracy of confirmatory
tests (SSM, XP)

a. High sensitivity,
low specificity*

[14,15,19,20]

b. Low sensitivity,
high specificity*

[14,15,19,20]

3. Specificity of SSM, XP Assume 98% specificity
for SSM and XP

[22]

4. Proportion of persons with
negative SSM or XP receiving
clinical diagnosis

a. 0%

b. 100%

5. Accuracy of clinical diagnosis Entirely based on CXR
diagnosis

[18]

6. Accuracy of screening tests in
different settings

a. Sub Saharan
Africa/high
HIV-population

[5]

b. Asia/low HIV
population

[5]

*set to the extremes of the ranges shown in Table 1.

Figure 3 TB cases detection and requirements for screening chest X-rays and confirmatory tests of each algorithm, assuming 1% TB
prevalence among the screened population. CXR = chest X-ray for screening; SSM = sputum smear microscopy; XP = Xpert MTB/RIF; TP = true
positive; 1 = first screen; 2 = second screen if the first screen is positive.
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Those are algorithms that use XP as the confirmatory
test, and screen with CXR for either any abnormality
or TB abnormalities, symptom screening for prolonged
cough, or sequential screening with any symptom
followed by CXR. The PPV of screening for any symp-
tom followed by SSM does not reach 50% even if the
TB prevalence is 2%.

Requirements in terms of diagnostic tests
Of the algorithms with high sensitivity, CXR screening for
TB abnormalities followed by XP requires 15 XP tests per

TB case detected when TB prevalence is 1% (Figure 3).
This is more efficient compared to any CXR abnormality
(29 XP tests), due to better specificity. When counting the
number of screening CXRs needed per one TP case, CXR
screening for TB abnormalities requires 129 CXRs and is
slightly less efficient compared to CXR screening for any
abnormality (115 CXRs), due to lower sensitivity. Screen-
ing for any TB symptom results in high requirements for
confirmatory tests per TP case (69 SSM or 48 XP). The
efficiency of symptom screening improves if CXR as a
second screen is added for symptom screen positives, but

A

B

Figure 4 Number needed to screen to find one true case of active TB and positive predictive value of each algorithm at different
levels of TB prevalence. Panel A: Number needed to screen (NNS) to find one true positive (TP) case; Panel B: Positive predictive value
(PPV). CXR = chest X-ray for screening; SSM = sputum smear microscopy; XP = Xpert MTB/RIF; 1 = first screen; 2 = second screen if first
is positive.
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adds the need for CXRs compared to symptom screening
alone. The number of tests per TP approximately doubles
if prevalence halves.

Sensitivity analyses
Uncertainty and setting-specific variation in the sensitiv-
ity of symptom screening, translates into considerable
variation in the NNS of algorithms with low sensitivity,
i.e. those screening with prolonged cough (Figure 5). If
the sensitivity of the cough screen is at the low end, the
NNS is double compared to sensitivity at the high end
of the range. For screening with any TB symptom the
PPV is more susceptible to uncertainty. Setting-specific
variation in the sensitivity and specificity of symptom
screening does not change the ranking of the NNS or
PPV of the 12 algorithms. The assumptions about
clinical diagnosis have little effect on the NNS. The PPV
of all algorithms drops if the proportion of persons
receiving clinical diagnosis after a negative confirmatory
test would increase or a clinical diagnostic algorithm
with higher sensitivity but lower specificity would be
applied (due to an increase in false positive diagnoses).
The largest increase in the number of confirmatory
tests required per TP case detected is caused by a

lower sensitivity of the confirmatory test (Additional
file 2: Table S2).

Discussion
This modeling study shows how algorithms that could
be considered for a TB screening initiative differ in the
proportion of TB cases detected, the NNS, the risk of
providing a TB diagnosis to individuals who do not have
TB, an indication of the number of tests that need to be
used to detect a true case of TB, and how those are
affected by the prevalence of TB in the screened popula-
tion and by variation in performance of screening and
diagnostic tests.

How could TB screening programs use this information
For a TB screening program in a specific setting, the
choice of screening and diagnostic methods will depend
on several considerations. The choice between symptom
and CXR screening may be driven by the availability, cost
and mobility of CXR equipment, but should be balanced
against the overall resource requirements for an active
screening initiative and the expected yield. The algorithm
composed of screening for prolonged cough followed
by smear microscopy requires the least resources for

A

B

Figure 5 Effect of uncertainty in the accuracy of screening and diagnostic tests and assumptions about clinical diagnosis on the
NNS and PPV, assuming 1% TB prevalence in the screened population. Panel A: Variation in the number needed to screen (NNS);
Panel B: Variation in the positive predictive value (PPV). The symbols represent the point estimates and the vertical bars the range due to uncertainty
in the model parameter, as specified in Table 2. The specific scenarios are listed in Table 3. CXR = chest X-ray for screening; SSM = sputum
smear microscopy; XP = Xpert MTB/RIF; 1 = first screen; 2 = second screen if first is positive. SSA = sub Saharan Africa.
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screening and confirmatory tests, but the low case detec-
tion, only 22% of the TB cases, results in a high NNS
which is inefficient. In severely resource constrained
settings this algorithm may nevertheless be chosen since a
low number of confirmatory tests is needed, it does not
require expensive equipment, and the costs of reaching
out to the screened population may be low in such
settings. A more sensitive symptom screen, any TB symp-
tom, increases the proportion of cases detected and thus
lowers the NNS, but creates a large number of persons
requiring confirmatory testing and a low PPV due to an
expected increase in FP diagnoses. The latter creates a
treatment burden for patients and the health service. An
additional disadvantage of symptom screening and espe-
cially prolonged cough, is the wide variation in accuracy
observed between studies [5], which was in part explained
by differences in region and population HIV-prevalence.
As a result the NNS in a specific setting may be approxi-
mately 50% higher or lower than the average that we used.
Less variation is expected from CXR screening.
In settings where the prevalence of TB is low, the NNS

is high for all algorithms, even for an algorithm with 100%
sensitivity, resulting in high costs of screening per TP TB
case found, and the PPV is low. Therefore in low preva-
lence settings great caution is needed and high specificity
is very important. Mechanisms to improve specificity
should be considered, for instance adding confirmatory
culture before TB treatment is initiated in patients with
absent or minimal symptoms, or XP may be used to con-
firm positive SSM. Target groups should be selected for
whom it is critically important to detect active TB, and/or
exclude active TB because of possible eligibility for treat-
ment of latent TB infection (LTBI), e.g. HIV-infected [23].
Under those conditions some overtreatment of active TB
may be more acceptable. In contrast, when the TB preva-
lence in the population to be screened is 2% or above, the
NNS is much lower and the PPV is higher for all algo-
rithms. Very high specificity is less crucial compared to
low prevalence settings. These clinical epidemiological
principles do not only guide the choice for an algorithm,
but also provide a key rationale to focus screening to high-
est risk groups where TB prevalence may even be above
2% like HIV-infected, contacts of infectious TB cases,
persons with silicosis, prisoners [24], and the elderly
population in some very-high TB burden countries in
Asia [25,26].
CXR screening becomes much more attractive when XP

is available. CXR for screening should ideally not be com-
bined with SSM for diagnosis because of an increase in
the NNS by approximately half, and the higher risk of false
positives, especially if among SSM negatives the CXR is
also used for a clinical diagnosis. Although CXR is good
for screening because of high sensitivity, it is not as good
for diagnosis since a CXR based clinical diagnosis has low

specificity [18]. CXR screening has additional benefits.
Persons with highly suggestive TB abnormalities can be
identified who are missed by bacteriological tests. These
persons are at increased risk of developing active TB in
the future and would benefit from follow-up and possibly
preventive treatment [27]. Second, the ability to detect
other diseases. These advantages only apply if the health
service has the capacity to provide follow-up of patients
with unclear TB outcomes or clinical services for other
identified conditions. A screening program should con-
sider all such possible outcomes and consequences, and
include those in informed consent to TB screening [4].
The cost and cost-effectiveness of an algorithm will be

an important consideration, which we do not address in
this study. CXR and XP are more costly tests compared to
symptom screening and SSM [28]. However, digital CXR
has very low running cost and is an attractive tool if the
technology is already available, or if the high start-up costs
could be covered under investments for general improve-
ments of diagnostic capacity of a health system. Cost for
screening program operations will be very setting specific.
Ultimately cost-effectiveness also depends on the effect
that different algorithms may have on transmission and at
which interval they should be applied to accelerate or
sustain reduced transmission. The development of a com-
bined transmission and cost-effectiveness model will be
important to compare screening and diagnostic strategies.
However, empirical data on the effect of screening or
active case finding on transmission are scarce [29]. Field
studies comparing the effectiveness and cost-effectiveness
of different algorithms and screening intervals are needed
to better inform decision makers and screening models.
We used a simple model to focus on the most important

concepts and show the expected variation from uncer-
tainty and variation in test accuracy, which has limitations.
The sensitivity of the confirmatory test are based on clin-
ical studies [30,31], and is generally lower in early case de-
tection, like in prevalence surveys [6,26,32]. We assumed
that the accuracy of screening and confirmatory tests are
independent, while those may correlate in practice. Also
the yield of screening may diminish if repeated at regular
intervals [33]. As the sensitivity analysis points out, con-
siderable variation in the NNS can be expected from vari-
ation in the sensitivity of the screening and confirmatory
tests. Variability depends on the population tested [14,32],
but for SSM, also on technique and skills in getting a good
sample, preparation, and reading. Quality assurance is
therefore important. The extent and accuracy of clinical
diagnosis, if applied in absence of mycobacterial culture
may also vary greatly. Possible effects on participation of
perceptions of the population to be screened are not
considered in this model. A screening program that only
identifies a small proportion of the TB cases may not be
as reassuring for persons with a negative test result.
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Screening tests with low specificity may either cause un-
necessary worry, or decrease motivation since one rarely
receives a positive confirmatory test.
Our analysis points to a number of monitoring and

evaluation questions. An assessment of the true pro-
portion of TB cases detected would be desirable, but
will often not be feasible. Instead an estimation of the
specificity of the screen, the NNS and PPV could be
obtained from routine monitoring data on participation in
the screening program, the numbers and proportions of
persons testing positive on screening and of TB cases
diagnosed, and by periodic retesting of the persons
diagnosed with TB with a more sensitive method (culture).
If these indicators are outside the expected range for the
algorithm used and presumed TB prevalence, more in-
depth evaluation may be needed. Future research should
address the need for empirical data and cost-effectiveness
studies, and also focus on the development of a better
screening test. Digital CXR has very low running costs
and automated reading may be an option in the future
[34,35]. However, a simple, more portable screening test
with greater and more consistent accuracy compared to
symptom screening could greatly enhance TB screening.
This analysis concerns screening scenarios, but has

relevance for diagnostic algorithms among people actively
seeking care with TB symptoms as well. CXR may be used
to triage patients for further bacteriological tests [36]. XP
as a replacement of SSM will not only increase sensitivity
and thus increase case detection, but also increase the PPV.

Conclusion
In conclusion, this study provides guidance on choice of
algorithms, keeping in mind that with currently available
means ‘the one ideal algorithm’ does not exist. Generally
an algorithm composed of CXR screening followed by
confirmatory testing with XP can achieve the lowest NNS
and highest PPV, and the validity is least amendable to
setting-specific variation. However resource requirements
for tests and equipment may be prohibitive in some
settings and a reason to opt for symptom screening and
SSM. To better inform disease control programs about
TB screening options we need empirical data to confirm
the modeled yield, cost-effectiveness studies, transmission
models and a better screening test.
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