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Abstract

Background: Longitudinal nationwide data on antimicrobial susceptibility in Proteus mirabilis from different sources
are rare. The effects of the revised Clinical and Laboratory Standards Institute (CLSI) 3-lactam breakpoints on
susceptibility rates and on detecting extended-spectrum B-lactamase (ESBL) and AmpC B-lactamase-producers in
this species are also seldom evaluated. The present study analyzed data from the Taiwan Surveillance of
Antimicrobial Resistance program to address these issues.

Methods: Isolates were collected biennially between 2002 and 2012 from 25 to 28 hospitals in Taiwan. Minimum
inhibitory concentrations (MIC) were determined by reference broth microdilution method. All isolates with aztreonam,
ceftazidime, or cefotaxime MIC = 2 mg/L were checked for the presence of ESBL by CLSI confirmatory test and subjected
to ESBL and AmpC B-lactamases gene detection by PCR. Univariate and multivariate analyses were performed.

Results: Between 2002 and 2012, a total of 1157 P. mirabilis were studied. Susceptibility to cefotaxime, ceftazidime,
and ciprofloxacin decreased significantly during the past decade, from 92.6% to 81.7%, 100% to 95.2%, and 80.1%
to 53.8%, respectively (P < 0.01). The revised CLSI breakpoints had significant impact on susceptibility to cefazolin
(2009 vs. current breakpoints, 71.9% vs. 0.9%) and imipenem (99.8% vs. 55.1%) (P < 0.001 for both). However, using
the 2014 cefazolin breakpoints for urinary tract infections, 81.2% of the urine isolates were susceptible.
Susceptibilities of isolates from different specimen types were mostly similar but outpatient isolates were more
susceptible than inpatient isolates. The overall prevalence of ESBL- and AmpC- producers was 8.2% and 4.7%,
respectively, but AmpC carriage increased significantly over the years (from 0 to 7.0%, P < 0.001). ESBL and AmpC
B-lactamase-producers were more likely to be found in elderly and ICU patients. The predominant ESBL and AmpC
B-lactamase genes were CTX-M- and CMY- types, respectively.

Conclusions: A significant decrease in susceptibility to 3rd-generation cephalosporins and ciprofloxacin occurred in
P. mirabilis from Taiwan in the past decade. The prevalence of ESBL remained stable but AmpC B3-lactamase-producing
P. mirabilis increased significantly. Cefotaxime was a better surrogate than ceftazidime for predicting the presence
of these B-lactamases. Continuous surveillance on antimicrobial resistance and associated resistance mechanisms
in P. mirabilis is warranted.
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Background

Proteus mirabilis belongs to the Enterobacteriaceae family
with the features of swarming motility and production of
urease to generate ammonia [1,2]. It can be found in
soil, water, and the intestinal tract of mammals, including
humans. In addition to being a leading cause of urinary
tract infections (UTI), P. mirabilis can cause respiratory
and wound infections, bacteremia, and other infections
[1,2]. Although P. mirabilis is usually not a common cause
of UTI among immunocompetent individuals, it is an
important pathogen among patients with complicated urin-
ary tract, urolithiasis, or long-term urinary catheterization
[3]. Patients with UTI caused by P. mirabilis usually have
alkaline pH urine due to the presence of ammonia resulting
in calcium and magnesium crystallization which could
in turn lead to obstruction of the lumen of indwelling
catheters [4].

P. mirabilis was susceptible to cephalosporins and
[-lactam/(-lactamase inhibitors. However, strains resistant
to pB-lactams mediated by acquired B-lactamases emerged
in 1990s [5]. Among these B-lactamases, plasmid-borne
extended-spectrum [-lactamases (ESBL) and AmpC
B-lactamases are most worrisome because they result
in resistance to nearly all penicillins and cephalosporins and
can spread among different species of Enterobacteriaceae
[6]. Several other studies have shown that ESBL and AmpC
B-lactamase-producing P. mirabilis isolates could lead
to clonal spread and then cause intra-hospital, regional,
and continent-wide outbreaks [7,8]. Treatment failure
and clinical mortality are also more likely to occur in
patients infected with ESBLs-producing P. mirabilis [9],
which has been attributed to inadequate empirical therapy.
The emergence and global spread of carbapenemase-
producing Enterobacteriaceae (CPE) in recent years,
especially isolates carrying genes encoding KPC (Klebsiella
pneumoniae carbapenemase) and NDM (New Delhi
metallo-B-lactamase) carbapenemases, have further
compromised treatment options and added to the crisis
of antimicrobial resistance [10,11]. However, recent
studies from different regions have found the preva-
lence of carbapenemase-producing P. mirabilis remained
low [12-14].

Studies from the United States, Canada, United
Kingdom, and other European countries revealed that
susceptibility of P. mirabilis isolated from different
sources can vary widely. For example, susceptibility to
B-lactam/p-lactamase inhibitors (ampicillin/sulbactam
or amoxicillin/clavulanate), ciprofloxacin, and third
generation cephalosporins (cefotaxime, ceftriaxone, or
ceftazidime) ranged 74 to 94%, 60 to 90%, and 90 to
99%, respectively, depending on patient population
and specimen type [12,15-18]. Therefore, surveillance
on the in vitro susceptibilities of P. mirabilis in each
region is clinically relevant and important.
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In addition, the Clinical and Laboratory Standards
Institute (CLSI) revised the interpretive criteria on several
B-lactams for Enterobacteriaceae in recent years. In 2010,
CLSI lowered the aztreonam and 3rd-generation cephalo-
sporin breakpoints for Enterobacteriaceae to facilitate the
identification of isolates expressing ESBLs and/or AmpC
B-lactamases. Breakpoints for different carbapenems were
updated in June 2010 and in 2012. The most recent re-
vision for cefazolin breakpoints occurred in 2011 and
in 2014 (for isolates from urine only). Cefepime breakpoints
were also revised in 2014. These changes are summarized
in the 2014 CLSI M100-S24 document [19]. Of noteworthy
also is that Proteus spp. can have naturally higher imi-
penem MICs [19,20]. Therefore, the new CLSI carba-
penem breakpoints can have significant effect on the
rate of imipenem susceptibility in P. mirabilis. To date,
the impact of these changes on the susceptibilities to
3rd-generation cephalosporins and the correlation with car-
riage of ESBL and/or AmpC [-lactamases, and the effect
on cefazolin and carbapenem susceptibility in P. mirabilis
have seldom been discussed [21].

In Taiwan, P. mirabilis remains an important pathogen
causing UTI among patients with urolithiasis and urinary
catheters in both community and healthcare settings
[22]. However, national data on the susceptibilities of
P. mirabilis from different sources are limited. The
Taiwan Surveillance of Antimicrobial Resistance (TSAR) is
a biennial nationwide program conducted at the National
Health Research Institutes (NHRI) [23]. The present study
analyzed the TSAR data from period III (2002) to VIII
(2012) to address the above issues.

Methods

Isolate collection

P. mirabilis isolates were collected as part of the TSAR
program. Isolates were collected biennially between 2002
and 2012 (corresponding to TSAR III — VIII). For TSAR
III to VII, isolates were collected from the same 26 hospi-
tals (11 medical centers and 15 regional hospitals) except
in 2008, when one hospital did not participate. In TSAR
VIII (2012), isolates were collected from 25 of these 26
hospitals and two additional hospitals. These hospitals
are located in the four geographic regions of Taiwan
and all are general hospitals (Figure 1). The isolates
were collected between July and September during the
collection year and the collection process has been de-
scribed previously [23]. Isolates were collected sequentially
without specifying species to be collected. All isolates
were stored at-70°C in bead-containing Microbank
cryovials (PRO-LAB Diagnostics, Austin, TX, USA)
(for 2002 to 2006) or glycerol (20%) containing trypticase
soy broth (for 2008 to 2012). The bacterial isolates
were recovered from clinical samples taken as part of
standard care. The study was approved by the Research
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Figure 1 Distribution of hospitals that participated in the Taiwan
Surveillance of Antimicrobial Resistance (TSAR) program from 2002
(TSAR Ill) to 2012 (TSAR VIII). The proximate locations of the hospitals
are shown in each region (N, north; C, central; S, South; E, East). Taiwan is
a mountainous island and the majority of the people live in the most
densely populated western part (north, central and south regions)
while the eastern part is the least populated region. Hospital type:
star, medical center; triangle, regional hospital; circle, local hospital,
which participated in TSAR VIII (2012) only.

Ethics Committee of National Health Research Institutes
(NHRI) (EC960205 and EC1010602-E).

Isolate identification

Isolates reported as P. mirabilis by hospitals were sub-
cultured to blood agar and MacConkey agar plates for
purity check and to confirm species identification at
NHRI. Species identification was based on colony
morphology and conventional biochemical reactions.
For isolates with colony morphology or any biochem-
ical reactions not typical of P. mirabilis, either Vitek I
(prior to 2008) or Vitek II (2008 to 2012) GN cards
were used (bioMérieux, Marcy I'Etoile, France).

Antimicrobial susceptibility testing (AST)

Minimum inhibitory concentrations (MICs) were deter-
mined by the broth microdilution method following the
guidelines of the manufacturer and Clinical and Laboratory
Standards Institute (CLSI) [24]. Sensititre custom-designed
plates were used from 2002 to 2008, and the standard
GNX2F plates were used in 2010 and 2012 [ThermoFisher
Scientific (formerly Trek Diagnostics), East Grinstead, UK].
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All isolates were subcultured twice on sheep blood
agar plates from -70°C prior to AST. Quality control
was performed on each day of test with Escherichia coli
ATCC 25922, E. coli ATCC 35218, and Pseudomonas
aeruginosa ATCC 27853. The agents below were tested on
isolates from all years: cefotaxime, ceftazidime, cefepime,
aztreonam, imipenem, amikacin, gentamicin, ciprofloxacin,
and trimethoprim/sulfamethoxazole (SXT). The follow-
ing agents were tested on isolates from 2002 to 2008:
ampicillin, amoxicillin/clavulanate, piperacillin, cefazolin,
cefuroxime, cefoxitin; nitrofurantoin. In addition, erta-
penem and meropenem were tested on isolates from
2010 and 2012. Interpretive criteria are based on the 2014
CLSI breakpoints. The impact of CLSI breakpoint revisions
on susceptibilities to aztreonam, cefazolin, cefepime, cefo-
taxime, ceftazidime, ertapenem, imipenem, and merope-
nem are also compared using the current breakpoints and
those of 2009, the year prior to different revisions [25].

Determination of carriage of ESBL and/or AmpC
B-lactamases genes

All isolates with aztreonam, ceftazidime, or cefotaxime
MIC = 2 mg/L were tested for the presence of ESBL by
CLSI confirmatory test using cefotaxime and ceftazidime
with and without clavulanic acid [25]. These isolates were
also subjected to ESBL and/or AmpC p-lactamases gene
detection by PCR. For each tested isolate, DNA extraction
was performed using the following procedures. Three to
five colonies were lightly picked from fresh overnight cul-
ture plate to suspend in 150 ul AE buffer. The suspension
was heated at 95°C for 15 min then centrifuged at 1000 g
for 10 min to remove cellular debris, after which 100 pl of
the supernatant was transferred to a new vial. The DNA
preparation was stored at —20°C and used as template for
subsequent amplifications. Multiplex PCR was used to de-
tect the relevant genes following previously described
primers and protocols [26,27].

Data analysis

Susceptibility interpretation analysis was made using the
WHONET software [28]. Duplicate isolates were excluded
from analysis. The chi-square test was used for trend ana-
lysis on susceptibility to different agents over the years.
Significance of differences in rates of susceptibility was
tested by the 2 test or Fisher’s exact test (if the number
was less than 10). The variable tested included p-lactam
agents having old and revised CLSI breakpoints, and
on isolates from different specimen types (blood, urine,
pus/abscess, sputum) and patient locations [inpatients:
intensive care units (ICU) or non-ICU, and outpatients].
Multivariable logistic regression analysis was performed to
assess the variables (including study year, specimen type,
patient age group, and patient location) among ESBL
or AmpC f-lactamase -producers vs. -non-producers.
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All analyses were performed using SAS 9.2 (SAS Institute,
Cary, NC, USA). A 2-tailed P value less than 0.05 was
considered statistically significant.

Results

Isolates

A total of 1,157 P. mirabilis isolates were collected by
the TSAR program with 176, 186, 205, 219, 185, and 186
isolates from 2002, 2004, 2006, 2008, 2010, and 2012, re-
spectively. The most common specimen type was urine,
accounting for 49.4% (571), followed by pus/abscess
(233, 20.1%), blood (158, 13.7%), sputum (133, 11.5%),
and others (62, 5.4%). The age of the source patients
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was known in 1110 patients. The mean age of the patients
was 62.8 +24.7 years, with 9.2% being pediatric patients
(<18 years), 29.6% being adult (19-64 years), and 61.3%
being elderly (=65 years). Most isolates were from inpa-
tients (65.2%; 53.6% in general ward, and 11.6% in ICU).

Susceptibility to different antimicrobial agents over the
years and the impact of different CLSI breakpoints

The susceptibilities of the 1157 isolates to various antibiotics
by year are presented in Table 1. Significant decrease
in susceptibilities over the years (from 2002 to 2012) to
cefotaxime (from 92.6% to 81.7%), ceftazidime (from 100%
to 95.2%), and ciprofloxacin (from 80.1% to 53.8%) occurred.

Table 1 Antimicrobial susceptibilities (%) of Proteus mirabilis by study year, 2002-2012

Antimicrobial agents® 2002 2004 2006 2008 2010 2012 P° total
(n=176) (n=186) (n=205) (n=219) (n=185) (n=186) (n=1157)
B-lactams:
Amoxicillin/CA® 914 74.7 86.8 83.6 NT NT 84.6
Ampicillin 333 323 317 393 NT NT 343
Aztreonam_2009 994 99.5 985 100 100 99.5 99.5
Aztreonam 994 98.9 985 100 100 98.9 99.3
Cefazolin_2009 736 64.0 74.2 753 NT NT 71.9¢
Cefazolin 0.6 0 24 0.5 NT NT 0.9
Cefuroxime 92.5 833 859 88.6 NT NT 87.5
Cefotaxime_2009 95.5 882 96.6 94.9 984 973 95.2
Cefotaxime 926 844 86.8 885 80 81.7 0.003 85.7
Ceftazidime_2009 100 99.5 99 982 97.8 95.7 0.001 984
Ceftazidime 100 984 98.1 964 95.6 95.2 0.001 97.2
Cefoxitin 96 94.1 94.6 95 NT NT 94.9
Cefepime 97.2 914 97.6 99.1 100 98.9 97.4°
Ertapenem_2009 NT NT NT NT 100 100 100
Ertapenem NT NT NT NT 100 99.5 99.7
Imipenem_2009 100 100 99.5 99.5 100 100 99.8°
Imipenem 34.7 16.1 56.6 434 924 67.2 51.7
Meropenem NT NT NT NT 100 100 100
Piperacillin 489 44.6 376 433 NT NT 434
Non B-lactams:
Amikacin 926 88.2 89.8 904 90.3 88.7 90
Gentamicin 59.1 60.8 54.2 62.1 55.1 543 57.7
Ciprofloxacin 80.1 703 68.3 69.9 703 53.8 < 0.001 68.7
TMP/SMX (SXT)© 358 333 298 37 36.8 317 34
ESBL prevalence 5.1 102 10.7 6.9 54 108 82
AmpC prevalence 0 38 29 50 9.2 7.0 < 0.001 4.7

Susceptibility results are based on the current CLSI breakpoints [19]. For agents with breakpoint revision in recent years, results of the 2009 CLSI criteria are also

shown for comparison [25].
PChi-square for trends. Only statistically significant results are shown.

“Amox/CA, Amoxacillin/clavulanic acid; TMP/SMX (SXT), trimethoprim/sulfamethoxazole.
9Italicized, significant difference (P < 0.001) in susceptibility rates using old and revised breakpoints.
Cefepime results include 3.5 % (41 isolates) in the SDD (susceptible dose dependent) category.
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The revised CLSI breakpoints impacted significantly (overall
susceptibility 2009 vs. current, P <0.001) on susceptibilities
to cefazolin (71.9% vs. 0.9%), cefotaxime (95.2% vs. 85.7%),
and imipenem (99.8% vs. 55.1%). The MIC distribution of
cefazolin and imipenem are shown in Figure 2 to illustrate
how the breakpoint change affected the susceptibility rate.
Using the 2009 vs. current breakpoints, 9% vs. 52.2% and
19.1% vs. 46.9% of the isolates had cefazolin MIC in the
intermediate (4 mg/L) and resistant (> = 8 mg/L) range, re-
spectively. For imipenem, the revised MIC breakpoints re-
sulted in 35.6% and 12.7% of the isolates in the intermediate
(2 mg/L) and resistant (> =4 mg/L) category, respectively.
The revised breakpoints did not have significant effect on
the susceptibility to ceftazidime (98.4 vs. 97.2%), aztreonam
(99.5 vs. 99.3%), ertapenem (100 vs. 99.7%), and meropenem
(all 100%) (Table 1).

Susceptibility of isolates from different sources

Some variations in rates of susceptibility to individual
agents existed for isolates from different specimen types
and patient locations (Table 2). By specimen types, isolates
recovered from sputum had significantly lower susceptibil-
ity to cefazolin (by CLSI 2009 criteria), piperacillin, and tri-
methoprim/sulfamethoxazole compared to other specimen
types. For urine isolates, susceptibility to cefazolin differed
significantly using the CLSI 2009 and 2014 updated
UTI criteria (81.2 vs. 74.3%, P =0.016) (Table 2). Iso-
lates from outpatients had significantly higher rates of
susceptibility to ampicillin, amoxicillin/clavulanate, cefa-
zolin (by CLSI 2009 criteria), cefuroxime, cefotaxime,
ciprofloxacin, gentamicin, and piperacillin.
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Prevalence of ESBL and AmpC f-lactamases genes

There were 172 isolates with ESBL phenotype (aztreonam,
ceftazidime, and/or cefotaxime MICs>2 mg/L). Among
them, 95 carried ESBL genes and 54 carried AmpC genes
including 7 that carried both ESBL and AmpC genes. For
the isolates carrying ESBL genes, 92 carried CTX-M-type
genes, two carried SHV-type genes, and one carried both
SHV and CTX-M genes. For the isolates carrying AmpC
genes, 48 carried CMY-type genes, and 6 carried DHA-type
genes. By Chi-square for trends, the prevalence of ESBL
did not increase significantly during the study period
(5.1 — 10.8%, P =0.607; Table 1). However, the prevalence
of AmpC [-lactamases gene carriage increased significantly
(from 0 to 7.0%, P <0.001; Table 1).

Susceptibilities of isolates carrying ESBL and AmpC
B-lactamases genes

Using the current CLSI breakpoints, none of 142 isolates
with either ESBL or AmpC gene was susceptible to cefotax-
ime [sensitivity, 100%; specificity, 97.5%; positive predictive
value (PPV), 86.1%; negative predictive value (NPV), 100%].
However, 79.6% of the 142 isolates were susceptible to
ceftazidime (sensitivity, 20.4%; specificity, 99.7%; PPV,
68.8%; NPV, 90.0%) and 95.8% were susceptible to az-
treonam (sensitivity, 4.2%; specificity, 99.5%; PPV, 75%;
NPV, 88.2%). Compared to non-ESBL phenotype and
ESBL- and AmpC- negative isolates, ESBL and AmpC
B-lactamase-producing isolates had significantly lower
rates of susceptibility to amikacin (28.4% - 57.1% vs. 97.8%),
cefotaxime (0 vs. 99.7%), and ciprofloxacin (6.8% - 42.9%
vs. 75.9%) (Table 3). Of note, near 40% of the ESBL positive
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Figure 2 MIC distributions of cefazolin and imipenem in Proteus mirabilis. Data for cefazolin and imipenem are from 786 and 1157 isolates,
respectively (cefazolin was not tested in 2010 and 2012) in the Taiwan Surveillance of Antimicrobial Resistance (TSAR) 2002 to 2012 program. The
susceptible, intermediate, and resistant breakpoints (2009 vs. current) are < = 8, 16, and > =32 vs. <= 2, 4, and > =8 mg/L for cefazolin; and < =4, 8,
and > =16 vs. <=1, 2, and > =4 mg/L for imipenem. Numbers on top of the bars represent % of isolates with that MIC value.
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Table 2 Antimicrobial susceptibilities of Proteus mirabilis by specimen types and patient locations

Antimicrobial agents® Specimen types® Patient locations
Urine Pus/abscess Blood Sputum ICU Non-ICU Outpatients
(n=571) (n=233) (n=158) (n=133) (n=134) (n=618) (n=401)

B-lactams:
Amoxicillin/CA® 832 87.1 889 76.9 72.3% 839 889
Ampicillin 33.1 36.2 444 253 330 31.7 40.2
Cefazolin_2009 743 736 778 506 585 69.2 81.6
Cefazolin 1.2 12 0 0 1.1 0.7 1.2
Cefazolin_UTI® 81.2 - - - 64.7 79.5 86.5
Cefuroxime 86.9 914 90 80.2 78.7 86.9 92.0
Cefotaxime 856 89.2 84.8 80.3 80.6 84.6 89.3
Ceftazidime 98.1 979 95.6 94.9 96.3 97.2 97.5
Cefoxitin 94.1 96.9 944 94.5 91.5 95.1 96.2
Cefepime’ 97.0 983 994 95.6 95.5 97.1 98.5
Imipenem_2009 100 100 100 100 99.3 100 100
Imipenem 34.7 16.1 56.6 438 53.0 50.2 538
Piperacillin 414 512 478 29.7 415 38.2 527

Non B-lactams:
Amikacin 90.5 93.6 87.3 84.7 85.1 89.8 92
Gentamicin 59.5 63.5 589 358 522 539 65.8
Ciprofloxacin 69.2 70.8 67.1 64.2 62.7 66.5 74.6
TMP/SMX (SXT)" 33.1 403 34.8 24.8 351 319 374

Susceptibility results are based on the current CLSI breakpoints [19]. For cefazolin and imipenem, results of the 2009 CLSI criteria are also shown for comparison
[25]. Other agents with overall susceptibility >99% (aztreonam, ertapenem, meropenem) are not shown.

PData on miscellaneous other specimen types (n = 63) are not shown.

“Amox/CA, Amoxacillin/clavulanic acid; TMP/SMX (SXT), trimethoprim/sulfamethoxazole.

9italicized, significant difference in susceptibility rate compared to other subgroups.

€Result of urine isolates are shown using the 2014 UTI breakpoints [19].

fCefepime results include SDD (susceptible dose dependent) category.

Table 3 Susceptibilities to key agents among the Proteus mirabilis isolates with and without ESBL or AmpC
B-lactamases genes

Antimicrobial agent® Susceptibility (%)

ESBL(+)/AmpC(+) ESBL(+)/AmpC(-) ESBL(-)/AmpC(+) Non-ESBL phenotype & ESBL(-)/AmpC(-)

(n=7) (n=88) (n=47) (n=1015)

Amikacin 57.1 284 404 97.8
Aztreonam 100 94.3 979 99.8
Cefepime (S/SDD)° 42.85/42.85 29.5/386 91.5/64 99.9/0.1
Cefotaxime 0 0 0 99.7
Ceftazidime 714 94.3 532 99.7
Ciprofloxacin 429 6.8 340 759
Ertapenem 100 (n=4) 100 (n=26) 100 (n=26) 99.7 (n=315)
Imipenem_2009 100 100 100 99.9
Imipenem 429 455 66.0 51.7

Susceptibility results are based on the current CLSI breakpoints [19]. For imipenem, results of the 2009 CLSI criteria are also shown for comparison [25]. All were
susceptible to meropenem.
PCefepime results are shown in susceptible and SDD (susceptible dose dependent) categories.
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isolates had cefepime MIC in the susceptible dose dependent
(SDD) range compared with 6.4% of the AmpC-positive
only isolates (Table 3).

Factors associated with ESBL and AmpC f-lactamases
gene carriage

Factors associated with carriage of ESBL included age and
patient location using univariate analysis (Table 4). By
multivariate analysis, age [elderly vs. adult patients; odds
ratio (OR), 3.85; 95% confidence interval (95% C.IL),
2.02-7.33; P <0.001] and patient location (ICU vs. out-
patients; OR, 1.99; 95% C.I., 1.04-3.84; P =0.039)
remained independent factors associated ESBL genes
carriage. Age (elderly vs. adult patients; OR, 2.22; 95% C.L,
1.06-4.62; P = 0.034) was also a sole factor significantly
associated with AmpC p-lactamase gene carriage by
both univariate and multivariate analyses.

Discussion

This multicenter longitudinal surveillance revealed signifi-
cant decreased susceptibility to cefotaxime, ceftazidime,
and ciprofloxacin occurred in P. mirabilis from Taiwan in
the past decade. In addition, compared to recent reports
from the United States, Canada, and United Kingdom, our
results showed that P. mirabilis in Taiwan have lower rates
of susceptibility to cefotaxime (85.7% vs. > 97% in US,
Canada, and UK) and gentamicin (57.7% vs. > 90%)

Page 7 of 10

[12,15-17]. Susceptibility to ciprofloxacin was also
much lower than rates found in the United States and
Canada (68.7% vs. > 80%) [16,17].

The lower rate of cefotaxime-susceptibility in our isolates
might be due to a higher prevalence of ESBL- and/or
AmpC B-lactamase- producers. Our overall 8.2% ESBL
rate is higher than the <5% reported on P. mirabilis
from different sources in the United States [15,16,29]. In
contrast to ESBL-producers, data on changes in AmpC
prevalence in P. mirabilis are scarce. The increase of AmpC
B-lactamase-producers over the years observed in the
present study may be due to clonal spread and horizon-
tal gene transfer. The lower and decreased susceptibility
to ciprofloxacin over the study periods might be due to
increased consumption of fluoroquinolones in Taiwan
in recent years [30].

Although the prevalence of ESBL-producers remained
stable, AmpC p-lactamase-producers increased signifi-
cantly over the study years. Whether this phenomenon
was due to clonal spread or horizontal gene transfer re-
quires further study. Most ESBL genes were CTX-M types
(94.8%). The predominant AmpC B-lactamases genes were
CMY-types (88.9%), with the rest being DHA-type. Studies
from Taiwan on other species of Enterobacteriaceae have
found CTX-M-type ESBL and CMY-type and DHA-type
AmpC B-lactamases to be prevalent, including Escherichia
coli, Klebsiella pneumoniae, and Enterobacter spp. [14]. Of

Table 4 Univariate analysis for factors associated with carriage of ESBL and AmpC B-lactamases genes in Proteus mirabilis

Variables ESBL AmpC B-lactamases
Odds ratio 95% confidence interval P Odds ratio 95% confidence interval P
Lower Upper Lower Upper
Study year (using TSAR VIII [2012] as baseline)?
TSAR 1l (2002) 045 0.20 1.01 0.053 - - - -
TSAR IV (2004) 0.94 049 1.83 0.866 0.52 020 1.34 0.174
TSAR V (2006) 0.99 0.53 1.89 0.995 040 0.15 1.08 0.070
TSAR VI (2008) 0.61 0.30 1.23 0.167 0.70 0.31 1.61 0406
TSAR VI (2010) 047 022 1.04 0.064 135 063 286 0438
Age groups (using adult as baseline)®
Pediatric patients 029 0.04 224 0.233 1.07 0.29 4.05 0916
Elderly patients 401 2.11 763 <0.001 222 1.06 4.62 0.034
Specimen types (using blood as baseline)
Urine 0.90 048 1.69 0.745 0.89 040 2.02 0.788
Sputum 0.56 025 1.24 0.153 0.75 028 2.00 0.569
Pus/abscess 1.56 0.74 3.26 0.241 148 0.57 3.85 0426
others 097 033 283 0.956 033 0.04 2.69 0.300
Patients’ location (using outpatient as baseline)
Non-ICU 246 1.29 4.70 0.006 1.07 041 277 0.890
ICU 2.23 0.99 498 0.051 1.21 0.66 2.21 0.545

*There were no AmpC B-lactamase gene positive isolates in TSAR Il (2002).

PDefinition of age groups for pediatric, adult, and elderly patients was <= 18, 19-64, and > =65 year olds, respectively.
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note, there was only one isolate with non-susceptibility to
ertapenem (MIC=1 mg/L). Therefore, carbapenemases
do not currently appear to be prevalent in P. mirabilis
in Taiwan.

Our results also showed that the revised CLSI break-
points have significant impact on susceptibility to cefazolin
(2009 vs. current breakpoints, 71.9% vs. 0.9%), cefotaxime
(95.2% vs. 85.7%), and imipenem (99.8% vs. 51.8%) in
P. mirabilis (P <0.001). The marked decrease in sus-
ceptibility to cefazolin is due in part to a large number
(52.2%) of isolates falling into the immediate category
(MIC 4 mg/L). A study from Canada also showed similar
MIC distribution in P. mirabilis, with 4.2% and 63.6%
of isolates in the susceptible and intermediate category,
respectively [17]. However, using the 2014 UTI inter-
pretive criteria for cefazolin, 81.2% of the urine isolates
in our study were susceptible. This information can be
helpful in therapy selection for uncomplicated UTIs.

The large difference in imipenem susceptibility when using
different breakpoints (2009 vs. current, 99.8% vs. 51.8%)
is because of the high percentages of P. mirabilis isolates
having imipenem MICs of either 2 or 4 mg/L, which were
considered susceptible by the old criteria but intermediate
and resistant, respectively, by the new criteria. It is well
known that P. mirabilis can present with higher MICs
against imipenem compared to other carbapenem agents
[19]. In fact, among the 373 P. mirabilis isolates that had
ertapenem, imipenem, and meropenem tested in our
study, 76 had imipenem MIC of either 2 or 4 mg/L. These
76 isolates all had meropenem MIC<= 1 mg/L, 75 of
which had ertapenem MIC < = 0.25 mg/L and only one
isolate had ertapenem MIC 1 mg/L (data not shown).
Therefore, applying the revised CLSI criteria would result
in significantly fewer carbapenem-susceptible P. mirabilis
being reported. Similar results have been found on
P. mirabilis isolated from ICUs in Taiwan [21]. In the
European Committee on Antimicrobial Susceptibility
Testing MIC distribution database, 63.8% of the tested
P. mirabilis (n = 15852) had an imipenem MIC < = 1 mg/L,
yet 97.8% had < = 4 mg/L [31]. In two recent studies using
the revised breakpoints, low rates of susceptibility to imipe-
nem in P. mirabilis (9% and 26.5%) were noted [15,16]. It
has been reported that susceptibility of P. mirabilis to
carbapenems should be determined by ertapenem,
meropenem, or doripenem [21,32]. Our study echoed
this suggestion.

CLSI lowered the susceptibility breakpoints of
Enterobacteriaceae, including P. mirabilis, for 3rd-
generation cephalosporins in 2010 to facilitate the
identification of isolates having ESBLs and/or AmpC
[B-lactamases [33]. Using the revised breakpoints, none of
the ESBL and/or AmpC positive isolates was susceptible
to cefotaxime, yet 53.2% to 94.3% remained susceptible to
ceftazidime. Therefore cefotaxime is a better predictor for

Page 8 of 10

ESBLs and/or AmpC p-lactamase-producers than cef-
tazidime in terms of sensitivity (100% vs. 20.4%) and
PPV (86.1% vs. 68.8%). This echoed the findings of prior
studies on other species of Enterobacteriaceae [34,35). The
higher sensitivity and PPV of cefotaxime reflects the pres-
ence of CTX-M since it hydrolyzes cefotaxime more effi-
ciently than ceftazidime [36]. Of interest also is that using
the 2014 revised cefepime breakpoints, around 40% of the
ESBL-producers had cefepime MIC in the susceptible dose
dependent range, indicating that higher dosing regimens
are needed if cefepime was used for these isolates [19].

Independent factors associated with the presence of ESBL
genes were age (elderly patients) and location (ICU) of
source patients. The only independent factor associated
with the presence of AmpC [-lactamase genes was age
(elderly patients) of source patients. Both of these two
factors implied higher prior antibiotic use and/or more
broad-spectrum antibiotic exposure, which in turn can
result in acquisition of drug-resistance genes.

One limitation of the present study is that isolates
were collected biennially during a three months period.
However, our isolates were from 28 hospitals located in
all four regions of Taiwan, 25 of which participated in all
6 rounds of TSAR between 2002 and 2012. These 28
hospitals included 12 medical centers, 15 regional hospitals,
and one local hospital. Therefore, the results presented here
are a representation of the total number of P. mirabilis
in Taiwan.

Conclusion

This multicenter surveillance revealed decreased suscep-
tibility of P. mirabilis in Taiwan to some broad spectrum
antibiotics, including 3rd-generation cephalosporins and
ciprofloxacin, in the past decade. The prevalence of AmpC
[-lactamase-producing P. mirabilis also increased signifi-
cantly. Patient age and location were factors independ-
ently associated with the presence of ESBL and/or AmpC
[-lactamase-producers. Cefotaxime was a better surrogate
than ceftazidime for predicting the presence of ESBL
and/or AmpC pB-lactamases. Continuous surveillance
on antimicrobial resistance and associated resistance
mechanisms in P. mirabilis is warranted.
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