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Abstract

Background: Both high and low pathogenic subtype A avian influenza remain ongoing threats to the commercial
poultry industry globally. The emergence of a novel low pathogenic H7N9 lineage in China presents itself as a new
concern to both human and animal health and may necessitate additional surveillance in commercial poultry
operations in affected regions.

Methods: Sampling data was simulated using a mechanistic model of H7N9 influenza transmission within
commercial poultry barns together with a stochastic observation process. Parameters were estimated using maximum
likelihood. We assessed the probability of detecting an outbreak at time of slaughter using both real-time polymerase
chain reaction (rt-PCR) and a hemagglutinin inhibition assay (HI assay) before considering more intense sampling prior
to slaughter. The day of virus introduction and Ry were estimated jointly from weekly flock sampling data. For scenarios
where Ry was known, we estimated the day of virus introduction into a barn under different sampling frequencies.

Results: If birds were tested at time of slaughter, there was a higher probability of detecting evidence of an outbreak
using an HI assay compared to rt-PCR, except when the virus was introduced <2 weeks before time of slaughter. Prior
to the initial detection of infection Nsgmpe = 50 (1%) of birds were sampled on a weekly basis once, but after infection
was detected, Ngmpie = 2000 birds (40%) were sampled to estimate both parameters. We accurately estimated the
day of virus introduction in isolation with weekly and 2-weekly sampling.

Conclusions: A strong sampling effort would be required to infer both the day of virus introduction and Ry. Such a
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sampling effort would not be required to estimate the day of virus introduction alone once Ry was known, and
sampling Nsgmple = 50 of birds in the flock on a weekly or 2 weekly basis would be sufficient.

J

Background

Outbreaks of avian influenza (AI) remain an ongoing
threat to the commercial poultry industry globally. Such
outbreaks can result in substantial economic losses, due
to the cost of implementing control measures and the
financial loss associated with culling infected flocks [1]. In
the Netherlands a highly pathogenic AI (HPAI) outbreak
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in 2003 led to the culling of 30 million animals result-
ing in direct costs of 250 million euros [2]. In the United
States (US) outbreaks of low pathogenic Al (LPAI), once
detected can also cost millions of dollars to control and
contain [3-5].

Birds infected with LPAI subtypes (e.g. HON2, H6N2,
H7N9) often present with few or no symptoms, mak-
ing detection of LPAI particularly challenging. Although
LPAI does not present itself as a serious concern to ani-
mal health, LPAI subtypes H5 and H7 have been shown to
evolve by mutation into highly pathogenic avian influenza
(HPAI) [6-8]. Therefore higher numbers of LPAI cases

© 2014 Pinsent et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication

waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise

stated.



Pinsent et al. BMC Infectious Diseases 2014, 14:427
http://www.biomedcentral.com/1471-2334/14/427

increase the chance that mutations associated with HPAI
will arise. Whilst outbreaks of Al in commercial poultry
production systems in the developed world are infrequent,
an average of two to three cases of H5/H7 are reported in
the US annually, in addition to other LPAI subtypes, hence
Al outbreaks remain an on-going threat to the commercial
poultry production industry.

The emergence of a novel H7N9 LPAI subtype in China
[9] presents itself as a serious concern for human health in
addition to the risks to the commercial poultry industry.
Over 400 human infections have been reported in China,
as of June 2014 [10] with a case fatality ratio upon admis-
sion to hospital for humans estimated to be 32-36% [11,12]
for the first wave of infections, with estimates from the
second wave also within this range [13]. However, infected
birds are not reported to have exhibited symptoms [14].
The continuous infection events (spill-over) from birds
to humans increase the chance that reassortment with
human endemic viruses will occur, or that human adap-
tation mutations will become fixed. Since the detection
of this virus a number of subsequent reassortment events
have been reported [15,16], suggesting that this novel lin-
eage may display a high propensity to reassort. Therefore,
identification and control of H7N9 infection within the
commercial poultry sector is of paramount importance
for human and animal health.

There are currently believed to be at least 17 billion
commercial chickens worldwide [17], providing a very
large susceptible population for AI subtypes to circu-
late in. Therefore regular and long term surveillance is
strongly encouraged and is the most effective way of con-
trolling and identifying Al in poultry [18]. One important
aspect of this control policy is the systematic surveillance
and diagnosis of infection [19]. Two tests are commonly
used to identify whether birds have been infected: real-
time polymerase chain reaction (rt-PCR) [20] and the
hemagglutinin inhibition assay (HI). rt-PCR identifies the
causative agent of infection and detects current infection
by detecting the presence of viral RNA. HI assays test
for the presence of antibodies to the hemagglutinin (HA)
antigen [21], and hence detect evidence of past infection.

It is unfeasible to test all birds within a barn on a daily
basis; therefore optimal sampling strategies need to be
considered to detect evidence of a LPAI outbreak and infer
parameters of epidemiological interest. Mechanistic mod-
els can be used to successfully infer epidemiological events
of interest [5], and thus improve surveillance and enable
effective response strategies in the event of an outbreak.
Models can be used to infer important events such as the
day of the virus introduction in an outbreak setting, which
is crucial for preventing onwards transmission of infec-
tion and identifying the source of infection. For example,
Bos et al [22] used mortality data from a HPAI outbreak
of H7N7 in the Netherlands to estimate the day of virus
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introduction into flocks. However given mortality does
not occur due to infection during LPAI outbreaks, new
methodology is required.

The ability to detect infection within a flock depends
on a number of factors including; the type of test used
to identify infection, the frequency of sampling, the day
of virus introduction (Ts) and the within-flock transmis-
sibility of the strain, Ry (the average number of secondary
cases generated by an infectious primary case). There
is a complex interaction between these parameters, and
we explore how they can alter the chance of detecting
infection in a barn. We first evaluated the probability of
detecting evidence of an avian influenza H7N9 outbreak
at time of slaughter across a range of values of Ry and T
using two different available tests. Secondly, we tested our
ability to estimate Ry and T; when sampling birds is per-
formed on a weekly basis. Such estimation would be useful
in the event of a novel outbreak where little was known
about the pathogen. Lastly we investigated how different
sampling frequencies affect the ability to correctly esti-
mate the 7 into a barn under a range of different Ry
values. Such inference would be useful if an outbreak was
or had occurred in a neighbouring area (when it would
be reasonable to assume Ry was already known). A deter-
ministic mathematical model of H7N9 transmission with
a stochastic observation process was used to investigate
these three aims.

Methods

Mathematical model of LPAI transmission in a commercial
poultry setting

We developed an extension of the deterministic suscep-
tible, exposed, infectious, recovered model (SEIR), with a
time lag after completion of the infectious period before
birds could be detected as recovered and sero-positive
for infection; we called this the seroconverting class (C).
A flow diagram of the system is illustrated in Figure 1.
All parameter definitions and values are defined in
Table 1.

A flock of N susceptible poultry are moved into the barn
once every 8 weeks, this cohort of birds remain within the
barn for the full 8 weeks until they are transported. Here
we follow one cohort over the 8 week period, i.e. all birds
enter and leave together. At the start all birds are assumed
to be susceptible and previously unexposed to the virus.
Birds experience a force of infection A(t), which depends
on the effective contact rate 8, (i.e. the mean number of
birds a bird comes into contact with and transmits to per
unit time), and I (t), the total number of infectious birds
in the barn at each time point. Therefore A(t), the force of
infection experienced by a susceptible bird in the barn per
unit time can be written as:

A(t) = BI(t) (1)
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Detectable by rt-PCR

Detectable by
HI assay

Figure 1 Flow diagram of the SEIR model structure. Boxes around compartments indicate which states will result in a positive test for the rt-PCR
test and Hl assay.

Table 1 Table of parameters used in the model

Parameter

Description

Value

Ro

1/(y /no)

1/(o/n,)

]/(P/nc)

Sensitivity (¢)

Specificity

Sensitivity (n)

Specificity

Do

N¢

Start time (T5)

Basic reproductive
number

Mean latent

period (days)

Average duration spent
in each compartment
during the latent
period (days)

Mean infectious
period (days)
Average duration
spent in each
compartment during
the infectious

period (days)

Mean time to
sero-conversion

post infection (days)

Average duration
spentin each
compartment during
the sero-converting
period (days)
Sensitivity of

rt-PCR test
Specificity of

rt-PCR test
Sensitivity of

HI assay

Specificity of

HI assay

Population size
Number of
compartments for
exposed and
infectious periods
Number of seroconverting
compartments
Time infection

is introduced (days)

3,5,7,10
2% [27] (Pantin-Jackwood,

personal communication)
04

6% [27] (Pantin-Jackwood,
personal communication)

1.2

8 [24]

0.8

95% [20,28,29]

100 % [20,28,29]

86% [30-32]

100 % [30-32]

5000%
5

10

0,7,20,40

Values of parameters that have an *next to them indicate uncertainty in these
values, these values were varied in the sensitivity analysis.

Once a bird has come into contact with virus it is clas-
sified as exposed. Exposed birds are not infectious, and
have a mean latent period y. Both exposed and infec-
tious birds are assumed to be asymptomatic. Birds have a
mean asymptomatic infectious period o, following which
birds progress into a seroconverting class where they no
longer transmit infection. The seroconverting class repre-
sents the time lag that occurs as antibodies are developed
to infection prior to the birds being detectable as sero-
positive and recovered. After this period birds become
immune to re-infection with a mean duration p and move
to the R class. We divide the exposed (E), infectious ()
and sero-converting (C) classes into 5, 5 and 10 com-
partments respectively to reduce the variance of the time
spent in each compartment [23]. This ensures that the
majority of birds progress through each class at a rate
which ensures that under 10% of birds seroconvert 14 days
post infection but that 90% have converted 21 days post
infection [24].

The system is governed by the following series of differ-
ential equations:

% = —AS (2)
% =IS—E (%) 3)
e (2)
() ()
w e (2)-a(®) )
% = C1,(n,—1) (%) — Coun, (%) (8)
et

We infer the value of Ry from the model by estimating
the transmission rate 8, using the following relationship.

Ro=po(N—-1) (10)
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Testing for infection or antibodies

At a defined time point infection was introduced into the
barn. This represents the external introduction of virus,
either from contact with other infectious birds nearby or
fomites.

We used the transmission model to simulate collected
surveillance data. We assumed Nygpe = 50 (1%) of birds,
were sampled randomly from the barn at a given time
point (i) and tested for infection or the presence of anti-
bodies. The number of positive birds sampled at a given
time point is a random variable from the following bino-
mial distribution:

Liata ~ B(Nsample’ P;) (11)

E and I birds test positive for infection with an rt-PCR test,
therefore the probability of identifying a positive bird in
the sample is:

_ E+1
N

where ¢ is the sensitivity of the rt-PCR test. Only R birds
test positive for infection using an HI assay. Therefore the

probability of identifying a previously infected bird in the
sample is given by:

b; ¢ (12)

(13)
where 7 is the sensitivity of the HI assay.

Detecting evidence of infection at time of slaughter

We consider a surveillance system for detecting present
or past infection at the time of slaughter. This requires
detection of at least 1 bird in our N, = 50 sample, the
probability can be written as follows:

1— (1 — pyyNsamste (14)
Simulating sampling data

We chose to only consider testing scenarios using the
rt-PCR test, as this test is more suitable for real-time
detection of outbreaks than the HI assay.

For the first scenario to estimate Ty and Ry we simu-
lated sampling data on a weekly basis using an rt-PCR test
for four different introduction times: i) day 0, ii) day 7,
iii) day 20, and iv) day 40. A reactive testing strategy was
simulated whereby Nj;,yi = 50 birds were sampled if no
infection had previously been detected, with an increase
to Nygmpie = 2000 following detection of infection.

For the second scenario to estimate the T with a known
Ry we simulated sampling data using the rt-PCR test for
four different introduction times: i) day 0, ii) day 7, iii) day
20, and iv) day 40 and for 4 different values of Ry: 3, 5, 7
and 10. We assumed all birds would be tested for infection
upon entry and exit to the barn (at the end of 8 weeks). We
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considered several intermediate sampling regimes to sup-
plement this, where birds were additionally sampled once
at week 4, three times at week 2, 4 and 6 and an additional
7 times between week 1-7.

Parameter estimation

For each scenario we fitted the deterministic model to 100
different sets of stochastic observations. Model parameter
values are given in Table 1.

When estimating Ry and 7s; we assumed all other
parameters were known. When investigating the effect
of different sampling frequencies on the ability to esti-
mate the T only we assumed the other parameters were
known (including Ry). For both scenarios parameters were
estimated by maximising the product of the binomial
likelihood across the time series of observed data using
“optim” in R [25]. The likelihood of observing the sam-
pling data at a given sampling time point i for a given set
of model parameters is defined as:

Nsample!
Ljata! (Nsample - Idum) !

L (Iju1410) = p{dﬂm(l — ;) Nsampteldata

(15)

where Nggple is the number of samples taken at that time
point, I;,, (the number of positive tests) and P, is the
probability of a positive test (equation 12). To initialise the
optimisation we performed a Markov Chain Monte Carlo
(MCMC) search of the parameter space. For each chain
we used 500 MCMC iterations to explore the likelihood
surface when 1 parameter was estimated and increased
to 5000 MCMC iterations for each chain when 2 param-
eters were estimated. Two Markov Chains with different
starting conditions were simulated to ensure the parame-
ter space was fully explored and to avoid the problem of
chains becoming stuck in local optima.

We present the mean estimated T (and Ry where appli-
cable) across 100 stochastic observations for each scenario
and the mean 95% confidence intervals across the 100
observations for each scenario (Table 2 and Table 3). Pro-
file likelihoods were estimated through the MCMC search
of the parameter space, and confidence intervals were
calculated from the profile likelihood, assuming the like-
lihood surface was approximately chi-squared distributed
[26]. Where greater than one cluster was present (i.e.
parameter sets with similar maximised likelihoods) both
sets are presented. Confidence intervals were calculated
for the clusters for which the maximum likelihood esti-
mated (MLE) value was obtained and both are presented
in Table 2.

Parameter values
The amount of virus shed, the durations of virus shed-
ding and the infectious dose received upon an infectious
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Table 2 Mean estimated T; and Ry, from 100 stochastic realisations using an rt-PCR test

Day of entry R 10 Ro7 Ro5 Ro3

0 -0.2(-1.7,1.2) -06(-7.8,18) -0.8(-2.8,1.5) -0.3(-14,05)
10.5(9.6,12.0) 7.2(69,7.8) 50(49,58) 30(29,3.1)

7 7.1(59,85) 7.1(58,88) 7.0(6.1,7.8) 6.8 (5.6,8.1)
10.5(9.0,12.0) 6.9 (6.3,8.1) 50(438,521) 29(28,3.1)

20 20.1(183,22.1) 20.0(189,21.0) 20.0(18.1,20.9) 194 (18.5,21.9)
10.5(84,13.8) 6.9 (6.3,7.5) 4.8(4,5,5.1) 302932

Mean lower and upper 95% confidence intervals for each estimate are indicated in brackets. The upper estimate in each row refers to the estimate of 7; and the lower

is the estimate of Ry.

challenge will vary and will be host specific, however we
generalised values from the experimental data [27]. We
assumed the latent period to be 2 days, based on a study
which detected the shedding of H7N9 virus using oropha-
ryngeal swabs in 10/11 chickens 2 days post inoculation

(DPI) [27] (Pantin-Jackwood, personal communication),
(although swabs were not taken between 0 and 2 DPI).
We assumed the infectious period to be 6 days, based
on the same study, as 7/8 birds were shedding detectable
virus 8 DPI, however only 1/8 chickens was shedding virus

Table 3 Mean estimated day of virus introduction into the barn, across 100 simulated testing observations

Day of entry Ry Weekly sampling 2 weekly sampling 4 weekly sampling
Day 0

10 .0(-0.6,0.5) 0.1(-0.7,0.7) 0.0(-23,1.7)

7 .0(-0.7,06) 0.0(-1.1,09) -0.1(-1.7,1.5)

5 .0(-0.80,0.9) -03(-18,1.1) -1.1(30,1.1)

3 1(-14,14) 00(-23,18) -02(-28,25)

3 2nd cluster NA NA 376 (26.7 - 40.0)
Day 7

10 0(6.3,7.5) 3(6.0,8.5) 2(58,86)

7 7.0(6.4,7.6) 6.0 (4.9,7.3) 6(1.0,4.5)

5 0(6.1,7.9) 0(5.9,7.9) 2(53,88)

3 9(53,83) 0(5.5,9.0) 6 (4.0,9.5)

3 2nd cluster NA NA 21.6(17.1,253)
Day 20

10 20.0(19.4,20.4) 20.2(189,21.5) 183 (16.0,21.0)

10 2nd cluster NA NA 46.6 (44.1,50.0)

7 20.0 (194, 20.9) 19.1(17.8,20.3) 18.0(15.3,21.3)

7 2nd cluster NA NA 43.3(40.5,46.0)

5 20.0(18.9,20.7) 20.0(19.0,20.9) 19.5(18.1,20.8)

5 2nd cluster NA NA 34.5(32.6,36.6)

3 20.1(18.1,22.2) 20.1(17.7,23.2) 19.7 (154, 23.4)
Day 40

10

10 2nd cluster
7

5

5 2nd cluster

3

40.0 (39.4,40.7)
NA
39.8(38.1,42.0)
40.0(36.7,42.8)
NA
37.6(30.2,437)

40.0 (39.9,40.8)
NA
40.0 (38.5,41.5)
39.7 (36.5,42.8)
NA
35.0(28.2,42.7)

36.0(34.7,37.1)
-9.56 (-10.0,-8.5)
40.0 (38.5,41.
40.1(36.7,45.2
133(116,1

4)
)
5.0)
33.5(28.0,40.8)

Mean lower and upper 95% confidence intervals for each estimate are indicated in brackets. The second optima that was observed with reduced sampling is referred

to as 2nd cluster.
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11 DPI [27] (Pantin-Jackwood, personal communication).
The full experiment is detailed in Pantin-Jackwood
etal. [27].

We assumed a fixed sensitivity and specificity of the
rt-PCR test. The sensitivity estimate was based on a
study where detection probabilities of 95% or greater
were achieved for the HA(I) and NA(I) assays at RNA
concentrations 7.0 and 7.8 copies per reaction, respec-
tively. Although the confidence internals around the RNA
concentrations to achieve this sensitivity were wide [20].
Specificity of the test was assumed to be 100%, as no
non-specific cross reactivity of other oligonucleotides was
reported. These values are similar to those published in
other studies for the detection of H7 viruses [28,29].

For the HI assay we assumed that the test had a very
high specificity of 100% but a much lower sensitivity of
86%. At the time of writing no quantifiable data on the
sensitivity and specificity of the H7N9 HI assay in avian
hosts was available. We therefore used information on the
sensitivity and specificity of HI assays for other avian sub-
types [30] along with data available on the sensitivity and
specificity of an antibody neutralisation assay [31] and an
HI assay when testing human sera for antibodies to H7N9
infection [32].

Sensitivity analysis

We conducted sensitivity analyses on 3 key parameters
for which uncertainty surrounded the value used in the
baseline model when estimating T in isolation, we per-
formed sensitivity analysis on the following 3 parameters
barn size, and the latent and infectious periods (results are
presented in Additional file 1). It is likely barn size will
vary across farms, so it was important to test our ability to
estimate the day of virus introduction with variable barn
sizes. The latent and infectious periods were based on
observations from laboratory experiments, on a relatively
small number of birds, and where heterogeneity between
birds in the duration of virus shedding was observed [27],
it was therefore important to explore variation in these
parameters. Equally previous studies have shown that the
duration of the latent period and infectious period can
affect ones ability to detect virus in a barn [22,33].

To investigate the model’s ability to estimate Ty with
different barn sizes, we took an additional five dif-
ferent barn flock sizes, 500 birds, 2000 birds, 10,000
birds, 20,000 birds and 100,000 birds, while sampling
Nsample =5 Nsample = 20, Nsample = 100, Nsample = 200
and Nygpple = 1000 birds from the flock at each sampling
point, for each barn size respectively. To investigate how
the misspecification of the duration of the latent period
affected our ability to estimate the T, we varied the value
of the latent period used in the baseline model in the range
1-4 days. To investigate whether our estimation of T, was
sensitive to the duration of the infectious period, we tested
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values in the plausible range 3-12 days. All sensitivity
analysis is presented within Additional file 1.

Results

Probability of detecting an outbreak at time of slaughter
We estimated the probability of detecting at least one
infected bird at time of slaughter (56 days after birds enter
the barn) using two different tests, rt-PCR and an HI assay.
A non-linear relationship was observed between the prob-
ability of detecting evidence of an outbreak at the time of
slaughter, Ry and the day of virus introduction (Figure 2)
when using either the rt-PCR test or the HI assay.

The rt-PCR test had a high probability of detecting
infected birds at the time of slaughter if 7; was between
20 and 40 days after birds enter the barn, across all val-
ues of Ry (Figure 2A). A high probability of detection for
earlier T values was only apparent when Ry was less than
5, when the virus was likely to still be circulating at the
time of slaughter. For the HI assay (Figure 2B) there was a
high probability of detecting H7N9 antibodies at the time
of slaughter across a range of T values (0 - 30 days), espe-
cially when Ry was high. However, if the T was 30 days or
later, the probability of detecting infection was very close
to 0, because of the 8 day period after infection required
for birds to seroconvert. The probability of detecting at
least one infected bird in the system when using either
test was remarkably binary, with a very limited range of
values giving a 50% probability of detecting evidence of
infection. Overall the HI assay was predicted to detect evi-
dence of an outbreak for a larger range of Ry values and
introduction times than the rt-PCR test.

Estimating Rp and the day of virus introduction

Birds within the barn were sampled and tested for infec-
tion using an rt-PCR test on a weekly basis to estimate T
and Ry, whilst assuming all other parameters were known
(parameters are described in Table 1). In the absence of
reactive sampling (an increase in the number of birds
sampled at the next time point following the detection
of infection), it was difficult to accurately obtain an esti-
mate for T and Ry. Here a wide range of different values
of T; gave comparable likelihoods for a fixed value of
Ry (Figure 3A). We increased the number of birds sam-
pled after the initial detection of infection in the following
manner: Ny mpie = 50, Nygmpte = 500, Nygppre = 1000
and Nygpie = 2000, (Figure 3 A, B, C, D, respectively).
The increase in number of birds sampled improved the
accuracy of the estimates of Ry and T (Figure 3). Of
the regimes tested the best accuracy arose from sampling
2,000 birds (40%) after detection of infection (Figure 3D).
Anything lower resulted in highly variable estimates of T
and R across different stochastic observations, therefore
this was the sampling regime used for all estimates pre-
sented. We assumed that in the relatively rare event of
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A) -PCR B)

0

0 10 20 30 40 50

T

s

HI Probability of detecting
evidence of infection in

Figure 2 The probability of detecting evidence of infection at time of slaughter with different basic reproduction numbers (Ry) and days
of virus introduction Ts. A) The probability of detecting at least 1 infected bird at time of slaughter (day 56) using an rt-PCR test, when 1% of the
flock is sampled. B) The probability of detecting at least 1 infected bird at time of slaughter (day 56) using an HI assay, when 1% of the flock is
sampled. For both panels, as the probability approaches 1 the greater the chance there is of detecting evidence of infection (yellow). As the
probability approaches 0 there is no chance of detecting evidence of infection (blue).

at least 1 bird sampled
10

10 20 30 40 50

T

s

such an outbreak resources would be extended to accom-
modate this sampling regime.

We present the mean Ry and T across 100 simulated
observations for each scenario (Table 2). With weekly
sampling, across the range of Ry values assessed here,
we were able to simultaneously estimate both Ry and T
(Table 2). In general all values of Ry were estimated accu-
rately across the range assessed here. When considering
Ty = 20, and Ry = 10, we estimated an Ry of 10.5 (9.6,
12.0), whilst, for an assumed Ry = 3, we estimated Ry 2.9
(2.8, 3.1) (Table 2). It was not possible to accurately esti-
mate Ry and the Ty if the known day of virus introduction
was day 40. This is because infection is very unlikely to
be detected until day 56, as such we have only 1 infor-
mative data point on the presence of infection within the
barn for the 8 week time series, thus it is not possible
to make inference for the 2 parameters with only 1 data
point. As such, a large number of different scenarios gave
comparable likelihoods.

Estimating the day of virus introduction under different
sampling regimes and R values

We subsequently estimated 7 on it’s own assuming
known different values of Ry and variable sampling
regimes. We considered a situation in the absence of reac-
tive sampling, hence Ny, = 50 birds at each time point
were sampled even after detection of infection.

We evaluated the quality of our estimate primarily in
terms of accuracy, i.e. how close our estimate was to the
true known value. In general T; was accurately estimated
across a range of Ry values and sampling regimes (Table 3).
As expected, there was a reduction in the overall accu-
racy of the estimated T, with each stepwise reduction

in sampling frequency, with the most apparent reduction
going from 2 weekly to 4 weekly sampling.

We present the mean estimated day of virus intro-
duction across the 100 simulated observations for each
scenario (Table 3). However, there was variation between
the estimated day of virus introduction across the 100 data
sets. We present the variation between the estimated day
of virus introduction, for each scenario from each simu-
lated dataset in Additional file 1. As would be expected,
the most accurate estimates of T were obtained when a
high frequency of sampling was used for a wide range of
values of Ry. At reduced sampling frequencies the preci-
sion of the estimate was greatly affected by the value of Ry.
For example, for Ry = 3, Ts = 40, and sampling conducted
every 4 weeks, the estimate was less accurate compared to
the true known value 33.5 (28.0, 40.8) (Table 3).

In some instances when intermediate sampling was con-
ducted, only once during the 8 week cohort at week 4,
different stochastic observations gave two different esti-
mates of T with comparable maximised likelihoods, high-
lighting the presence of two different optima across the
100 stochastic observations. Results of both values are
given in Table 3, where the other best estimated value, not
close to the true value is referred to as the 2nd cluster in
Table 3. In this sampling regime the estimation of T was
strongly dependent on whether infection was detected on
day 28 (2nd sampling point) or not, it was this observation
process that resulted in different maximised likelihoods
from different stochastic observations. The two different
observed estimates arise because the model was unable
to distinguish whether the epidemic was ending or taking
off from 1 data point of number of infected’s at day 56.
For example, if infection was introduced prior to day 28,
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Figure 3 The likelihood of identifying day of virus introduction (T) and basic reproduction number (Rg) simultaneously with and without
varying degrees of reactive sampling. A-D the contour of the log likelihood surface around the true values of Ry and Ts. Reactive sampling of
Nsampie = 50, 500, 1000, and 2000 birds for A, B, C and D respectively. For illustration purposes an Ry = 7 and Ts = 7 were used. Different colours
represent how close each estimate of the likelihood is to the maximum value. Blue indicates greater than 1.92 from the maximised true estimate,
green indicates less than 1.92 likelihood point from the maximised true estimate (corresponding to the 95% confidence intervals), yellow indicates
less than 1.0 likelihood point from the maximised true estimate and red indicates less than 0.5 points away from the maximised true estimate.
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but not observed when sampling was conducted on day 28
then Ty was overestimated, but if infection was observed
on day 28 T, was accurately estimated.

Discussion

Outbreaks of LPAI are a threat to animal and human
health, but are primarily asymptomatic in poultry. There-
fore, if the threat to human health is considered high
enough from strains such as novel avian H7NO9, effi-
cient surveillance strategies to detect virus and implement
control measures may be required. We have simulated
surveillance data from commercial poultry farms within
the context of H7N9 outbreak surveillance and tried to
understand the type of surveillance regime that would be
required to help infer parameters and events of epidemio-
logical importance.

In this study we used a mathematical model of trans-
mission and testing to develop an understanding of the
within flock dynamics during an outbreak of H7N9 in a
single commercial poultry barn. We evaluated a number
of different surveillance strategies that could be adopted
on farms, and investigated how different surveillance
regimes could infer parameters of epidemiological inter-
est in the early stages of an outbreak, such as the day of
introduction.

One surveillance strategy for monitoring the presence
of LPAI outbreaks is to test birds at time of slaughter,
which we assumed to be the end of the rearing period.
In general we predicted that the HI assay would detect
evidence of an outbreak for a wider range of introduc-
tion times and Ry values than the rt-PCR test. However
the HI assay can only indicate that birds have experienced
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infection and cannot distinguish if birds are infected at
time of slaughter. For outbreaks that commence 3-4 weeks
after birds enter the barn, a higher probability of detect-
ing evidence of an outbreak is expected using the rt-PCR
test compared to the HI assay, as detection of live virus is
possible very quickly after infection occurs. Importantly,
if virus entered the barn during the last week; neither
test would detect evidence of infection due to the slow
emergence of antibodies for the HI assay and a very low
probability of detecting infection using an rt-PCR test as
the epidemic would have only just begun in the barn. Our
analysis assumes that after rearing, birds would be trans-
ported to a slaughterhouse. There may be scenarios where
birds are transported to another facility prior to slaugh-
ter. If they are tested for infection at this second facility
our results suggest that using an HI assay would be a
more appropriate than an rt-PCR test, as the overall time
period for which it would be possible to detect evidence
of infection would be higher. Equally, although most large
facilities will have more than a single barn, our results are
still applicable in that they are designed to detect the virus
in the first affected barn. Once a novel strain is detected
in a single barn on a large facility, it is likely that either
frequent testing or pre-emptive culling would be started
rapidly in other barns as resources would not be con-
strained in the same way as facilities with no history of
infection.

The threat and transmission potential of H7N9 in com-
mercial chickens remains largely unknown, and the within
flock Ry remains unquantified. A number of previous
studies have used different methodologies to quantify Ry
and the transmission rate 8 from different outbreak set-
tings [33-35]. Within barn estimates have been highly
variable across settings and viral subtypes (Rg = 2.26 to
5.50) [33-35], therefore it was important to consider a
wide range of values. The Ry value is also likely to vary
between countries and farms due to different farming
practices. Therefore we examined our ability to estimate
the T, whilst also estimating Ry, which might be a priority
during the initial stages of a national outbreak. It was not
possible to accurately estimate the two parameters simul-
taneously when sampling only N,y = 50 (Figure 3A)
(1%) of birds at each time point as the likelihood surface
was relatively flat. We found it was necessary to sample
at least Nygmpie = 2000 (40%) birds after the detection of
infection to accurately estimate Ry and T;. We saw the
most accurate parameter estimation was performed when
T, was either 7 or 20 days, with the model performing less
accurately for day 0. It was not possible to estimate T if
virus was introduced on day 40.

In situations where Ry is known it would be possible
with regular testing to estimate T;. We investigated this
approach using the rt-PCR test, over different frequencies
of testing where the Ry value was known. We found that if

Page 9 of 11

sampling Nygple = 50 birds at each sampling time point,
testing for infection on a weekly basis provided the most
precise and accurate estimate of T;. We observed a slight
reduction in the accuracy of our estimate as the value of
Ry decreased. This is likely due to epidemics with a lower
Ry exhibiting a slower take off which in turn lowers the
probability that at a particular point in time infection will
be observed as a lower number of overall birds will be
infected.

Regular sampling regimes with 4 or more samples in
the 8-week period did much better than 3 or fewer sam-
ples. We saw that with 4 weekly sampling (3 samples)
the model was very sensitive to observations taken on
day 28. If infection was not detected then a different
global optimum was identified that did not correspond
to the true known day of introduction. The presence of
two global optima under different stochastic observations
of the infection dynamics resulted in uncertainty in the
estimated time of introduction. The comparison of entry
times between 1 and 2 weekly sampling showed little dif-
ference in the point estimates between the two regimes,
however 2 weekly sample provided a wider range on the
95% confidence intervals.

Through our sensitivity analysis we have shown that the
model estimation is robust to changes in flock size, as
well as to the misspecification of the duration of the latent
period. However the model was sensitive to changes in
the infectious period especially when the infectious period
was greatly extended. It has been reported that most birds
infected with AI shed virus for around 7 days [36-38],
so the upper thresholds explored here may be considered
unrealistic.

The differential susceptibility of avian hosts to different
influenza strains has been widely described . Turkeys are
more susceptible to H7N2 infection than chickens [39],
while Muscovy ducks have a higher susceptibility to HPAI
H5N1 infection than mallards [40]. Here we focus on
chickens because human infections have primarily been
associated with chickens from live animal markets [41,42].
However, it is known that other avian species have been
identified as infected within live birds markets in China.
Despite possible differences in susceptibility or durations
of infectiousness of other avian hosts compared to chick-
ens the same model structure and methodology could still
be applied.

Conclusions

We have shown that an unfeasibly large number of birds
would need to be sampled to obtain an accurate estimate
of Ry and T simultaneously. However, a once off signif-
icant investment to sample such a high number of birds
would be of high utility and justifiable in the early stage of
an outbreak, particularly if it was suspected or known that
multiple premises were infected. Equally, the high number
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of birds that would need to be sampled to obtain a pre-
cise and accurate estimate of the 2 parameters is likely to
reduce as R increases, however in a situation where R is
unknown, caution should be taken. We have also shown
that significantly fewer resources would be required to
estimate Ty alone, where Ny, = 50 on a weekly or 2
weekly basis during an 8 week cohort, using an rt-PCR test
would be enough to provide a good estimate of T.

The inference of Ry during the early stages of an out-
break is of high utility in the early stages of an outbreak
as it enables control and infection containment strategies
to be implemented effectively, and outbreak responses to
be co-ordinated. For example, quantifying a value for Ry
can help understand the number of birds that would need
to be vaccinated, how quickly a virus can spread through
a flock, and if culling would be necessary. Equally, esti-
mating T with or without Ry can dramatically reduce
the resources required to identify the source of infection
and may help gain understanding as to whether additional
premises have been infected, and can prevent onwards
transmission. As such, we feel our method and its findings
are of high utility to help guide surveillance to improve the
estimation of epidemiological parameters from outbreak
data.
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