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Abstract

Background: Hypervariable region 1 (HVR1) contained within envelope protein 2 (E2) gene is the most variable
part of HCV genome and its translation product is a major target for the host immune response. Variability within
HVR1 may facilitate evasion of the immune response and could affect treatment outcome. The aim of the study
was to analyze the impact of HVR1 heterogeneity employing sensitive ultra-deep sequencing, on the outcome of
PEG-IFN-α (pegylated interferon α) and ribavirin treatment.

Methods: HVR1 sequences were amplified from pretreatment serum samples of 25 patients infected with genotype
1b HCV (12 responders and 13 non-responders) and were subjected to pyrosequencing (GS Junior, 454/Roche).
Reads were corrected for sequencing error using ShoRAH software, while population reconstruction was done using
three different minimal variant frequency cut-offs of 1%, 2% and 5%. Statistical analysis was done using Mann–Whitney
and Fisher’s exact tests.

Results: Complexity, Shannon entropy, nucleotide diversity per site, genetic distance and the number of genetic
substitutions were not significantly different between responders and non-responders, when analyzing viral
populations at any of the three frequencies (≥1%, ≥2% and ≥5%). When clonal sample was used to determine
pyrosequencing error, 4% of reads were found to be incorrect and the most abundant variant was present at a
frequency of 1.48%. Use of ShoRAH reduced the sequencing error to 1%, with the most abundant erroneous
variant present at frequency of 0.5%.

Conclusions: While deep sequencing revealed complex genetic heterogeneity of HVR1 in chronic hepatitis C patients,
there was no correlation between treatment outcome and any of the analyzed quasispecies parameters.

Keywords: Hypervariable region 1, Ultra-deep sequencing, Treatment, Genetic heterogeneity, Hepatitis C virus,
Quasispecies, Pyrosequencing

Background
Hepatitis C virus (HCV) circulates within the infected
host as a pool of related but distinct genetic variants
(quasispecies); [1]. The genetic variability is mainly
generated by viral RNA-dependent RNA polymerase
(RdRp) which lacks a proof-reading activity [2]. Genes
encoding envelope E1 and E2 proteins, especially the

hypervariable 1 region (HVR1) of E2, display the highest
genetic variability within the whole HCV genome [3].
HVR1 contains sequences encoding important immune
epitopes; thus genetic variability within this region may
facilitate evasion of the immune responses and is largely
shaped by the immune pressure of the host [4-8]. Com-
plexity and evolution of HVR1 quasispecies was re-
ported to be predictive factor of the outcome of natural
infection [9,10].* Correspondence: kcaraballo@wum.edu.pl
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Antiviral treatment protocols using interferon and riba-
virin have limited efficacy and are plagued by side effects,
which often require premature discontinuation of therapy.
Factors known to be associated with treatment outcome
include both host (i.e. IL28B gene polymorphisms, race,
sex, age) as well as viral factors (genotype, serum load and
genetic heterogeneity); [11-13].
Interferon and ribavirin treatment is based largely on

direct antiviral effect as well as immunomodulation [14].
Thus, HVR1 heterogeneity could facilitate treatment
failure since coexistence of multiple antigenic variants
could increase the probability of positive selection of
those effectively evading immune pressure induced by
treatment [15,16]. However, despite attempts to correlate
HVR1 heterogeneity with antiviral treatment outcome,
published studies are inconclusive [17-20].
Recent years brought the advent of ultra-deep sequencing

techniques which enable parallel sequencing of multiple
sequences present in a sample, thus providing better
insight into the quasispecies phenomenon. Pyrosequencing
(454/Roche), one of the available deep sequencing plat-
forms, is capable of reading sequences up to 1 kb, and it
was used successfully for sequence analysis of human
immunodeficiency virus (HIV) and HCV [21-25].
Similarly, our previous analysis of HVR1 in chronic

HCV infection confirmed the utility of pyrosequencing
for HCV haplotypes inference, including identification of
very rare variants constituting as little as 0.1% of the
whole population [26].
The present study employed pyrosequencing to explore

HVR1 complexity and variability in pretreatment serum
samples of patients treated with pegylated interferon α
(PEG-IFN α ) and ribavirin. We demonstrated that com-
plexity, Shannon entropy, nucleotide diversity per site,
genetic distance and the number of genetic substitutions
were not significantly different between responders
and non-responders, when analyzing populations present
at ≥1%, ≥2% and ≥5% frequency.

Methods
Patients
Our prospective study involved 95 chronic hepatitis C
patients undergoing treatment at the Outpatient Clinic
of the Hospital for Infectious Diseases in Warsaw from
June 2010 to December 2012. Out of this cohort, twenty
five patients were selected according to the following
criteria: chronic infection with genotype 1b HCV, no
previous antiviral treatment, no co-infection with HBV
or HIV, no history of intravenous drugs use. In addition,
patients had to achieve complete early viral response
(cEVR), defined as undetectable HCV RNA in the serum
after 12 weeks of treatment and, subsequently, sustained
viral response (SVR) defined as undetectable HCV RNA
in the serum 6 months post-treatment (responders, n = 12),
or experience no viral load reduction ≥ 2 log at week
12 of treatment (non-responders, NR, n = 13). No sta-
tistically significant differences were found between
responders and non-responders in mean alanine ami-
notransferase activity, pretreatment viral load, age,
liver grading and staging or sex (Table 1). Viral load
was measured by RealTime HCV assay (Abbott), sensi-
tivity: 12 IU/mL, while qualitative evaluation was per-
formed by COBAS Amplicor HCV Test, v2.0 (Roche
Diagnostics) which has sensitivity limit of 50 IU/ml. Treat-
ment consisted of pegylated interferon α (Pegasys, Roche),
180 μg per week, n = 13 or Pegintron (Schering-Plough) at
dose 1,5 μg/kg of body weight, n = 12 and Ribavirin
(Copegus, Roche), 1000 mg/day (body mass < 75 kg) or
1200 mg/day (body mass > 75 kg), n = 13 or Rebetol
(Schering-Plough), 800 mg/day (body mass < 64 kg),
1000 mg/day (body mass 65–85 kg), 1200 mg (body
mass 86–105 kg) or 1400 mg (body mass > 105 kg), n = 12.
Responders were treated for 48 weeks, whereas in non-
responders the therapy was stopped after 12 weeks.
The study was approved by the Institutional Bioethical
Committee (consent No KB/107/2010) and all patients
provided informed consent.

Table 1 Clinical and virological characteristics of 25 studied patients infected with genotype 1b

Treatment responders SVR+, n = 12 Treatment non-responders SVR-, n = 13 P

Complete early viral response (cEVR) 12 0 -

Age (years)* 42.6 ± 17.9 50.1 ± 12.4 NS

Sex (M/F) 6/6 7/6 NS

Alanine aminotransferase levels [U/l]* 95.9 ± 74.1 109.2 ± 50.1 NS

Liver histology*, §

Grading 1.1 ± 0.4 1.1 ± 0.4 NS

Staging 1.3 ± 1.3 1.7 ± 0.8 NS

Pretreatment viral load (IU/ml)* , ** 1.2 × 106 ± 1.2 × 106 1.5 × 106 ± 1.2× 106 NS
*mean ± SD.
**measured by RealTime HCV assay (Abbott), sensitivity: 12 IU/mL.
§according to the METAVIR Histologic Scoring System.
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HVR1 amplification
HVR1 amplification was performed from pretreatment
serum samples as described previously [26]. In brief, viral
RNA was extracted from 250 μl of serum by modified
guanidinium thiocyanate-phenol/chlorophorm method,
then subjected to reverse transcription at 37°C for 30 mi-
nutes using AccuScript High Fidelity Reverse Transcriptase
(Agilent Technologies). A fragment of E2 region containing
HVR1 was amplified in two-step PCR using FastStart High
Fidelity Taq DNA Polymerase (Roche). Primers for the
second round PCR contained tags recognized by GS
Junior sequencing platform, standard 10-nucleotide multi-
plex identifiers (MID) and target-specific sequence.

Cloned HVR1 sequence
To determine the inherent sequencing error, amplified
HVR1 from one sample was purified by Wizard SV
Genomic DNA Purification System (Promega) and
cloned into TOPO TA vector using TOPO TA Cloning Kit
(Invitrogen). Plasmid DNA was extracted from bacterial
culture using Quick Plasmid Miniprep Kit (Life tech-
nologies). Subsequently, pyrosequencing-specific tags with
multiplex identifier (MID) were introduced by means of
PCR using plasmid sequence as a target and sample was
subjected to pyrosequencing.

Pyrosequencing
Each amplicon was purified from agarose gel by QIAquick
Gel Extraction kit (Qiagen) and then by Agencourt
AMPure XP beads (Beckman Coulter) using 1.6:1 ratio
of beads to sample. Products were quantified by dsDNA
HS Qubit® Assay Kit (Life Technologies), fourteen samples
were pooled in equivalent amounts and of 3 × 107 DNA
copies were subjected to emulsion PCR using GS Junior
Titanium emPCR Kit (Lib-A). After initial denaturation at
94°C for 1 minute, the reaction was run for 50 cycles of
94°C for 30 seconds, 58°C for 4 minutes and 30 seconds,
and 68°C for 30 seconds. DNA library beads enrichment
was carried out according to the emPCR Amplification
Method Manual Lib-A (Roche), with the exception that
the number of bead washes was 15. The required input of
500 000 enriched beads was loaded onto the Pico Titer
Plate (PTP) and sequencing was carried out for 200 cycles
using full processing mode for amplicons (GS Junior Se-
quencer, 454/Roche). In total, two independent pyrose-
quencing runs were performed (14 samples with specific
MID were pooled in each).

Data analysis
Reads of individual samples were demultiplexed, sequen-
cing errors were corrected and haplotypes inferred using
the program diri_sampler from the ShoRAH software
[27]. Error correction included mismatches as well as
insertions and deletions. Subsequently, haplotypes were

aligned to the 1b HCV reference sequence (GenBank:
AJ406073) and translated into amino acid sequences by
MEGA (Molecular Evolutionary Genetics Analysis), version
5.0 [28]. Phylogenetic trees were constructed according
to the Maximum Likelihood method based on the
Tamura-Nei model [29] using MEGA 5.0. Genetic di-
versity parameters were assessed in HVR1 populations
of frequency ≥1%, 2% and 5% by DNA SP version 5
[30]. Such cut-off approach facilitated interpatient
comparison of sequence populations of different cover-
ages. HVR1 complexity was represented by the number
of haplotypes above each frequency cut-off. Nucleotide
diversity per site and the number of substitutions were
assessed using DNA SP version 5 with respect to the
reference sequence (GenBank:AJ406073). Genetic distances
in HCV HVR1 populations were assessed by MEGA.
Shannon entropy was calculated according to the follow-
ing equation:

H fð Þ ¼ −
XN

i¼1

f i log f ið Þ

Where:
N – number of observations (haplotypes),
fi - frequency of haplotypes

Statistical methods
Differences in age, alanine aminotransferase activity, viral
load, HVR1 complexity, diversity, number of substitutions
within HVR1, Shannon entropy, genetic distance, number
of polymorphic amino acid positions and number of
inner nodes in phylogenetic trees were compared using
Mann–Whitney test, while proportions were compared
by Fisher’s exact test.

Table 2 Deep sequencing of cloned HVR1 sample

Number of reads of cloned plasmid (control) 3178

Number of variants 12

Most abundant erroneous variant 1.48%

Least abundant erroneous variant 0.06%

Overall error rate per base 0.05%

Types of errors:

Insertions 0.04%

Substitutions 0.006%

Deletions 0.002%

Overall insertions at homopolymeric regions 51%

Number of variants after ShoRAH 4

Most abundant erroneous variant after ShoRAH 0.5%

Least abundant erroneous variant after ShoRAH 0.2%
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Results
Estimation of pyrosequencing and amplification errors
based on cloned HVR1 sequence
Sequencing of cloned HVR1 fragment provided 3178
reads. After grouping identical reads together, 12 variants
were identified (Table 2). Only 96% of reads were identical
to the original template. Among 11 erroneous variants,
the most abundant constituted 1.48% of all reads, whereas
the least abundant was present at a frequency of 0.06%
(Figure 1).
Errors included insertions (83.3%), substitutions (12.5%)

and deletions (4.2%). Probability of error occurrence per
base was estimated to be 0.04% for insertion, 0.006% for
substitution and 0.002% for deletion. Fifty one percent
of insertions occurred at homopolymeric regions (four
repeats of T). Altogether, the probability of any error
per base was 0.05%.
After error correction performed with ShoRAH, four

variants were identified: one identical to the template at
99.0% frequency, and three erroneous variants present at
frequency of 0.5%, 0.3% and 0.2%, respectively.

Figure 1 Frequencies of erroneous variants obtained from sequencing of a single HVR1 clone. Control experiment performed by
sequencing a single HVR1 clone from one pretreatment serum sample presented 11 erroneous variants at frequency between 1.48% and 0.06%.
The figure reports, in decreasing order, the frequencies of all 11 variants.

Table 3 Characteristics of pyrosequencing of
pretreatment serum samples from 25 HCV-positive
patients receiving PEG-IFN α and ribavirin treatment

Number of sequenced reads aligned to reference genome 72 070

Number of sequenced nucleotides 15 100 000

Median of reads per patient (IQR) 2540 (2488)

Mean number of haplotypes per patient after ShoRAH 30.6

• Responders 38.4

• Non-responders 23.4

Most abundant haplotype 57.09%

Least abundant haplotype 0.1%

Table 4 HCV HVR1 genetic characteristics in responders
and non-responders to PEG-IFN α and ribavirin treatment

Responders Non-responders P

Number of patients 12 13 -

HVR1 complexity
(number of haplotypes)

≥5% 4.4 5.3 NS

≥2% 8.2 8.8 NS

≥1% 13.4 11.3 NS

Mean Shannon entropy

≥5% 1.28 1.37 NS

≥2% 1.72 1.73 NS

≥1% 2.01 1.87 NS

Mean nucleotide diversity
per nucleotide

≥5% 0.132 0.148 NS

≥2% 0.118 0.123 NS

≥1% 0.114 0.112 NS

Mean genetic distance

≥5% 0.187 0.203 NS

≥2% 0.145 0.160 NS

≥1% 0.135 0.164 NS

Number of nucleotide
substitutions within HVR1

≥5% 42.8 47.6 NS

≥2% 49.0 52.9 NS

≥1% 59.2 58.4 NS

Percentage of polymorphic
amino acid positions

≥5% 59.3 60.0 NS
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Characteristics of deep sequencing
Over 15 million nucleotides were sequenced (Table 3).
After demultiplexing, the median (IQR) of assigned reads
was 2540 (2488) per patient sample - 2540 (1790) in re-
sponders and 1230 (2816) in non-responders. Following
ShoRAH reconstruction, the mean number of haplotypes
obtained per patient was 30.6 (38.4 in responders and 23.4
in non-responders). Most abundant haplotype constituted
57.09%, whereas the least abundant only 0.1%. The
number of reconstructed haplotypes depends on several
factors, including coverage, frequency of the haplotypes
and their distance. In order to make a reliable comparison
in different patients, we introduced a threshold to the
haplotype frequency. The frequency thresholds explored
were 1%, 2% and 5%.

HVR1 genetic heterogeneity
HVR1 complexity at ≥5% haplotype frequency cut-off was
slightly lower in responders (R) than non-responders (NR);
(4.4 vs 5.3); (Table 4, Figure 2). Likewise, mean Shannon
entropy, mean genetic distance of HVR1 populations and
mean number of genetic substitutions and nucleotide
diversity per site were also lower in the former group
(Table 4, Figure 2). However, these differences did not
reach statistical significance. Similarly, when the above
analysis was repeated at ≥2% and ≥1% frequency cut-offs,
no statistically significant differences were either found.

Amino acid variability of HVR1
Within 27 amino acid stretch of HVR1, responders were
found to have similar mean number of polymorphic

Figure 2 Heterogeneity parameters of hypervariable region 1 population in responders and non-responders to treatment. The figure
reports the distribution of several parameters describing the heterogeneity of the viral population assessed on hypervariable region 1 by means
of massively parallel sequencing and reconstruction of the haplotypes. The results are reported by only considering variants of ≥1%, ≥2%
and ≥5% frequency. The horizontal lines, boxes and whiskers indicate the median, IQR (inter-quartile range) and the values within 1.5 × IQR,
respectively. Open triangles represent mean values. R- responders, NR – non-responders to treatment, NS-not significant.
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amino acid positions (59.3% ± 9.5%) as non-responders
(60% ± 11%); (Table 4). Additional file 1 shows multiple
sequence alignment of amino acid sequences of HVR1
populations in responders (R) and non-responders to
treatment (NR).

Phylogenetic analysis
Viral populations ≥5% were also analyzed phylogenetic-
ally (Figure 3). As shown, populations in non-responders
formed more complex patterns of relatedness as manifested
by the higher mean number of inner nodes (4.0 ± 2.9 vs
2.9 ± 0.7). Nevertheless, this difference was not statistically
significant.

Discussion
A number of previous studies attempted to correlate HVR1
heterogeneity with antiviral treatment outcome, but their

results were usually inconclusive and occasionally even
contradictory. These discrepancies could be partly due
to the use of different techniques: two most commonly
used were single strand conformational polymorphism
(SSCP) and clonal Sanger sequencing [17-20,31-34].
The latter requires extensive cloning to achieve high
sensitivity for minor variants detection, a process that is
costly and time-consuming. Thus, studies using this
technique rarely included significant number of clones
per sample, typically attaining only 15-20% sensitivity.
While SSCP has been shown to detect variants consti-
tuting as little as 3% of the viral population [10], it is
not informative of the nucleotide sequence, the nature
of genetic changes or genetic distances between variants.
Furthermore, in a mixture of heterogeneous sequences,
certain bands may overlap, resulting in underestimation of
viral complexity. Our current study, which was based on

Figure 3 Phylogenetic analysis of HVR1 populations. R - responders, NR- non-responders to treatment. Trees were inferred after application of
ShoRAH error correction method on haplotypes present at a frequency of ≥5% (for populations constituting at least 3 haplotypes). The evolutionary
history was inferred by using the Maximum Likelihood method based on the Tamura-Nei model [29]. Evolutionary analyses were conducted using
MEGA 5.0 [28].
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deep sequencing, overcomes the above shortcomings
and represents a novel approach to analysis of HCV
heterogeneity.
While our analysis did not find any significant differ-

ences in HVR1 heterogeneity between responders and
non-responders to antiviral treatment, these results are
largely compatible with some previous studies employing
SSCP and clonal sequencing. In the study of Pawlotsky
et al. [35] based on single strand conformational poly-
morphism and in the study of Saludes et al. [34] based
on clonal sequencing, no significant differences in pre-
treatment HVR1 complexity were observed between
responders and non-responders. Similar results were
reported in a study of re-treated patients with advanced
fibrosis [33], while Abbate et al. [31] found that low pre-
treatment HVR1 heterogeneity correlated with early
response (EVR), but not with SVR. A number of other
studies found no correlation between HVR1 complexity
and treatment outcome [17,18,36].
In our study, such HVR1 heterogeneity parameters, as

nucleotide diversity per site, genetic distance, and number
of nucleotide substitutions also did not differ significantly
between responders and non-responders. These findings
are similar to several earlier studies [20,34,37,38]. In the
only published study using deep sequencing approach,
there were no differences in pretreatment complexity pa-
rameters (e.g. Shannon entropy) between immediate viro-
logical responders and non-responders. However, the final
treatment outcome was not reported [25].
Lack of statistically significant differences in analyzed

heterogeneity parameters between responders and non-
responders suggest that the heterogeneity generated by
minor variants detectable by deep sequencing has no
effect on treatment outcome. Alternatively, it may be
speculated that the analyzed depth of frequency is still
insufficient to detect minor variants whose heterogeneity
would have clinical significance.
Some recent studies brought attention to the problem

of inherent ultra-deep sequencing errors affecting the
detection of minor variants of the quasispecies population
[26,39,40]. In our analysis, the internal control experiment
using cloned HVR1 revealed the overall sequencing error
to be 0.05% per nucleotide, comprising mostly of inser-
tions and occurring predominantly in homopolymeric re-
gions. This error rate contributed to the high proportion
of erroneous sequences (4% of total reads, the most
abundant erroneous variant being present at a frequency
of 1.48%). To minimize the risk of including erroneous
variants into analysis, we implemented ShoRAH error
correction method, which allowed for correction of 99%
of reads reducing both the absolute number and frequency
of erroneous variants. Thus, error correction methods
should be used to facilitate analysis of minor quasispecies
by pyrosequencing.

Conclusions
There were no significant differences in the pretreatment
HVR1 heterogeneity parameters such as complexity,
Shannon entropy, nucleotide diversity per site, genetic
distance and the number of genetic substitutions between
responders and non-responders. Thus, pretreatment HVR1
quasispecies composition and heterogeneity analysis seems
to have limited value for the prediction of treatment
outcome.

Additional file

Additional file 1: Multiple sequence alignment of amino acid
sequences of HVR1 populations in responders (R) and non-responders
to treatment (NR).
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