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Abstract

simultaneously.

and take preventive measures in Qinghai-Tibetan Plateau.

Background: Qinghai-Tibetan Plateau of China is known to be the plague endemic region where marmot
(Marmota himalayana) is the primary host. Human plague cases are relatively low incidence but high mortality,
which presents unique surveillance and public health challenges, because early detection through surveillance may
not always be feasible and infrequent clinical cases may be misdiagnosed.

Methods: Based on plague surveillance data and environmental variables, Maxent was applied to model the

presence probability of plague host. 75% occurrence points were randomly selected for training model, and the
rest 25% points were used for model test and validation. Maxent model performance was measured as test gain
and test AUC. The optimal probability cut-off value was chosen by maximizing training sensitivity and specificity

Results: We used field surveillance data in an ecological niche modeling (ENM) framework to depict spatial
distribution of natural foci of plague in Qinghai-Tibetan Plateau. Most human-inhabited areas at risk of exposure to
enzootic plague are distributed in the east and south of the Plateau. Elevation, temperature of land surface and
normalized difference vegetation index play a large part in determining the distribution of the enzootic plague.

Conclusions: This study provided a more detailed view of spatial pattern of enzootic plague and human-inhabited
areas at risk of plague. The maps could help public health authorities decide where to perform plague surveillance

Background

Plague, caused by Yersinia pestis, is a rapidly progres-
sing, highly infectious, and highly feared disease that is
likely to be fatal without prompt antibiotic treatment
[1]. Plague is maintained among wild rodents in distinct
geographic foci showing a serious threat to humans in
Asia, America, and Africa [2]. Although the mecha-
nisms by which plague is maintained between epizootic
cycles are not well understood, it is generally accepted
that the disease cycles between enzootic infections and
occasional epizootic outbreaks among susceptible hosts
[3]. Human plague cases are relatively low incidence but
high mortality, which presents unique surveillance and
public health challenges, because early detection through
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surveillance may not always be feasible and infrequent
clinical cases may be misdiagnosed.

In mainland China, natural plague foci of plague were
divided into 12 types according to their primary reser-
voirs, principal vectors, landscapes and genotypes of Y.
pestis [4], which were distributed in 19 of total 31 prov-
inces and autonomous regions., The marmots (Marmota
himalayana) foci in Qinghai-Tibetan Plateau was most
active and widespread. The primary host, M. himalayana
usually hibernates from October and comes out of hiber-
nation from April the next year [5]. Callopsylla dolabris
and Oropsylla silantiewi are known as the principal vec-
tors [4]. The epizootics of plague occurs during the whole
period when the rodent hosts are active on the ground,
and usually reaches the peak in June and July [5]. Human
cases occurred almost every year in the enzootic region
[6]. In 2009, an outbreak involving 12 pneumonic plague
cases occurred in a remote village of Qinghai Province
leading to three deaths [7]. In 2010, cases with bubonic
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plague and pneumonic plague were reported in Gansu
Province and Tibet Autonomous Region.

In mainland China, the natural foci of plague had been
discovered and described since 1950, which were plotted
out based on administrative boundary. This approach is
rather rough and enlarged the potential risk area. Natural
foci of plague are related to the particular landscapes
which are favorable for a high and stable number of ro-
dent reservoirs and flea vectors of Y. pestis [8-10]. Thus,
understanding how these host species are geographically
distributed in China and relating that information to how
effciently each can transmit plague is critical to under-
standing the ecology of plague and to recognizing where
the greatest threats for people exist in the country.

The “Host Niche Hypothesis” (HNH) postulates that
plague distributions are mediated by host distributions,
such that the distribution of plague depends on an amal-
gam of host ranges, and the presence of a particular host
species could extend the distributional potential of the
pathogen [11]. Thus, by predicting the potential distribu-
tion of host animal, the plague risk could be mapped.
Topography, vegetation, climate and other environmen-
tal factors are thought to influence spatial distibution
and temporal dynamics of the host animal [12-18].
Novel spatial modelling methods such as maximum en-
tropy (MAXENT) and the genetic algorithm for rule set
production (GARP) require only disease presence data
and have been used extensively in the fields of ecology
and conservation, to model species distribution and
habitat suitability [19]. In this paper, we aimed to predict
the potential natural foci of plague in Qinghai-Tibetan
Plateau by ecological niche modeling based on environ-
mental parameters derived from remote sensing data
and the transmission risk to support our control and
prevention.

Methods

Study area

The study area stretches from 26°00'12”"N to 39°46’
50”"N and from 73°18'52"E to 104°46'59”E, which
covers approximately 3,487,000 km?” in Qinghai-Tibetan
Plateau (Figure 1), most active and widespread marmots
(Marmota himalayana) foci area. The altitude is over
3000 m almost everywhere. The main vegetation types
are alpine meadow, alpine grassland, alpine desert and
Ravine forest [20]. Elevation, temperature, moisture,
vegetation and other environmental conditions are
various [21].

Data collection and pre-processing

All plague surveillance data used in this study were de-
rived from the plague surveillance database of ‘Chinese
Plague Prevention and Control Management Information
System, a national surveillance network for plague maintained
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Figure 1 The study area and counties with known natural foci
of plague.

by Chinese Center for Disease Control and Prevention.
According to the surveillance from 2007 to 2009, 233 in-
fected himalayan marmots were confirmed by bacterio-
logical tests including microscopy, culture, phagelysis, and
mouse inoculation, geocoded by globe positioning system
(GPS) or detail address. In addition, 51 human plague
cases in the study area from 2004-2010 were collected
from Chinese Center for Disease Control and Prevention.
As the spatial resolution of enrironmental data was 1 km,
we removed duplicated records of the same pixel and got
218 spatially unique points with infected marmots with a
spatial precision of 5-10 km (~0.05-0.1°).

Environmental variables supposed to be associated
with the existence of natural foci of plague were collected.
The distribution of marmot was mainly driven by geo-
morphology, climate and vegetation [22]. Geomorphology
variables, as Elevation, slope, aspect, were derived from
SRTM30 (Available from: http://www?2.jpl.nasa.gov/srtm/).
Climate factors were characterized by Annual average day-
time land surface temperature (LSTd) and annual average
nighttime land surface temperature (LSTn), composited
from eight days MODIS LST products (MOD11A2) from
2004-2009 (Available from: https://Ipdaac.usgs.gov/lpdaac/
products/modis_products_table). The amount and prod-
uctivity of vegetation was featured by annual maximum
normalized difference of vegetation index (NDVI-) from
ten days SPOT-VGT S10 products from 2004-2009 (Avail-
able from: http://free.vgt.vito.be/). In addition, land use
and cover change (LUCC) revealed the proper grassland
and effect of human activity, which was derived from
GlobCover Land Cover version V2.2 released by European
Space Agency (Available from: http://www.esa.int/esaEO/
SEMXB7TTGOF_index_0.html). In addition, Chinese
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population distribution raster map with 1 km? resolution
was used to identify human-inhabited areas with high
plague risk by overlayanalysis. This map was obtained
from Data Center for Resources and Environmental
Sciences Chinese Academy of Sciences.

All data layers were projected in Albers coordinates
and generalized to a pixel resolution of ~1x1 km for
analysis in ENVI 4.5 (ITT Visual Information Solutions,
Boulder, CO, USA) and ArcGIS Desktop 9.2 (Environ-
mental Systems Research Institute, Redlands, CA, USA)
environment. We also considered the spatial heterogen-
eity in the whole china using the GeoDetector software
[23,24]. The power of determinant (PD) reflects the de-
gree to which a determinant explains the prevalence of
the disease.

Ecological niche modeling

Recently ecological niche modeling (ENM) methods,
such as GARP [25] and Maxent [26], have been widely
applied in species distribution modeling when only
presence data is available for prediction [27,28]. ENM
also has been proved to be effective of in applications
to questions regarding the geography and ecology of
disease transmission [29-31]. In this study, presence-
only method Maxent was applied [32,33]. Maxent is a
general-purpose method for characterizing probability
distributions from incomplete information based on
the principle of maximum entropy [26].

Maxent outputs the maximum entropy distribution
that satisfies a set of environmental constraints. In place of
true absences, Maxent uses background points (pseudo-
absences) to evaluate commission [13]. We run the model
in the support of the “Maxent” Version 3.3.1 k software
[32]. Within Maxent processing, 75% occurrence points
(164) were randomly selected for training model, and the
rest 25% points (54) were used for model test and valid-
ation. 11000 ‘pseudo-absence’ points created by random
sampling from areas lacking known presences. To meas-
ure the relative contribution of each environmental vari-
able to the predictive model, a jackknife manipulation was
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performed. Receiver operating characteristic (ROC) ana-
lysis was used to evaluate the discrimination ability of
models, and to determine the optimal probability cut-off
value for classifying the risk areas of plague. We measured
Maxent model performance as test gain and test AUC
(random 25% testing) for all analyses omitting individual
variable, and for each individual variable alone. The AUC
is considered as an effective indicator of model perform-
ance. The larger the AUC, the highest is the sensitivity rate
and the lower is the 1-specificity rate. Usually AUC values
of 0-5-0-7 are taken to indicate low accuracy, values of
0-7-0-9 indicate useful applications and values of >0-9
indicate high accuracy [34]. The optimal probability cut-
off value was chosen by maximizing training sensitivity
and specificity simultaneously [35]. All pixels with a prob-
ability value at least equal to the optimal value were classi-
fied as plague risk area, then we used binomial test based
on omission of independent test points and predicted area
to determine whether a model predicts the test localities
significantly better than random [36].

Results

The model including all seven environmental parameters
was proved to be the most discriminative model attaining
the maximum test AUC (test AUC = 0.917) and to be the
best fitted model (test gain=1.5222). All environmental
variables appeared to contribute to the model, elevation
and land surface temperature had the best explanatory
power, with permutation importance 27.5, 15.2 and 32.2,
respectively. Meanwhile, they produced the best predic-
tions when used alone and had the most negative effects
when omitted from analysis, see Table 1. Thus we selected
the all-7-variables model as the final model to construct
risk map of marmot distribution. On the basis of ROC
analysis of the final model prediction, the optimal risk cut-
off value 0.331 was chosen by maximizing training sensi-
tivity and specificity simultaneously. All pixels with a risk
value at least equal to this threshold were classified as nat-
ural foci where environmental conditions are suitable for
plague exist in marmots. 16.5% of the background points

Table 1 Summary of ‘Jackknife analysis ' used to determine importance of each environmental variable

Predictor Data type Unit Test gain Test gain Test AUC Test AUC Percent Permutation
(variable (variable (variable (variable contribution importance
alone) excluded) alone) excluded)

Elevation Continuous Metres 0.5668 1.164 0.7848 0.8757 133 275

LSTd Continuous Centigrade 0.3908 1.1436 0.7435 0.876 246 15.2

LSTn Continuous Centigrade 0.5623 1.2989 0.7405 0.9034 302 322

NDVI Continuous - 0.0159 1.1834 0.5651 0.8829 79 14

Slope Continuous Degrees 0.0072 14199 0.552 0.9025 6.6 52

Aspect Categorical 9 Categories 0.1141 1441 0.6429 09121 11.6 35

Land Cover Categorical 22 Categories 0.1086 14787 0.6099 09118 59 25
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Figure 2 Risk map of natural foci of plague in Qinghai-Tibetan Plateau. Panel a: Probability of natural foci of plague. 164 presence points (red
circles) for training model and 54 presence points (yellow circles) for testing model are overlaid on the map. Panel b: Potential natural foci of plague (blue
pixels) and human-inhabited areas (red pixels) in them. 16 sites of human plague cases from 2004 to 2010 (green circles) are overlaid on the map.

were classified in the risk areas. 49 of 54 independent test The final model was applied to the environmental
points were correctly classified (Test omission rate: 9.26%, layers involving NDVI, LSTd, LSTn of 2009, land cover,
p <0.0001). elevation, slope and aspect. The risk value was predicted
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for each grid cell in the study area (Figure 2a). The
classified natural foci are mostly distributed in Tibet
Autonomous Region, Qinghai Province, Gansu Province,
the northwest of Sichuan Province, the northwest of
Yunnan province and the south of Xinjiang Uygur
Autonomous Region (Figure 2b). Large areas without
plague presence points used for training and testing
models were also predicted as natural foci, such as the
northwest corner of Yunnan and the south of Xinjiang.

By overlying Chinese population distribution map to
the risk map created above, we were able to further iden-
tify the 16,195 km® human-inhabited areas and about
2,347,000 people at the risk of exposure to enzootic plague
in the study area. Most risk population are distributed in
the east and south of Qinghai-Tibetan Plateau shown as
red pixels in Figure 2b.

Several response curves were created to show how the
risk of enzootic plague changes as each environmental
variable is varied (Figure 3). The risk increases up to an
elevation of 3177 m, LSTd of 13.85°C and LSTn of -8.38°C,
and then declines as elevation, LSTd and LSTn increases.
The risk monotonously decreases as NDVI increases. To
visualize and explore the environmental conditions of
the plague enzootic areas, two-dimensional scatter

Page 5 of 8

environmental variables described above (Figure 4),
The range and the median of elevation, NDVI, LSTd
and LSTn of predicted plague enzootic areas are (2240
~ 5254 m, 3829 m), (0.078 ~ 0.914,0.357), (1.85 ~ 23.80°
C,14.30°C) and (-13.97 ~ 1.71°C, -7.25°C), respectively.
Environmental conditions which are out of those
ranges appear to be important limitations for the dis-
tribution of host animal in Qinghai-Tibetan Plateau.

Discussion
National surveillance network for plague recorded the
information of infected marmots as the primary data
source of our study. We hypothesis that these geocoded
points represented the suitable habitat for plague host
animal and fleas that could spread Yersinia pestis. In the
niche modeling, the relevant environmental variables re-
flects the distribution of suitable areas of host animals,
rather than plague foci or Yersinia pestis. This plague-
positive host animal extent would be smaller than the
whole species on the landscape, but we could not tell
the exact proportion or overlap between them because
of presence data limitation.

In this study, we applied field surveillance data with
GIS/RS-based ecological niche modeling approach to

plots were developed by using the four key increase our understanding of the suitable habitat of
Response of enzootic plague risk to elevation Response of enzootic plague risk to LSTd
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enzootic plague and anticipate the distribution of the
natural foci in Qinghai-Tibetan Plateau. The reliable
absence data are hardly available in enzootic plague
surveillance as the plague-enzootic foci are easily missed
during field surveys, thus the “presence-only” ecological
niche modeling Maxent was preferred. Independent tests
indicated ENM can anticipate the distribution of host
animal robustly.

Environmental variables, such as topography, climate
and vegetation, can play important roles in natural focal
diseases by affecting pathogens directly, or by

influencing the distribution and abundance of disease
hosts and vectors [37,38]. In this study, all remotely
sensed environmental variables appear to contribute
positively to the final predictive model. Elevation, LSTd,
LSTn and NDVI are likely to be most important factors
which influence the distribution of host marmots. The
environmental ranges of host marmots were clear re-
vealed in the two-dimensional scatter plots. The envir-
onmental conditions of host marmots are proved to be
highly diverse. The elevation range of host marmots are
various, consistent with Qinghai-Tibetan Plateau [39].
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The risk increases up to an elevation of 3177 m and
then declines as elevation increase, because in the lower
height, forest and thickly grass would be harmful for
marmot making doggishness, while in the higher height,
there would be lack of food. The marmot preferred
temperature between 5°C and 20°C in the daylight. The
extremely low temperature below -8.38°C would limit
their activities. Extremely low and high temperature of
land surface seems negatively affect the distribution of
host animals. The temperature of land surface may influ-
ence the plague persistence in ‘marmot-flea’ communities
in complex ways. We suspected extreme temperature may
negatively affect marmot and flea ecology, and blockage of
vector fleas [40]. Host marmots were observed and pre-
dicted in the sparely vegetated areas, but in our modeling,
NDVI variation had no significant limitation in host ani-
mal distribution (Figure 3). This result suggested that
plague prefer alpine desert/semi-desert grasslands con-
firmed previously, such as alpine meadow, alpine grass-
land and alpine shrub [5,39], while habitats with
extravagant vegetation seemed to be unsuitable for enzo-
otic plague. This could be due to that luxuriant vegetation
obstructs them to protect from predators, and the high
subterranean biomass make them hard to burrow under-
ground [41].

Maxent outputs the distribution probability of the host
marmots, which was segmented by maximizing training
sensitivity and specificity simultaneously. The binarization
map reveal massive extent of natural foci of plague in
Qinghai-Tibetan Plateau, 16.5% (575,355 km?) of the study
area was defined as natural foci. Since the maps show
where the enzootic plague are more likely to occur and
where natural foci probably exist, they can be used to
guide surveillance of plague in future.

Generally speaking, human plague cases are directly or
indirectly associated with the epizootic plague activity.
In Qinghai-Tibetan Plateau, most human plague out-
breaks stemmed from contact with infected marmots.
We estimated more than 2,000,000 people at the risk of
exposure to the enzootic plague. Most risk population
are distributed in the east and south of Qinghai-Tibetan
Plateau. Our findings can guide the design and spatial
targeting of plague prevention and control efforts against
human plague infection in Qinghai-Tibetan Plateau.
Thereby, limit resource could be appropriately allocated
to the a few areas where most human plague cases are
most likely to occur.

We got a risk map that shows the full extent of areas of
potential natural foci with similar environmental conditions
to the observed presence infected host. However, it is im-
portant to keep in mind that some unmappable risk factors
were not included in our analysis. Natural barriers and
other factors may also accidentally obstruct the dispersal of
marmots, vector fleas, or Y. pestis into the certain areas
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where habitats are suitable for persistence of natural foci. In
addition, epizootic activity may be quite dynamic in the
same plague focus in different periods [15,18,42,43]. Tem-
poral variation of climate and other environmental factors
may drive the dynamics of epizootic activity in foci. Thus
multivariate time series analysis of plague epizootic is re-
quired. Finally, with the implementation of the western
China development strategy, the traffic transport be-
tween Qinghai-Tibetan Plateau and other parts of
China has become much more convenient than before,
especially since the completion of Qinghai-Tibet Rail-
way in 2006. There will be more and more people such
as tourists and transient workers get into Qinghai-
Tibetan Plateau in future. The risk of human exposure
to enzootic plague and long-distance transmission will
increase consequently. Thus the risk of human plague
should be further assessed under the scenario of increasing
mobility of the population in Qinghai-Tibetan Plateau.

Conclusions

Maxent was suitable for this 1 km resolution modeling
which outputs the distribution probability of the host
marmots, its feasibility for other resolution would be
tested in the following study. We got a more detailed
view of spatial pattern of potential plague natural foci by
maximizing training sensitivity and specificity simultan-
eously. Human-inhabited areas and population at the risk
of exposure to enzootic plague could be identified by over-
lying Chinese population distribution map to the risk map
created above. The maps could help public health author-
ities decide where to perform plague surveillance and take
preventive measures in Qinghai-Tibetan Plateau.
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