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Abstract

Background: Molecular typing is integral for identifying Pseudomonas aeruginosa strains that may be shared
between patients with cystic fibrosis (CF). We conducted a side-by-side comparison of two P. aeruginosa genotyping
methods utilising informative-single nucleotide polymorphism (SNP) methods; one targeting 10 P. aeruginosa SNPs and
using real-time polymerase chain reaction technology (HRM10SNP) and the other targeting 20 SNPs and based on the
Sequenom MassARRAY platform (iPLEX20SNP).

Methods: An in-silico analysis of the 20 SNPs used for the iPLEX20SNP method was initially conducted using sequence
type (ST) data on the P. aeruginosa PubMLST website. A total of 506 clinical isolates collected from patients attending
11 CF centres throughout Australia were then tested by both the HRM10SNP and iPLEX20SNP assays. Type-ability and
discriminatory power of the methods, as well as their ability to identify commonly shared P. aeruginosa strains, were
compared.

Results: The in-silico analyses showed that the 1401 STs available on the PubMLST website could be divided into 927
different 20-SNP profiles (D-value = 0.999), and that most STs of national or international importance in CF could be
distinguished either individually or as belonging to closely related single- or double-locus variant groups. When applied
to the 506 clinical isolates, the iPLEX20SNP provided better discrimination over the HRM10SNP method with 147
different 20-SNP and 92 different 10-SNP profiles observed, respectively. For detecting the three most commonly
shared Australian P. aeruginosa strains AUST-01, AUST-02 and AUST-06, the two methods were in agreement for 80/81
(98.8%), 48/49 (97.8%) and 11/12 (91.7%) isolates, respectively.

Conclusions: The iPLEX20SNP is a superior new method for broader SNP-based MLST-style investigations of
P. aeruginosa. However, because of convenience and availability, the HRM10SNP method remains better suited
for clinical microbiology laboratories that only utilise real-time PCR technology and where the main interest is
detection of the most highly-prevalent P. aeruginosa CF strains within Australian clinics.
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Background
Cystic fibrosis (CF) is the most common, lethal autosomal
recessive disease in Caucasian populations [1]. Most CF
patients die in their third or fourth decade from com-
plications of chronic pulmonary infection. Pseudomonas
aeruginosa is the predominant pathogen and once it is
established within the lungs of CF patients it is rarely
eradicated, resulting in increased treatment requirements
and an accelerated decline in lung function, quality of
life and survival [2]. While many CF patients acquire
P. aeruginosa from their natural environment, there is
also evidence of person-to-person transmission occur-
ring [3]. Delaying or even preventing P. aeruginosa infec-
tion is an important management goal. Consequently,
determining P. aeruginosa acquisition pathways and con-
ducting longitudinal surveillance using molecular-based
typing techniques are critical steps for developing novel
interventions and evidence-based infection control pol-
icies to interrupt the spread of transmissible strains within
the CF community [4-6].

Recently, multi-locus sequence typing (MLST) has
emerged as an important epidemiological tool for inves-
tigating temporally and geographically diverse bacteria
[7]. It offers a standardised, reproducible and portable
typing approach that allows reliable data comparisons by
way of a publically accessible web-based database [7,8].
However, when applied to large-scale investigations in-
volving many hundreds or thousands of isolates it is
limited by cost and complexity [9]. To circumvent these
problems, some researchers have utilised defined sets of
informative single nucleotide polymorphisms (SNPs)
derived from MLST data to infer genetic relationships
between isolates. In essence, it is a narrowed MLST ap-
proach and has been applied to various organisms, includ-
ing pathogens relevant to CF, such as methicillin-resistant
Staphylococcus aureus and P. aeruginosa [10-13]. Selec-
tion of appropriate SNPs, including SNP location and total
numbers, is an integral facet of informative SNP strat-
egy to ensure a discriminatory, yet cost-effective, typing
scheme. However, once an informative SNP approach tai-
lored to a particular purpose is implemented, it will theor-
etically have limitations in terms of discriminatory power
if used beyond its original objectives.

Previously, we have shown that SYBR Green-based real-
time polymerase chain reaction (PCR) assays and high-
resolution melting (HRM) curve analysis targeting 10
key SNPs in five housekeeping genes (HRM10SNP) can
detect the major P. aeruginosa strains shared by CF patients
in Queensland, Australia [10]. Furthermore, we demon-
strated recently that this form of typing can be adapted
to the iPLEX MassARRAY platform to allow high-
throughput genotyping [14]. However, based on the high
levels of genetic diversity observed amongst shared
P. aeruginosa strains in the national Australian CF study

[15] and also internationally amongst patients attending
CF clinics [16], we sought to reassess the HRM10SNP and
investigate alternative SNP-based typing strategies for
identifying a broader range of P. aeruginosa strains.

Methods
Clinical isolates
To ensure representative and geographical diversity, 506
clinical isolates were sourced randomly from a biobank
of CF isolates collected as part of an ongoing national
study of shared P. aeruginosa strains involving patients
attending 11 CF clinics in Australia’s five largest cities
[15] (Additional file 1: Table S1). Isolates were incubated
on horse blood agar plates for 24-hours at 37°C. Once
purity was confirmed, heat-denatured suspensions of each
isolate were prepared as described previously [10].

HRM10SNPAssay
The HRM10SNP assay was performed for each isolate
as described previously [10]. Briefly, each heat-denatured
isolate was tested using 10 individual PCR reactions
using the qPCR SuperMix-UDG (Invitrogen Australia,
Mulgrave, NSW, Australia) on the Rotorgene-6000
(Qiagen, Doncaster, Victoria, Australia). Results from
each reaction were compiled to provide a 10-SNP profile
for each isolate. As reported previously, isolates with 10-
SNP profiles of CTCCTCGGCA, TCTTTCGGTA and
CCTCCTGATG were determined to be AUST-01, AUST-
02 and AUST-06, respectively [10].

20-SNP iPLEXMassARRAY(iPLEX20SNP)
The iPLEX20SNP assay was based on the Sequenom
MassARRAY platform (Sequenom, Brisbane, Queensland,
Australia) and was a modification of a method described
previously [14]. Here, SNPs were derived by analysing se-
quence data on the P. aeruginosa PubMLST website [17].
Briefly, 1070 concatenated sequences of P. aeruginosa
housekeeping genes (acsA, aroE, guaA, mutL, nuoD, ppsA,
and trpE) were downloaded (12 January, 2012) and in-
vestigated for informative SNPs with the aid of the
Minimum SNPs software version 2043 [18] and by man-
ual sorting (using BioEdit version 7.0.9.0). Overall, 20
SNPs were identified and SNP positions based on the
2882 bp concatenated P. aeruginosa MLST sequence are
listed in Tables 1 and 2. Of these 20 SNPs, four were iden-
tical to SNPs used in the HRM10SNP assay; SNPs at sites
7, 322, 1152 and 2551 of the iPLEX20SNP assay (Tables 1
and 2) overlapped with SNPs 1, 2, 5 and 10 from the
HRM10SNP assay.

Primers and extension primers for each of the 20 SNPs
in the iPLEX20SNP were designed as reported previ-
ously [14]. All 20 target SNPs were designed for use in
a single multiplex well using Assay Designer 4.0 soft-
ware (Sequenom, Herston, Queensland, Australia). The
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24 amplification primers and 21 extension primers used
for SNP detection are listed in Tables 1 and 2. Two exten-
sion primers with overlapping mass were used for SNP
site 416 to accommodate a known proximal SNP variation
(Table 2).

SNP detection by MassARRAY was performed as out-
lined formerly [14], with the following modifications:
(1) following the initial PCR, residual PCR Taq poly-
merase was removed by protease digestion; 1 μl of protease
solution (1.07 AU, Qiagen, Doncaster, Victoria, Australia)
was added to each PCR reaction and the mixture incubated
at 55°C for 30 min followed by an inactivation at 95°C for
5 min; and (2) the single base extension step was performed
using the iPLEX Pro Extension Reaction Kit (Sequenom,
Herston, Queensland, Australia) following manufacturer’s
instructions. SNPs were coded from 1 to 20 to generate a
20 SNP code. The 20-SNP profiles were then interpreted
using the data compiled from in-silico analysis of the
P. aeruginosa MLST database, as described below, to

provide predicted sequence types (STs). Characterised iso-
lates representative of each SNP were used as reference
controls for each test run.

In-silico analysis of 20-SNP profiles from the MLST
database
For final result analyses, 1779 concatenated sequences of
P. aeruginosa housekeeping genes were again down-
loaded (13th December 2012) and reanalysed. The 1779
P. aeruginosa sequences yielded 1401 different STs. The
predicted ability of the 20-SNP profile to distinguish
these 1401 STs was investigated, as was its ability to dis-
tinguish STs of national: AUST-01 (ST- 649), AUST-02
(ST-775), AUST-03 (ST-242), AUST-04 (ST-788), AUST-
05 (STs 274 and 781), AUST-06 (ST-801), AUST-07 (ST-
262), AUST-08 (STs 782, 783, 784 and 785) and AUST-09
(STs 274 and 1043), AUST-10 (STs 155 and 179), AUST-
11 (STs 803, 1034, 1037, 508, 804, 822 and 882), AUST-12
(ST-179), AUST-13 (STs 389 and 800), AUST-14 (STs 155
and 179), AUST-15 (ST-17), AUST-16 (ST-905), AUST-17
(ST-810), AUST-18 (ST-274), AUST-19 (STs 155 and
786), AUST-20 (ST-655), AUST-21 (STs 808), AUST-22
(ST-809), AUST-23 (ST-833), AUST-24 (ST-308), AUST-
25 (ST-274), AUST-26 (ST-179), AUST-27 (ST-455),
AUST-28 (ST-241), AUST-29 (ST-261), AUST-30 (ST-
1036), AUST-31 (ST-274), AUST-32 (ST-236), AUST-33
(ST-12), AUST-34 (ST-1038), AUST-35 (ST-553), AUST-
36 (ST-277), AUST-37 (ST-155), AUST-38 (STs 254 and
1041) [15], and international importance: LES (ST-146),
Manchester (ST-217), DK2 (ST-386), PA01 (ST-549), PA14
(ST-253), M18 (ST-1239), PACS2 (ST-1394), NCGM2.S1
(ST-235), PA7 (ST-1195), Clone C (ST-17), Dutch-1 (ST-
406), Dutch-2 (ST-497) and Midlands (ST-148) [17,19,20].

Statistical analysis
Discriminatory power and the quantitative measure of
congruence between the HRM10SNP and iPLEX20SNP
methods and corresponding 95% confidence intervals (CI)
were determined by calculating the Simpson’s Index of
Diversity and the adjusted Wallace coefficients respectively
using the online analysis tool at http://darwin.phyloviz.net/
ComparingPartitions/index.php?link=Tool. The 20-SNP pro-
file in-silico data were used to predict STs for the 506 clin-
ical isolates utilising the experimental results from the
iPLEX20SNP assay.

Results
In-silico analysis of MLST data
Analysis of the P. aeruginosa PubMLST website [17]
(13th December 2012) showed that the 1401 STs could
be divided into 927 different 20-SNP profiles (Additional
file 2: Table S2). Overall, 711 STs could be distinguished in-
dividually by the 20-SNP profile, whereas the remaining 690
STs had overlapping 20-SNP profiles with one (n = 120),

Table 1 Primers for primary PCR reaction for the
iPLEX20SNP

SNP site Gene
target Primers (5′-3′)

7 and 45 acsA
P1 10mer-ACCTTGTGCTTGTCGATGAT

P2 10mer-GCCACACCTACATCGTCTAT

322, 381 and 387 acsA
P1 10mer-ATCAGGTTGCCGAGGTTGTC

P2 10mer-AGACCGGCGCCTGCCTGATG

416 and 488 aroE
P1 10mer-TCGGTGTTGTCGCCGCGCAG

P2 10mer-CAATGTCACCGTGCCGTTCA

881 aroE
P1 10mer-CAGAGGAAGAATGCCTCGG

P2 10mer-CGACATGATGTATGCCAAGG

894 and 937 guaA
P1 10mer-AACATCGTCGACGACGCCAT

P2 10mer-AACACGCAGGTCAGTTGGTC

1086 and 1152 guaA
P1 10mer-GGCGAGGAACTTCACGTCCTG

P2 10mer-ATGGGCGTGAAGGTGATCCG

1297 mutL
P1 10mer-AGAAGACCGAGTTCGACCAT

P2 10mer-AAGATGGTCTTGCCGTTGTG

1465 mutL
P1 10mer-ACCAGCTTGTCGCGCACCAT

P2 10mer-AGCGCAACGGCCTGCACCT

1865 and 1958 nuoD
P1 10mer-TACAGCAGGTGGTTCAGGAT

P2 10mer-AAGATGGCCGAGCGCCAGT

2169 and 2208 ppsA
P1 10mer-AGAGAAGGGGACCGTCCTG

P2 10mer-ACCTTGTCCATTTCCGACAC

2337 ppsA
P1 10mer-TGGTCTCCGACATGACCGA

P2 10mer-TTCGCGAGCGATGATCGCC

2551 trpE
P1 10mer-GGATCAACGAAGAGGCCGA

P2 10mer-TCGATCAGCATCAGGTGCTC

P1 = forward amplification primer;
P2 = reverse amplification primer;
10mer = 5′ 10-mer tagACGTTGGATG.
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two (n = 51), three (n = 13), four (n = 11), five (n = 6), six
(n = 2), seven (n = 2), eight (n = 1), nine (n = 2), ten (n = 4),
11 (n = 2), 12 (n = 1), or 13 other (n = 1) STs (Additional
file 2: Table S2). In total, 486/690 (70.4%) STs showing
overlapping 20-SNP profiles comprised closely related
single- or double-locus variant STs. Based on these data,
the D-value for the 20-SNP profiling method was cal-
culated as 0.999 (95% CI 0.998, 0.999). For the STs of
national and international importance, nine could be
distinguished individually by the 20-SNP profile, whereas
the remaining exhibited overlapping 20-SNP profiles.
Most of the latter were again single- or double-locus vari-
ant STs (Table 3 and Additional file 2: Table S2).

HRM10SNP and iPLEX20SNP typing of the 506 clinical
isolates
Application of the HRM10SNP assay provided complete
10-SNP profiles for 494/506 isolates (type-ability = 97.6%)
of which 92 different 10-SNP profiles were observed; 12
isolates were not typed using the HRM10SNP method as
one or more SNPs failed to be called by the HRM analysis
(Additional file 3: Table S3). The iPLEX20SNP assay pro-
vided complete 20-SNP profiles for 471/506 isolates (type-

ability = 93.1%) of which there were 147 distinct 20-SNP
profiles; 35 isolates failed to provide complete 20-SNP
profiles due to the iPLEX20SNP assay failing to character-
ise one or more SNPs (Additional file 3: Table S3). When
the 147 complete 20-SNP profiles (471 isolates) from the
iPLEX20SNP assay were used to predict a MLST type
(based on the data provided in Additional file 2: Table S2),
124 of 147 (84.4%) profiles matched profiles obtained
from the MLST website and there could provide a
predicted MLST type or types. Twenty-three 20-SNP
profiles from 28 isolates did not match with any of the
listed 20-SNP profiles in Additional file 2: Table S2, and
therefore a MLST type could not be predicted.

Overall, 470 isolates provided complete SNP profiles by
both the HRM10SNP and iPLEX20SNP assays. Simpson’s
Index of Diversity and adjusted Wallace coefficients be-
tween the HRM10SNP and iPLEX20SNP methods were
calculated using these 470 isolates (Table 4). Simpson’s
Index of Diversity of the iPLEX20SNP (0.947) was similar
to that of the HRM10SNP method (0.944). However, when
concordance between the assays was assessed using the
adjusted Wallace coefficient, the iPLEX20SNP method
(94.9%) was a better predictor of the HRM10SNP method

Table 2 Extension primers used for the iPLEX20SNP

SNP sitea Gene target UEP (5′-3′) Mass EP1, mass EP2, mass EP3, mass EP4, mass

7 acsA ACATCGTCTATGGCCCG 5146.4 C,5393.5 T,5473.5

45 acsA ggggTCTGTTCGAGGGCGT 5931.8 A,6203 G,6219

322 acsA gggtaGCGTGGGCGCCCGGCA 6529.2 T,6800.4 C,6816.4

381 ascA ttcccAGCCGTTCTTCGGCGTGGT 7302.7 C,7549.9 A,7573.9 G,7589.9 T,7629.8

387 ascA gaaGAGGTTGTCCACCAG 5548.6 G,5795.8 A,5875.7

416b aroE
TGCCGTTCAAGGAAGA

4930.2 C,5177.4 A,5201.4 G,5217.4
aGgCGTTCAAGGAACT

488 aroE ccCACCCTGATCCGCCT 5027.3 C,5274.5 G,5314.5 T,5354.4

881 aroE gagggTGTATGCCAAGGAACCGAC 7451.9 C,7699 G,7739.1 T,7778.9

894 guaA gTCCTCCAAGGTCCTGCT 5426.5 C,5673.7 A,5697.7 G,5713.7

937 guaA tgtTCcgCGATGGCCTTGTGCA 6733.4 T,7004.6 C,7020.6

1086 guaA gtCGAGGACAAGTTCCTCGG 6158 C,6405.2 G,6445.2 T,6485.1

1152 guaA ctcaGCACCTTCATCGAAGT 6036.9 C,6284.1 G,6324.2 T,6364

1297 mutL GTGGAAAGCCACGTCGAA 5557.6 T,5828.8 C,5844.8

1465 mutL gggCGGCtcGCACCTGTGGGG 6520.2 C,6767.4 T,6847.3

1865 nuoD agagaCAGTCtcGGCACAGTTTCAT 7666 C,7913.2 T,7993.1

1958 nuoD tgctGATCACGTCGACCCGCTG 6687.3 G,6934.5 C,6974.5

2169 ppsA ccggaGCGCTGGCCGATGGCACG 7091.6 G,7338.8 T,7362.8 C,7378.8 A,7418.7

2208 ppsA CCGACACGTCGTTGATCAC 5748.7 G,5995.9 A,6075.8

2337 ppsA CGCCGCGTGGCAGGT 4610 T,4881.2 C,4897.2

2551 trpE CAGATCCTGCTCCAG 4512.9 G,4760.1 C,4800.2 A,4840

Non-template bases are indicated in lower case. Mass (Daltons) is provided for the unextended extension primer (UEP), as well as associated extension products
(EP) 1, 2 and where relevant 3 and 4.
aSNP position is based on the 2882 bp concatenated sequence.
bNote that SNP 416 had two extension primers to accommodate a known proximal SNP variation.
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Table 3 P. aeruginosa MLST data from the P. aeruginosa MLST database website (13th December 2012) and associated
SNP profiles for STs of national and international importance

20 SNP profilea MLSTb Total
STs

Related STs

(SLV or DLVc)

CGTCGACTACCTCCCCGGTA 649(AUST-01)d 1

TGCAAGCTACCTTCCCGGTA 775(AUST-02) 1

TGCAAGCTCCCCTTTGGGCG 242(AUST-03), 996 2 2/2 = SLVs

TGCCGGCTATCCCCCCGACA 787, 788(AUST-04) 2 2/2 = SLVs

TGTCGGCTACCTTTCGGGTA 209, 268, 274(AUST-05,-09, −18,-25, &-31) , 466, 546, 781(AUST-05),
936, 1043(AUST-09), 1068, 1089, 1301, 1326

12 12/12 = SLVs

CGCAAGCTATCCCCCGGGTG 4, 801 (AUST-06), 1292 3 2/3 = SLVs

CGCAAGCTATCCCCCCGGCA 262(AUST-07), 774, 1165 3 3/3 = SLVs

CGCAGGGCCCCCTTCGGGCG 782(AUST-08), 783(AUST-08), 784(AUST-08), 785(AUST-08) 4 4/4 = SLVs

CGCCGGCTCCCCCCCCGACA 179(AUST-10,-12,-14,&-26), 180, 353 3 3/3 = SLVs

TGCAAGCTACCCCCTGGACA 13, 155(AUST-10,-14, −19, &-37), 280, 541, 579, 677, 786(AUST-19), 1276, 1316, 1335 10 10/10 = SLVs

CGCAAGCTACCTCCCCGGTA 384, 1037(AUST-11) 2

CGCAGGCTACCTCCTGGGTG 508(AUST-11), 937 2 2/2 = SLVs

TGCCGGCTCCCCCCTGGGCA 554, 804(AUST-11) 2 2/2 = SLVs

CGCAGGCTACCTCCCCGGTA 589, 791, 803(AUST-11) 3 3/3 = SLVs

TGCCGGCTATCCCCCCGGCA 822(AUST-11), 1239(M18) 2 2/2 = SLVs

CGCAAGCTACCTCCCCAGTA 882(AUST-11), 1151, 1233 3 3/3 = SLVs

CGCAGGCTACCTTCCCGGTA 1034(AUST-11) 1

CGCAAGGTACCTCCTGGGCG 800(AUST-13) 1

CGCAAGGTCCCCCCCGGGTG 389(AUST-13) 1

CGTCGGCTATCCTTCCGGTA 17(AUST-15 & Clone C), 318, 322, 380, 636, 688, 845, 958, 1255, 1313 10 9/10 = SLVs

CGCAAGCTACTCTCCCGGTG 905(AUST-16), 1039 2

CGTCGGCTATCCCCTGGGCA 398, 399, 401, 810(AUST-17) 4 3/4 = SLVs

CGTCGGCCACTCTTCCGGCG 655(AUST-20), 709 2 2/2 = SLVs

TGCAAGCTACCCTCCCGGTA 669, 808(AUST-21) 2 2/2 = SLVs

CGCCGGGCCTCCTCTGAGTG 809(AUST-22) 1

TGTCGGCTACCTTCCCGGTA 833(AUST-23), 839 2 2/2 = SLVs

TACCAGGCCCCCTCCGAGTG 89, 307, 308(AUST-24), 662, 1028 5 2/5 = DLVs

TGTCGGCCCCCCTTCGGGTA 455(AUST-27) 1

CGCAAGCTACCTTCCCGGTA 232, 241(AUST-28), 247, 379, 471, 577 6 5/6 = SLVs

CGTCGGCTATCCCCTGGGTA 169, 261(AUST-29) 2

CGCAGACTCCCCTCCCGGTA 1036(AUST-30) 1

TGCAAGCTATCCTCCCAGCG 236(AUST-32), 239, 240 3 3/3 = SLVs

TGCAAGCTATCCCCCCGGTG 12(AUST-33) 1

CGCAAGCTCCCCCCCGGGTA 103, 244, 441, 462, 464, 594, 766, 986, 1038(AUST-34), 1181, 1227, 1338 12 10/12 = SLVs or DLVs

CGCAAGCTATCCTTCCGGTA 445, 553(AUST-35) 2

CGCAAGCTCCTCTTTCGGTA 277(AUST-36), 364, 1128, 1390 4 4/4 = SLVs

TGTCGGCTCCTCTTTGGGTA 254(AUST-38), 1041(AUST-38) 2 2/2 = SLVs

TGTCGGCTACCTCCCCGGTG 146(LES), 374, 467, 681, 683, 970 6 6/6 = SLVs

TGCAAGCTACCTCCCCGACG 217(Manchester), 1134 2 2/2 = SLVs

CGCAAGCTACCTCCCCGGCG 386(DK2), 1244 2

TGCAGGCTCCCCCCCCAGCA 549(PA01), 1331 2 2/2 = SLVs

TATCGGGCCCCCTCCGAGTG 65, 107, 109, 253(PA14), 297, 338, 342, 377, 532, 773, 815, 923, 1110, 1363 14 3/14 = SLVs or DLVs
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than vice versa (89%). To investigate the latter further we
identified all 10-SNP profiles that were further discrimi-
nated by the 20-SNP profiles (Additional file 4: Table S4);
34 HRM10SNP profiles were further distinguished into
101 20-SNP profiles using the iPLEX20SNP method. Of
note, these involved 30 STs associated with CF strains
of local or international importance (Additional file 4:
Table S4). In contrast, there were only 11 iPLEX20SNP pro-
files that were further discriminated by the HRM10SNPassay
(Additional file 3: Table S3).

Given the high prevalence of AUST-01, AUST-02 and
AUST-06 in Australia, and that the HRM10SNP assay
was primarily designed to target these strains, we com-
pared the ability of both assays to distinguish these
strains. For isolates identified as AUST-01, AUST-02 or
AUST-06 by either method (Additional file 3: Table S3),
the results of the two methods were in agreement for
80/81 (98.8%), 48/49 (97.8%) and 11/12 (91.7%) isolates,
respectively. Both isolates giving discrepant results for
AUST-01 and AUST-06 were identified as AUST-01 or
AUST-06 by the iPLEX20SNP method, but not by the
HRM10SNP assay. For both of these isolates, their 10-
SNP profiles by the HRM10SNP differed by only one
SNP from the expected profiles of AUST-01 and AUST-06.
Upon repeat testing in the HRM10SNP assay, both subse-
quently typed as AUST-01 and AUST-06, suggesting that

there was a mistake in the original HRM10SNP testing.
The discordant result for AUST-02 was associated with a
different ST; one isolate was identified as AUST-02 by the
HRM10SNP method, but differed by two SNPs from the
expected 20-SNP profile for AUST-02 in the iPLEX20SNP
assay (predicted MLST type of 778).

Discussion
The in-silico analyses of sequence data from the P. aerugi-
nosa PubMLST website showed that more than half of
recognised STs could be distinguished individually by the
20-SNP profile of the iPLEX20SNP assay. Furthermore,
the recognised STs that were unable to be distinguished
by this assay were typically single- or double-locus vari-
ants. Hence, theoretically the iPLEX20SNP method has
considerable potential for broader-based MLST-focused
studies of P. aeruginosa, here and elsewhere. As the
iPLEX20SNP is also based on the Sequenom MassARRAY
platform, it is particularly suitable for high-throughput in-
vestigations [14]. Using this technology up to 384 isolates
can be tested within one working day for less than $AUD
10 per isolate [14], and is therefore quite favourable com-
pared to other technologies. For example, for our 506
test isolates we estimate that classical DNA sequencing-
based MLST would have cost approximately $AUS 60,720
($AUS 120 per isolate), whereas costs for the HRM10SNP
and iPLEX20SNP methods were approximately $AUS 10,120
($AUS 20 per isolate)13 and $AUS 5,060 respectively.

Compared to the HRM10SNP, the iPLEX20SNP method
clearly provided better discrimination when applied to the
P. aeruginosa test isolates used in this study. Of note was
that the HRM10SNP assay grouped numerous unrelated
isolates, including STs of shared strains in the CF patient
population, while the iPLEX20SNP method was able to
distinguish between these isolates (Additional file 4:
Table S4). This was likely due to the higher number of
SNPs and that SNP selection for iPLEX20SNP was based
on a large international MLST database. These observa-
tions provide experimental data to support the above

Table 3 P. aeruginosa MLST data from the P. aeruginosa MLST database website (13th December 2012) and associated
SNP profiles for STs of national and international importance (Continued)

CGTCGGCTCTCCCCTGGACA 1394(PACS2) 1

CGCTAGGCCCCCTCCGAGTG 227, 230, 235(NCGM2.S1), 533, 534, 696, 745, 976, 989 9 9/9 = SLVs

CGCGGAGCCCTCTCCGTGTG 366, 368, 1006, 1063, 1190, 1191, 1195(PA7) 7 4/7 = SLVs

CGTCGGCTACCTCCCCGACA 406(Dutch-1), 484, 519, 536, 547, 575, 608, 1214, 1235, 1312, 1318 11 10/11 = SLVs or DLVs

CGTCGGCTATCCTTTGGGTA 497(Dutch-2), 544, 895, 1317 4 4/4 = SLVs or DLVs

CGCAAGCTATCCCCCGAGTA 138, 140, 148(Midlands), 956 4 2/4 = SLVs

The STs consistent with recognised P. aeruginosa strains are indicated in parentheses.
aSNP profile is in the order of 7, 45, 322, 381, 387, 416, 488, 881, 894, 937, 1086, 1152, 1297, 1465, 1865, 1958, 2169, 2208, 2337 and 2551. These SNPs were
derived from the sequence data from the Pseudomonas aeruginosa MLST database website (http://darwin.phyloviz.net/ComparingPartitions/index.php?link=Tool)
on 13 December 2012. bMLST types available from the Pseudomonas aeruginosa MLST database website (http://pubmlst.org/paeruginosa) on 13 December 2012.
cSLV: single locus variant, DLV: double locus variant. dBoldface type represents previously characterised National and International MLST types of importance
(e.g., AUST-01 has the MLST type 649).

Table 4 Number of types, Simpson’s index of diversity and
adjusted Wallace coefficients for the HRM10SNP and
iPLEX20SNP assays calculated from application to the 470
isolates providing complete SNP profiles by both methods

Assay No. of types Simpson’s index
of diversity

Adjusted Wallace
coefficient

(95% CI) (95% CI)

HRM10SNP 91 0.944 0.897

(0.933-0.955) (0.876-0.918)

20SNP iPLEX 147 0.947 0.949

(0.936-0.959) (0.912-0.986)
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in-silico analyses. Indeed, in the clinical context, attaining
optimal discriminatory power is particularly important when
trying to identify new or emerging shared P. aeruginosa
strains in CF patients. Consequently, iPLEX20SNP is ideally
suited for broader, investigatory studies of P. aeruginosa
infected patients.

While the HRM10SNP lacked overall discriminatory
power, it nevertheless proved to be well-suited for
detecting AUST-01, AUST-02 and AUST-06 amongst
P. aeruginosa isolates from a broad range of Australian
CF clinics. AUST-01 and AUST-02 are the shared P. aer-
uginosa strains of greatest concern in Australia [15], and
therefore simple methods for detecting these strains
remain of local clinical and research interest. The one
key benefit of the HRM10SNP method is that it is
based on real-time PCR technology, which is now com-
monplace in most clinical microbiology laboratories.
Hence, the HRM10SNP method may still be a useful diag-
nostic tool locally for laboratories with no access to spe-
cialised equipment such as the Sequenom MassARRAY
platform.

Limitations in terms of typeability (i.e., the number of
isolates providing complete SNP profiles) were observed,
however, with 2.4% and 6.9% of isolates failing to give
complete profiles in the HRM10SNP and the iPLEX20SNP
assays respectively. Typically these problems are caused by
poor isolate preparation (i.e., insufficient DNA) or other-
wise sequence variation in primer targets [10,14]. Given
the sheer diversity amongst the P. aeruginosa MLST
housekeeping genes, it is highly likely that sequence vari-
ation would account for a large proportion of the problems
observed here. In any event, we do not see this as an im-
portant limitation affecting the broader utility of the assays
given that other methods, such as DNA sequencing, could
be applied if necessary to the small numbers of untypeable
isolates.

Conclusions
In summary, molecular typing is an integral part of investi-
gating the development and spread of shared P. aeruginosa
strain genotypes in patients with CF. The iPLEX20SNP is
a superior new method providing sufficient throughput
and discriminatory power for broader SNP-based MLST-
style investigations of P. aeruginosa, whereas the HRM10SNP
method remains a convenient technique for screening
CF clinical isolates for the current most commonly
shared Australian P. aeruginosa strains and should be
able to be performed by most clinical microbiology
laboratories.
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The data sets supporting the results of this article are in-
cluded within the article and its additional files.

Additional files

Additional file 1: Table S1. Source and distribution of Pseudomonas
aeruginosa isolates from cystic fibrosis patients.

Additional file 2: Table S2. P. aeruginosa MLST data from the P. aeruginosa
MLST database website (13th December 2012) and associated SNP profiles.
iPLEX20SNP predicted STs consistent with recognised P. aeruginosa strains
are indicated in parentheses.

Additional file 3: Table S3. iPLEX20SNP and HRM10SNP results for the
506 isolates. iPLEX20SNP predicted STs or HRM10SNP profiles consistent
with recognised P. aeruginosa strains are indicated in parentheses.

Additional file 4: Table S4. HRM10SNP profiles further discriminated by
the iPLEX20SNP assay. iPLEX20SNP predicted STs or HRM10SNP profiles
consistent with recognised P. aeruginosa strains are indicated in parentheses.

Abbreviations
CI: Confidence interval; CF: Cystic fibrosis; HRM: High-resolution melting;
MLST: Multi-locus sequence typing; PCR: Polymerase chain reaction;
STs: Sequence types; SNPs: Single nucleotide polymorphisms.

Competing interests
The authors have no competing interests to declare.

Authors’ contributions
Conceptualisation by MS, TK, SB, CW, KG, MN, TS, and DW; development by
MS, TK, SA, and DW; analysis and interpretation by MS, TK, KR, SA, KG, KMG,
DW; the initial drafts were written by MS, TK, KG and DW. All authors
provided feedback and have read and approved the final version of the
manuscript.

Authors’ information
Melanie W Syrmis and Timothy J Kidd equal first authors.

Acknowledgements
We thank the ACPinCF Investigator Group and the participants, research and
clinical staff, and clinical microbiology laboratories at each of the study sites
for their assistance with sample collection (See reference 15 for full details).
We gratefully acknowledge Dr Robert Ware of the Queensland Children’s
Medical Research Institute and School of Population Health, The University
of Queensland for his assistance with sample randomisation and selection.
This publication made use of the Pseudomonas aeruginosa MLST website
(http://darwin.phyloviz.net/ComparingPartitions/index.php?link=Tool)
developed by Keith Jolley and sited at the University of Oxford (Jolley &
Maiden, BMC Bioinformatics 2010, 11:595). The development of this site has
been funded by the Wellcome Trust.

Funding
This study was supported by the Australian Cystic Fibrosis Research Trust and
The Children’s Health Foundation Queensland. The National Health and
Medical Research Council Project Grant 455919, The Children’s Health
Foundation Queensland, The Queensland Health Office of Health and
Medical Research, The Australian Cystic Fibrosis Research Trust, The Prince
Charles Hospital Foundation and Rotary Australia supported the collection of
the isolates used in this project.

Author details
1Queensland Children’s Medical Research Institute, The University of
Queensland, Brisbane, Queensland 4029, Australia. 2Queensland Paediatric
Infectious Disease Laboratory, Block 28, Royal Children’s Hospital, Herston
Road, Herston, Brisbane 4029, Queensland, Australia. 3Sequenom Inc.,
Sequenom Asia Pacific, Brisbane, Queensland 4029, Australia. 4Department of
Thoracic Medicine, The Prince Charles Hospital, Brisbane, Queensland 4032,
Australia. 5Queensland Children’s Respiratory Centre, Royal Children’s
Hospital, Brisbane, Queensland 4029, Australia. 6Microbiology Division,
Pathology Queensland Central Laboratory, Brisbane, Queensland 4029,
Australia.

Received: 28 October 2013 Accepted: 28 May 2014
Published: 5 June 2014

Syrmis et al. BMC Infectious Diseases 2014, 14:307 Page 7 of 8
http://www.biomedcentral.com/1471-2334/14/307



References
1. O’Sullivan BP, Freedman SD: Cystic fibrosis. Lancet 2009, 373:1891–1904.
2. Hauser AR, Jain M, Bar-Meir M, McColley SA: Clinical significance of

microbial infection and adaption in cystic fibrosis. Clin Microbiol Rev
2011, 24:29–70.

3. Fothergill JL, Walshaw MJ, Winstanley C: Transmissible strains of
Pseudomonas aeruginosa in cystic fibrosis lung infections. Eur Respir J
2012, 40:227–238.

4. Ashish A, Shaw M, Winstanley C, Humphrey L, Walshaw MJ: Halting the
spread of epidemic Pseudomonas aeruginosa in an adult cystic
fibrosis centre: a prospective cohort study. J R Soc Med Short Rep
2013, 4:1.

5. Kidd T, Grimwood K, Ramsay K, Rainey P, Bell S: Comparison of three
molecular techniques for typing Pseudomonas aeruginosa isolates in
sputum samples from patients with cystic fibrosis. J Clin Microbiol 2011,
49:263–268.

6. Sullivan CB, Diggle MA, Clarke SC: Multilocus sequence typing: data
analysis in clinical microbiology and public health. Mol Biotech 2005,
29:245–254.

7. Maiden M: Multilocus sequence typing of bacteria. Ann Rev Microbiol
2006, 60:561–588.

8. Pérez-Losada M, Cabezas P, Castro-Nallar E, Crandall KA: Pathogen
typing in the genomics era: MLST and the future of molecular
epidemiology. Infect Gen Evol 2013, 16:38–53.

9. Li W, Raoult D, Fournier PE: Bacterial strain typing in the genomic era.
FEMS Microbiol Rev 2009, 33:892–916.

10. Anuj SN, Whiley DM, Kidd TJ, Ramsay KA, Bell SC, Syrmis MW, Grimwood K,
Wainwright CE, Nissen MD, Sloots TP: Rapid single-nucleotide
polymorphism-based identification of clonal Pseudomonas aeruginosa
isolates from patients with cystic fibrosis by the use of real-time PCR
and high-resolution melting curve analysis. Clin Microbiol Infect 2011,
17:1403–1408.

11. Huygens F, Inman-Bamber J, Nimmo GR, Munckhof W, Schooneveldt J,
Harrison B, McMahon JA, Giffard PM: Staphylococcus aureus
genotyping using novel real-time PCR formats. J Clin Microbiol 2006,
44:3712–3719.

12. Robertson GA, Thiruvenkataswamy V, Shilling H, Price EP, Huygens F,
Henskens FA, Giffard PM: Identification and interrogation of highly
informative single nucleotide polymorphism sets defined by bacterial
multilocus sequence typing databases. J Med Microbiol 2004,
53:35–45.

13. Eusebio N, Pinheiro T, Amorim AA, Gamboa F, Saraiva L, Gusmão L, Amorim
A, Araujo R: SNaPaer: a practical single nucleotide polymorphism
multiplex assay for genotyping of Pseudomonas aeruginosa. PLoS One
2013, 8:e66083.

14. Syrmis MW, Moser RJ, Kidd TJ, Hunt P, Ramsay KA, Bell SC, Wainwright CE,
Grimwood K, Nissen MD, Sloots TP, Whiley D: High-throughput single
nucleotide polymorphism-based typing of shared Pseudomonas
aeruginosa strains in cystic fibrosis patients using the Sequenom iPLEX
platform. J Med Microbiol 2013, 62:734–740.

15. Kidd TJ, Ramsay KA, Hu H, Marks GB, Wainwright CE, Bye PT, Elkins MR,
Robinson PJ, Rose BR, Wilson JW, Grimwood K, Bell SC: Shared
Pseudomonas aeruginosa genotypes are common in Australian cystic
fibrosis centres. Eur Respir J 2013, 41:1091–1100.

16. Logan C, Habington A, Lennon G, Grogan J, Byrne M, O'Leary J, O'Sullivan
N: Genetic Relatedness of Pseudomonas aeruginosa isolates among a
paediatric cystic fibrosis patient cohort in Ireland. J Med Microbiol 2012,
61:64–70.

17. Pseudomonas aeruginosa MLST Database Home Page. [http://pubmlst.
org/paeruginosa/]

18. Price EP, Inman-Bamber J, Thiruvenkataswamy V, Huygens F, Giffard PM:
Computer-aided identification of polymorphism sets diagnostic for
groups of bacterial and viral genetic variants. BMC Bioinform 2007,
8:278.

19. Winsor GL, Lam DK, Fleming L, Lo R, Whiteside MD, Yu NY, Hancock RE,
Brinkman FS: Pseudomonas Genome Database: improved comparative
analysis and population genomics capability for Pseudomonas genomes.
Nucleic Acids Res 2011, 39:D596–D600.

20. De Soyza A, Hall AJ, Mahenthiralingam E, Drevinek P, Kaca W, Drulis-Kawa Z,
Stoitsova SR, Toth V, Coeyne T, Zlosnik JEA, Burns JL, Sá-Correia I, De Vos D,
Pirnay JP, Kidd T, Reid D, Manos J, Klockgether J, Wiehlmann L,
Tümmler B, McClean S, Winstanley C, on behalf of EU FP7 funded COST
Action BM1003 “Cell surface virulence determinants of Cystic Fibrosis
pathogens: Developing an international Pseudomonas aeruginosa
reference panel. Microbiologyopen 2013, 2:1010–1023.

doi:10.1186/1471-2334-14-307
Cite this article as: Syrmis et al.: A comparison of two informative
SNP-based strategies for typing Pseudomonas aeruginosa isolates from
patients with cystic fibrosis. BMC Infectious Diseases 2014 14:307.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Syrmis et al. BMC Infectious Diseases 2014, 14:307 Page 8 of 8
http://www.biomedcentral.com/1471-2334/14/307


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Clinical isolates
	HRM10SNPAssay
	20-SNP iPLEXMassARRAY(iPLEX20SNP)
	In-silico analysis of 20-SNP profiles from the MLST database
	Statistical analysis

	Results
	In-silico analysis of MLST data
	HRM10SNP and iPLEX20SNP typing of the 506 clinical isolates

	Discussion
	Conclusions
	Availability of supporting data

	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Authors’ information
	Funding
	Author details
	References

