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Abstract

Background: The aim of this study was to investigate the role of K101Q, Y181C and H221Y emerging in HIV-1
reverse transcriptase with different mutations patterns in phenotypic susceptibility to currently available NNRTIs
(nevirapine NVP, efavirenz EFV) and NRTIs (zidovudine AZT, lamivudine 3TC, stavudine d4T) in China.

Methods: Phenotype testing of currently available NNRTIs (NVP, EFV) and NRTIs (AZT, 3TC, d4T) was performed on
TZM-b1 cells using recombined virus strains. P < 0.05 was defined significant considering the change of 50%
inhibitory drug concentration (ICsg) compared with the reference, while P <0.01 was considered to be statistically
significant considering multiple comparisons.

Results: Triple-mutation K101Q/Y181C/H221Y and double-mutation K101Q/Y181C resulted in significant increase in
NVP resistance (1253.9-fold and 986.4-fold), while only K101Q/Y181C/H221Y brought a 5.00-fold significant increase
in EFV resistance. Remarkably, K101Q/H221Y was hypersusceptible to EFV (FC=0.04), but was significantly resistant

P =04061) but significant to EFV and other three NRTIs.

complex.

to the three NRTIs. Then, the interaction analysis suggested the interaction was not significant to NVP (F=0.77,

Conclusion: Copresence of mutations reported to be associated with NNRTIs confers significant increase to NVP
resistance. Interestingly, some may increase the susceptibility to EFV. Certainly, the double mutation (K101Q/H221Y)
also changes the susceptibility of viruses to NRTIs. Interaction between two different sites makes resistance more

Keywords: Nucleoside reverse transcriptase inhibitors (NRTIs), Non-nucleoside reverse transcriptase inhibitors
(NNRTIs), HIV-1 resistance mutation, 50% inhibitory drug concentration

Background

The reverse transcriptase (RT) of human immunodefi-
ciency virus type 1 (HIV-1) is a multifunctional enzyme,
possessing RNA-dependent DNA polymerase (RDDP)
activity, DNA-dependent DNA polymerase (DDDP) ac-
tivity and RNase H activity [1,2]. RT is an essential en-
zyme for the HIV-1 life-cycle. So it is the target for
antiviral drugs in HIV-1 antiviral therapy [2-5]. There
are two classes of HIV-1 RT inhibitors approved for the
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treatment of HIV-1 infection: nucleoside reverse tran-
scriptase inhibitors (NRTIs) and non-nucleoside reverse
transcriptase inhibitors (NNRTIs). Highly active anti-
retroviral therapy (HAART) generally comprises three
antiretroviral drugs, usually two NRTIs and either PR in-
hibitors or a NNRTI drug [6]. So far, eight NRTIs and
four NNRTIs have been used as parts of HAART. Drug
pressure is responsible for the dramatic increase of such
an intrinsic variability, which ends up with the final de-
velopment of mutations, especially in the pol region en-
coding both RT and protease (PR) enzymes [7]. Constant
HAART selects HIV-1 resistant virus which may have
accumulated resistances to all the available drugs. Since
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the surveillance of HIV-1 drug resistance was approved
in 2004 in China, a mass of data about the prevalence
rate of HIV-1 drug resistance virus, influencing factors
and the effect on antiviral therapy have been acquired.
With the extending of the time of HAART and the im-
provement of the sensitivity of HIV-1 drug resistance
testing, novel potential resistance associated mutations
are being identified. Noteworthy, the prominent role of
novel mutations in contributing to HIV-1 drug resist-
ance, the interaction between different mutations and
the change of replication capacity of HIV-1 resistant
strains remain unclear. Some articles have predicted that
as additional or secondary mutations, novel mutations
combined with those currently known are involved in
NNRTIs resistance by directly increasing resistant level
of RT inhibitors or compensating the loss of replication
capacity [8]. Therefore, they lead to antiretroviral ther-
apy failure [9].

First-generation NNRTIs have a low genetic barrier for
resistance. Only a single-nucleotide change can result in
high-level resistance with little impact on the replication
[10]. Moreover, mutations are stable and hardly reverse
to wild types in absence of drug pressure [11-14]. Ana-
lyses of HIV-1 RT crystallographic indicated that the
polymerase activity can be significantly influenced by
conformational changes that occur in an allosteric site
known as NNRTI binding pocket (NNRTI-BP) [7,15].
Amino acids substitutions located at NNRTI-BP induce
NNRTI-resistance (L100, K101, K103, E138, V179, Y181
and Y188) [16]. Furthermore, many studies were focused
on the probalble mechanism of resistance mutations and
they were assisted by experiments [4,17,18]. However,
the common NNRTI mutations were K103N and Y181C
whose roles in NNRTI-resistance have been clarified
[14,19,20]. Recent studies have confirmed novel muta-
tions are positively associated with NNRTIs treatment
[8,21-23]. Ceccherini-Silberstein reported that novel mu-
tations may actively participate in the NNRTIs resistance
and the development of NNRTI resistance may be more
complex (=3 NNRTI resistance mutations) than the
first-generation NNRTIs resistance [9]. However, viral
resistance depends not only on the accumulation of an
increasing number of mutations over time, but also on
the specific combination of mutations [21]. H221Y,
which had been believed to emerge in NRTI-treatment
patients and considered to be polymorphism [8,9,21],
proved to be a novel mutation correlated with NNRTI-
resistance in 2003. However, it had been certified that
the frequency of H221Y significantly increased in
NNRTI-treatment failing patients compared with drug-
naive and NRTI-treated NNRTI-naive patients [9,21,24].
Moreover, H221Y was strongly associated with the use
of NVP and showed positive interactions with Y181C
[9,25]. It was demonstrated that K101Q with H221Y as
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an unreported HIV-1 RT mutation pattern was associ-
ated with phenotypic resistance to the NNRTT class [21].
Other studies showed the mutations conferring resist-
ance to one class could change the susceptibility of vi-
ruses to the others [26].

Here, we are focused on defining the role of K101Q,
Y181C, H221Y emerging in different patterns. To inves-
tigate whether these mutations may confer a decreased
phenotypic susceptibility to currently available NNRTIs
(nevirapine NVP, efavirenz EFV) and NRTIs (AZT, lami-
vudine 3TC, stavudine d4T) in China. At last, we analyze
the potential interaction between sits 181 and 221 in the
background of K101Q.

Methods

Patients and samples

We traced six patients for 47-58 months in Henan
Province failing two NRTIs plus one NNRTI [zidovudine
(AZT) plus didanosine (ddI) plus nevirapine (NVP)].
They were infected HIV-1 subtype B by blood donation.
Patients complied with treatment regimens well. We had
followed up with interval for approximately six months
(ten times) since the very start of therapy. Every time,
we collected 10 ml anticoagulated whole blood samples,
separated them by centrifugation to obtain blood plasma
and peripheral blood mononuclear cells (PBMCs) and
then stored them at -80°C.

Clonal sequencing of HIV-1 in plasma and PBMCs

Clonal sequencing approach was adopted in this study
[27]. RNA and DNA were extracted from plasma and
PBMC s respectively according to the manufacturer’s in-
structions of QIAamp as the template for a nested PCR
[25,28]. PCR products were independently cloned, and a
single clone was sequenced. Thus, each sequence
reflected the genotype of an independent viral genome.
The nucleotide sequence of a 2.1 kb segment of the
HIV-1 genome included the entire protease and RT cod-
ing region. We analyzed these sequences at each follow-
up time.

Construction of recombined virus

Amplification of viral genome was performed using a
nested PCR procedure, and patient-derived HIV-1 RT
fragment carrying K101Q/Y181C/H221 replaced the
partner sequence (2843 nt-3485 nt, 643 bp) in pNL4-3
pol to construct the first clone as previously described
[29]. There were few other mutations reported to be as-
sociated with resistance in Stanford drug resistance data-
base. Then, site-directed mutagenesis was carried out to
obtain another three HIV-1 clones separately harboring
K101Q/Y181C, K101Q/H221Y and K101Q. Recom-
bined pNL4-3 plasmids and wild-type pNL4-3 as the
control were transfected into HEK293T cells using
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Lipofectamine 2000 following the manufacturer’s in-
structions and harvested mutant or wild-type viruses
transfection supernatant at the 48" hour. Then, trans-
fection supernatant infected MT-2 cells and viral cultures
were grown in 4 to 6 days. Supernatants were stored at
-80°C and sequenced to confirm the presence of the de-
sired mutations. Although we constructed the single mu-
tation (H221Y) virus as mentioned above to clarify the
contribution of H221Y to resistance, the virus was low
virus titer. So we did not obtain a reliable result of single
H221Y.

Phenotypic drug susceptibility assays

The study tested the susceptibility of viruses to currently
available RT inhibitors (NVP, EFV, AZT, 3TC and d4T)
in China with recombined viruses. They were performed
in TZM-b1 cells as previously described [29]. In brief,
drugs at variable concentrations were added to TZM-bl
cells (10%cells/well) in 96-well plates growing in 100ul
Dulbecco’s minimal essential medium (DMEM) (Gibco)
supplemented with 10% fetal bovine serum (Gibco), 1%
penicillin-streptomycin [30]. Immediately after drugs
addition, cells were infected with wild-type or mutant vi-
ruses normalized by TCIDs,. Forty-eight hours after the
TZM-b1 got infected, with the condition of 37°C and 5%
CO,, relative luminescence units (RLU)/well were mea-
sured by a luminometer (Wallik 1420; Perkin Elmer) ac-
cording to Bright-glo'™ Luciferase assay system
(Promage E2650) instructions. All the experiments were
performed at least in duplicate on three different days.
The IC50 was calculated using the GraphPad Prism
program.

Statistical analysis

Multiple comparisons statistical method was used to as-
sess the significance of differences in ICsq values be-
tween any two viruses, and Kruskal-Wallis method was
used to correct the testing. P <0.05 was defined signifi-
cant considering the change of 50% inhibitory drug con-
centration (ICsp) compared with the reference, while P <
0.01 was considered to be statistically significant consid-
ering multiple comparisons.

Ethical consideration

The study was approved by the Ethical Board of the
Beijing Institute of Microbiology and Epidemiology in
January 2009. All the patients were compliance with the
first antiviral therapy program in China and were se-
lected with informed consent. Data were managed
anonymously.

Results
H221Y, a novel NNRTI-resistance mutation relevant to
NVP, emerged in all the six patients. There were 204
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sequences of Patient 1 blood plasma and 160 of PBMCs.
Combination of H221Y and Y181C was detected in the
10™ month of antiviral therapy with the frequency more
than 30% in quasispecies. From the 22°! month on, the
frequency of H221Y/Y181C in quasispecies was 100% in
plasma. However, not until the 28™ month did the fre-
quency of H221Y/Y181C in quasispecies become 100%
in PBMCs. Remarkably, K101Q was observed along with
the double mutations at the early time of antiviral
therapy.

Apart from the above, we also observed more mu-
tations in plasma than in PBMCs at each interview
time. In other words, some mutations which
emerged in plasma were not found in PBMCs. With
the antiviral therapy going, mutations in PBMCs and
plasma would be consilient. However, certain muta-
tions were momentary and were absent in the last
mutations patterns. All the mutations present in the
last patterns were nearly 100% in both PBMCs and
plasma.

Recombined viruses

We obtained one reference virus pNL4-3yr and 4
recombined HIV-1 viruses separately harboring K101Q/
Y181C/H221Y, K101Q/Y181C, KI101Q/H221Y and
K101Q. By analyzing sequences, we confirmed that the
desired mutations did exist. Then, we calculated ICs, of
5 drugs (NVP, EFV, AZT, 3TC and d4T) by making
dose-effect relationship using the GraphPad Prism pro-
gram. Moreover, the fold changes (FC) of ICs, were cal-
culated in Table 1.

The changes of NVP and EFV susceptibility induced by
association mutation

To assess the direct contribution of mutation patterns to
NVP and EFV, we analyzed the IC5, data of NVP and
EFV in Table 1 with multiple testing statistical methods.
Kruskal-Wallis method was used to correct multiple
tests with the false-discovery rate of 0.05. We observed
viruses containing K101Q/Y181C/H221Y result in a
5.00-fold significant increase in EFV resistance and a
1253.9-fold increase in NVP resistance. The copresence
of K101Q and Y181C in viruses resulted in a little in-
crease in EFV resistance, but a 986.4-fold increase in
NVP resistance. Interestingly, K101Q plus H221Y con-
tributed to a significant 25.00-fold decrease in EFV re-
sistance while a 4.0-fold increase in NVP resistance.
K101Q caused 2.63-fold and 1.32-fold change of ICs, re-
spectively (Figure 1A-B).

The effect of association mutation patterns on NRTIs

A further step of this study was to investigate
whether the susceptibility to NRTIs was also altered
by these mutations (Figure 1C-E). Table 1 shows
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Table 1 The IC5, of 5 viruses and FC contrasted with pNL4-3,;
IC2, £ SD (nM) (FCP)
Virus
NVP EFV AZT 3TC d4aT
WTona-3 7449+9.24 (1.0) 13.66 +7.74 (1.0) 214241684 (1.0) 44,60+ 31.99 (1.0) 27520+ 11869(1.0)
K101Q/Y181C/H221Y  93400.00 + 32831.88*(1253.9) 68.33 + 12.95%(5.0) 4090+ 13.55 (1.9 10238 +3042 (2.3) 72755+ 15747 (1.9)
K101Q/Y181C 73470.00 + 20855.22%(986.4) 4046 +15.70 (3.0) 10.26 +4.34 (0.5) 79.17+£3.56 (1.2) 37333+214.30 (14)
K101Q/H221Y 294.63 +80.62 (4.0) 0.54 +0.32%(0.04) 222.104+49.35%(104) 4968+ 11553%(11.1)  5715.00 £ 610.50%(20.8)
K101Q 56.63+11.36 (0.8) 517+£144 (04) 5234+1193 (24) 8258+62.18 (1.9) 32290+ 11967 (1.2)

a, the 50% inhibitory concentration. b, calculated by dividing the IC50 of each mutant virus by the IC50 for the wild-type. The mean + SD of three independent
experiments. FC only showed the mean of three independent experiments. * IC50 was significantly change compared with pNL4-3,,7, P < 0.05.

viruses carrying K101Q slightly altered resistance to
AZT, 3TC and d4T, and the same as K101Q/Y181C
viruses. Viruses harboring K101Q/H221Y displayed
significantly resistance to AZT, 3TC and d4T (10.37-
fold, 11.14-fold and 20.77-fold). However, the viruses,
Y181C along with K101Q and H221Y, presented a lit-
tle IC5, increase of the three NRTIs.

The interaction between Y181C and H221Y at the
background of K101Q

Regarding K101Q as the background, we analyzed the
interaction between Y181C and H221Y of five drugs re-
spectively. We found the interaction between sites 181
and 221 was not statistically significant (F=0.77, P =
0.4061) in the presence of NVP, but the interaction was
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statistically significant with EFV (F =12.80, P =0.0072).
Comparing K101Q/Y181C/H221Y with K101Q in the
presence of EFV, we found the contribution of Y181C
plus H221Y to resistance was 13.22-fold which was
higher than the sum of the folds of K101Q/Y181C versus
K101Q and K101Q/H221Y versus K101Q. We guessed
the interaction between Y181C and H221Y was syner-
getic. We also analyzed the interaction between sites 181
and 221 in NRTIs at the background of K101Q. Results
showed the interaction was significant in AZT, 3TC and
d4T (Table 2). Table 1 displayed the FC in three NRTIs
as the following: K101Q/H221Y>K101Q/Y181C/
H221Y>K101Q/Y181C. We speculated Y181C had sig-
nificantly decreased the H221Y resistance to the three
NRTTIs at the background of K101Q.

Discussion

Compared with the genotypic drug resistance test, the
phenotypic drug resistance assay is a test of replication
capability at presence of drug in vitro. Most of the
phenotypic susceptibility tests are based on constructing
fragments from virus infected patients to the backbone
of subtype B. Although it is restricted to the backbone of
subtype B, it has been considered as golden standard to
evaluate phenotypic susceptibility [31]. In many studies,
parts of RT genes were inserted into pNL4-3 clone to
create recombined HIV-1 viruses and then to develop
associated susceptibility tests. Although our HIV-1
strains belonged to B’ subtype, all the mutations were
defined as the amino acids that differed from the HIV-1
consensus B sequence.

In the pre-study, we found the viruses carrying H221Y
were commonly combined with Y181C, the same result
as the one in the reference papers [19,25]. At the same
time, the double mutations were observed along with
other NNRTIs including K101E, K101Q, V179D, V179E,
K103N, and the viruses were predominant in quasispe-
cies of 6 HIV-1 infected patients in a drug resistance
surveillance cohort. Previous studies demonstrated
K101Q was not correlated with any NNRTI resistance
mutations, but was the prerequisite to the presence of

Table 2 Interaction between Y181C and H221Y at the
background of K101Q (alpha = 0.05)

Drugs 181%2212
F P
NVP 0.77 04061
EFV 12.80 0.0072
AZT 20.87 0.0018
3TC 19.98 0.0021
d4aT 144.56 <.0001

a, interaction between 181 and 221; the P was the probabilities of no
significant interaction between 181 and 221. *, the interaction between sits
181 and 221.
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K103N [9,27]. However, we observed K101Q emerge
along with Y181C and H221Y, but not with K103N. The
observed patterns of correlated mutations may be af-
fected by pharmacological pressure and imposed by the
drug regimens that were used in different cohorts [9].

Long NNRTIs exposure may trigger the accumulation
of additional mutations, leading to even higher levels of
drug resistance. Here, we evaluated the contribution of
K101Q plus Y181C plus H221Y to resistance of NNRTIs
(NVP, EFV). The result showed K101Q/Y181C/H221Y
viruses led to a 1253.9-fold great increase in NVP resist-
ance and a 5.00-fold significant increase in EFV resist-
ance. The copresence of K101Q and Y181C in viruses
resulted in a little increase in EFV resistance, but a
986.4-fold increase in NVP resistance. However, K101Q
was interpreted as a relatively non-polymorphic muta-
tion that occurred slightly more commonly among pa-
tients receiving NNRTIs. It was reported that single
K101Q induced a 3.2-fold NVP resistance and a 5.6-fold
EFV resistance and that Y181C conferred 100-fold NVP
resistance and 1.1-fold EFV resistance at the pNL4-3
background [19]. Moreover, Y181C was known to confer
high level resistance to NVP [18]. Hypersusceptibility
should be identified under two conditions: One is that
ICsp of the test viruses were significantly less than wild
type. The other is that fold-change values was less than
0.4 compared with wild-type control virus run in parallel
[32,33]. K101Q hardly changed susceptibility of NVP
and EFV, with FC value of 0.8-fold and 0.4-fold com-
pared with wild-type respectively. However, it is inter-
preted in Stanford database that H221Y does not
decrease susceptibility by itself but may contribute to
the decrease of NNRTI susceptibility in combination
with other NNRTI-resistance mutations. In this study,
we observed copresence of the two secondary mutants
(K101Q and H221Y) show hypersusceptibility to EFV
with a mean ICsy value of 0.54 +0.32nM (FC =0.04,
P<0.05), but only a 4.0-fold increase in NVP resistance.
How these mutations cause NNRTI resistance is not
clear. It is conceivable that more mutations or associated
mutations than currently known are involved in the de-
velopment of drug resistance and lead to therapeutic
failure [5]. In particular, novel mutations participate in
the NNRTI resistance may be more complex (>3 NNRTI
resistance mutations) than the first-generation NNRTIs
resistance [9].

We also investigated whether these mutations con-
ferred NRTT resistance. K101Q/H221Y double mutation
showed significantly increase in AZT, 3TC, d4T resist-
ance. It is worth noting that triple-mutation K101Q/
Y181C/H221Y only shows a less extensive increase. The
situation is made complicated by the fact that resistance
mutations do not accumulate independently within each
other. Instead, they disappear and occur in time order
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along the pathway of resistance evolution, leading to dis-
tinct mutational complexes or clusters [34]. The more
mutations are combined together, the more complex
their mechanisms are.

We evaluated the interaction between Y181C and
H221Y considering K101Q as the background. Result of
statistical analyses showed the interaction between sites
181 and 221 in NVP was not statistically significant (F =
0.77, P =0.4061). In EFV, H221Y increased the suscepti-
bility while Y181C increased resistance. However, Y181C
significantly reversed the K101Q/H221Y phenotypic sus-
ceptibility to EFV. Then, as for NRTIs, Y181C signifi-
cantly decreased the H221Y resistance. Mutational
pathways may interpret the complexity at a certain ex-
tent. Regrettably, we have not observed which one first
emerges during mutational pathways, Y181C or H221Y.
So far, some researchers have reported the molecular
mechanism between the Y181C and other mutations [4].
Although Ceccherini-Silberstein reported novel muta-
tions cluster (L74V and H221Y) frequently appears with
Y181C and share with it the ability to increase NNRTI
resistance [9], but the idiographic impact and molecular
mechanism were unclear.

Conclusions

In summary, some copresence of the mutations re-
ported to be associated with NNRTIs in our study
confer significant increase of NVP resistance. Interest-
ingly, some may increase the susceptibility of EFV.
Certainly, the double mutation (K101Q/H221Y) also
changes the susceptibility of viruses to NRTIs. Inter-
action between different sites makes resistance more
complex.

Our data in this study are based on the recombined
subtype B’ viruses and pNL4-3 wild-type. Viral evolution
pathways toward drug resistance may proceed through
distinct steps and at different rates among different
HIV-1 subtypes [10]. To assess the prevalence of novel
cluster mutations in other non-B’ subtypes and to test
the role of them to resistance is necessary. Further ana-
lyses on the structure of novel RT mutation clusters will
provide physic-theory of the resistance. However, add-
itional studies in vitro will be necessary to distinguish
and highlight their mechanisms of action better.
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