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Abstract

Background: A forecast can be defined as an endeavor to quantitatively estimate a future event or probabilities
assigned to a future occurrence. Forecasting stochastic processes such as epidemics is challenging since there are
several biological, behavioral, and environmental factors that influence the number of cases observed at each point
during an epidemic. However, accurate forecasts of epidemics would impact timely and effective implementation of
public health interventions. In this study, we introduce a Dirichlet process (DP) model for classifying and forecasting
influenza epidemic curves.

Methods: The DP model is a nonparametric Bayesian approach that enables the matching of current influenza
activity to simulated and historical patterns, identifies epidemic curves different from those observed in the past and
enables prediction of the expected epidemic peak time. The method was validated using simulated influenza
epidemics from an individual-based model and the accuracy was compared to that of the tree-based classification
technique, Random Forest (RF), which has been shown to achieve high accuracy in the early prediction of epidemic
curves using a classification approach. We also applied the method to forecasting influenza outbreaks in the United
States from 1997–2013 using influenza-like illness (ILI) data from the Centers for Disease Control and Prevention (CDC).

Results: Wemade the following observations. First, the DP model performed as well as RF in identifying several of the
simulated epidemics. Second, the DP model correctly forecasted the peak time several days in advance for most of
the simulated epidemics. Third, the accuracy of identifying epidemics different from those already observed improved
with additional data, as expected. Fourth, both methods correctly classified epidemics with higher reproduction
numbers (R) with a higher accuracy compared to epidemics with lower R values. Lastly, in the classification of seasonal
influenza epidemics based on ILI data from the CDC, the methods’ performance was comparable.

Conclusions: Although RF requires less computational time compared to the DP model, the algorithm is fully
supervised implying that epidemic curves different from those previously observed will always be misclassified. In
contrast, the DP model can be unsupervised, semi-supervised or fully supervised. Since both methods have their
relative merits, an approach that uses both RF and the DP model could be beneficial.
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Background
Influenza pandemics result from influenza viruses capable
of human-to-human transmission and for which a large
global population has little or no pre-existing immunity
[1]. A well known example is the 1918 pandemic, which
resulted in an estimated 20–50 million deaths worldwide
[2]. A similar pandemic today would likely result in higher
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morbidity andmortality due to increased travel within and
between countries, increased urbanization and a growing
aging and immunosuppressed population [3,4]. Reliable
forecasts of public health measures (such as peak time,
peak height and attack rate) could impact timely and effec-
tive implementation of interventions to limit the effect of
a pandemic [5,6].
There were several endeavors towards real-time predic-

tion of the expected peak time, peak height and attack rate
during the 2009 pandemic. Examples include studies by
Nishiura [5] and Ong et al. [7]. Nishiura [5] employed a
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discrete time stochastic likelihood-based model for fore-
casting epidemic dynamics in Japan, whereas, Ong et al.
[7] proposed a Bayesian and stochastic compartmental
model for real-time epidemic monitoring and forecasting
in Singapore. In contrast to the likelihood and Bayesian
methods, Nsoesie et al. [8] recently presented a supervised
classification approach for predicting the epidemic curve
(defined as the daily/weekly counts of infected persons or
influenza-like illness (ILI) cases for the duration of an out-
break) based on the idea of matching ongoing influenza
activity to historical and simulated influenza epidemic
curves. The supervised classification approach presented
by Nsoesie et al. [8] involved training the model on pre-
defined groups of curves and all new curves were assigned
to one of the pre-defined groups, which implies curves
that are significantly different from those in the training
set will always be misclassified.
On the other hand, we present a semi-supervised classi-

fication approach, which also involves training the model
on pre-defined groups of curves, however, new curves
are either classified into the pre-defined groups or a new
group is created if the new curve is different. We explore
the forecasting problem under the following scenario:
during an influenza epidemic, several possible parame-
ter sets are proposed for modeling the epidemic. Each
parameter set consists of a transmissibility value (typi-
cally represented using the reproduction number), and
the infectious and incubation periods. The hypothesized
parameters are used to stochastically simulate possible
scenarios that could describe the ongoing epidemic. We
use a Susceptible, Exposed, Infectious and Recovered
(SEIR) disease model as shown in Figure 1.We then create
a library consisting of the simulated epidemics and his-
torical epidemic data. All simulated epidemics with the

same parameters are grouped. The parameters for a new
epidemic are inferred by comparing the partial epidemic
curve to the epidemic curves in the library. In the event
that the new epidemic cannot be assigned to any of the
groups in the library, a combination of expert opinion
and search algorithms are used to propose parameters
for modeling the epidemic. The simulation and classifi-
cation process is repeated for each day/week j as data is
updated. This study completes the first part of a two-step
procedure for forecasting the epidemic curve using this
approach. The first step of the procedure involves iden-
tifying epidemic curves similar or different from those
in the epidemic library. The second step involves search-
ing for parameters to model an ongoing epidemic if it is
different from those in the library.
The individual-based model used in simulating the data

in this study is a computational epidemiology model con-
sisting of a disease model and a dynamical network with
detailed representation of synthetic populations [9-11].
Disease is transmitted through contacts between suscep-
tible and infectious individuals. Individuals move through
four disease states (Figure 1): susceptible, exposed, infec-
tious and recovered. Recovered individuals remain in the
population but can no longer spread the disease due to
immunity. To classify epidemics stochastically simulated
using the individual-based model, we explore the group-
ing properties of a semi-supervised Dirichlet process
model. The Dirichlet process is a nonparametric Bayesian
procedure that presents a good solution to this problem
since curves different from those in the library can be
identified. Since Ferguson [12] formalized the Dirichlet
process as a prior over distributions, there have been sev-
eral extensions in terms of inference and applications [13].
The Dirichlet process has been proposed as a solution to

Susceptible Exposed

InfectiousRecovered

Figure 1 SEIR model. Description of the different compartments of an SEIR model.
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finding the number of spatial activation patterns in fMRI
images [14], the modeling of unknown number of top-
ics across several corpora of documents [15], grouping
population genetics data [16], detecting positive selection
in protein-coding DNA sequences [17] etc. Although the
Dirichlet process has been used in several studies, to our
knowledge it has not been used in a procedure aimed at
classifying and forecasting epidemic curves.
The premise of this paper is to validate the function-

ality of the Dirichlet process model for classifying and
forecasting epidemic curves using model-generated epi-
demic data. The main aims of the study are therefore
to: (i) compare the accuracy of the Dirichlet process
model to that of random forest, which has been shown
to achieve high accuracy in correctly classifying simulated
epidemics based on the partial epidemic curve; (ii) fore-
cast the epidemic peak time before the peak is observed
and (iii) identify epidemic curves different from those in
the library. Additionally, we also forecast influenza out-
breaks in the United States from 1997–2013 based on ILI
data from the Centers for Disease Control and Preven-
tion (CDC). There are several advantages to using this
simulation and classification approach for classifying and
forecasting epidemic curves. First, the method captures
the temporal trend of the epidemic curve. Second, the epi-
demic curve can be estimated under different scenarios
by implementing changes to the individual-based model.
Third, the approach identifies curves similar or different
from those in the library.

Epidemic simulation
The individual-based model used in generating the data
in this study has been used for studying influenza dynam-
ics and transmission, and evaluating control strategies
[8,9,18]. The construction of the individual-based model
involves the creation of a state-of-the-art behavioral
model and a disease model. To create the behavioral
model, a synthetic population for a specific geographic
region is constructed using United States census data [19].
Each individual is assigned a set of demographic vari-
ables such as age, household size, household income etc.
Households in the synthetic population are located such
that a census of the synthetic population is statistically
identical to the real census data at the block level [20].
Each synthetic individual is also assigned a schedule based
on data from an activity survey [21]. Synthetic individ-
uals come in contact with other individuals at different
activity locations resulting in a dynamic social contact
network through which disease transmission occurs. The
individual-based model is not the focus of this study since
similar data can be simulated using a compartmental SEIR
model. However, we use the individual-based model since
the overall aim of the project is to forecast the epidemic
curve, and investigate the possible effects of interventions

and changes in individual behavior during an outbreak.
Details of the individual-based model are summarized in
the Additional file 1. A detailed description can also be
found in [9].
The data in this study was simulated using six parame-

ter sets (Figure 2). The incubation and infectious period
distributions were based on parameters used to model
seasonal influenza epidemics [22] and the 2009 H1N1(A)
pandemic [8]. Transmissibility values were selected to
produce epidemics similar to and more severe than sea-
sonal influenza. Each simulated epidemic was replicated
two-hundred times to capture the underlying stochastic
process. For the purposes of this paper, the epidemics
were named catastrophic, severe, strong, moderate, mild
and milder. Per Figure 2, the epidemics peaked at dis-
tinct times except for the mild and milder epidemics. The
complexity of this study therefore involved differentiating
these epidemic curves during the early stages of the epi-
demics. Hence, we aimed to develop a procedure which
classifies epidemic curves and forecasts the peak in the
early stages of the outbreak since earlier forecasts would
be most useful to public health officials.

Selection of a nonlinear model
During most infectious disease outbreaks that confer
immunity upon recovery, the number of new cases
increases until it peaks and then declines thereafter [23].
Under the assumption of a single peak, we modeled the
simulated daily infected-counts using parametric models
based on select statistical distributions. We used nonlin-
ear models based on negative binomial, Poisson, Weibull,
normal, Pareto, generalized extreme values (GEV) and
Cauchy basis functions. The models were selected to
allow exploration of different discrete and continuous
distributions that appeared to capture different aspects
of the epidemic curves. For example, the normal model
was selected since it appeared to represent the shape
of the simulated epidemic curves. On the other hand,
heavy tailed distributions such as the Weibull, Pareto and
Cauchy were selected to capture the heavy tails observed
in some epidemic curves. In addition, since the epidemic
curves were daily counts of infected persons over time, we
also used models based on discrete distributions such as
Poisson and negative binomial. Finally, the GEV, which is
a three parameter (location, scale and shape) family distri-
bution, was chosen to model deviations in the shape of the
epidemic curves. We provide explicit details on the model
formulation in a later section.
To illustrate the fits of the data to the selected models,

we did the following. First, for each selected model, we
estimated the parameters for each epidemic curve using
the maximum likelihood procedure. Typically, the dura-
tion of an ongoing epidemic is unknown and this assump-
tion was held for the remainder of the analysis. However,
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Figure 2 Sample epidemic curves for simulated epidemics in the study.

for illustrating the model fitting, we used a duration of
approximately 180 days. Next, the estimated parameters
were used to sample from the parametric model with the
same length (number of days) as the epidemic curves. The
epidemic curve was then normalized and compared to
normalized samples from the parametric model. Lastly,
the absolute error was estimated for each day and the
mean absolute error was estimated across all days. The
analysis was performed for each of the epidemic curves in
the epidemic library. The average of the mean and vari-
ance of the mean absolute error were taken across all
epidemic curves. The results are shown in Table 1.
The normal, negative binomial and Weibull shapes had

the best fit to all epidemic curves based on the mean of
the mean absolute error of the fitted data to the observed

Table 1 Fit of data to parametric models

Models Mean of mean Variance of mean
absolute error absolute error

Negative binomial 0.00070 2.56e-09

Poisson 0.00167 5.18e-07

Weibull 0.00118 2.25e-08

Normal 0.00058 3.18e-09

Pareto 0.00747 1.02e-06

GEV 0.00122 4.63e-08

Cauchy 0.00163 5.81e-09

data as shown in Table 1. The normal, negative binomial
and Weibull were ranked best based on the variance of
the mean absolute error. The shape of the GEV resulted in
fits similar to that of the Weibull with estimated k < −0.5
implying the GEV distribution converged to the reversed
Weibull distribution. In some cases, the best fit for each
epidemic group was different from observations pre-
sented in Table 1. However, in most cases, models based
on the normal and negative binomial distributions were
ranked best based on themeasures in Table 1. For the third
best distribution, the selection lay between Weibull, the
GEV and Poisson for most epidemic curves. The Poisson
distribution was selected as the third parametric model
for this analysis, because the beta distribution could be
used as a conjugate prior to the Poisson density, enabling
a closed form estimation of the posterior and predictive
distributions. Sample fits of the normal, negative bino-
mial and Poisson models to a randomly chosen epidemic
curve are illustrated in Figure 3. Although the model fits
in Figure 3 appear similar, in most cases, the fit of the
parametric models varied depending on the shape of the
epidemic curve.

Methods
As stated, epidemic curves simulated using the same dis-
ease model parameters were assigned to the same group.
In addition, each group also had a different set of parame-
ters for the same family of distributions such as the normal
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Figure 3 A sample fit of a randomly selected epidemic curve to three parametric models. The x-axis represents the days and the y-axis is the
normalized number of infected persons relative to the cumulative infected. The black curve is the true epidemic curve and the red is the fitted
curve. Using the epidemic data, the maximum likelihood procedure is used in estimating the parameters for each of the models. The normalized
epidemic data is plotted against samples from the distributions based on the estimated parameters.

distribution. Parameter references for the remainder of
this section refer to the later. The number of possible
groups and the parameters describing each curve were
considered to be random variables. Furthermore, the prior
probability distribution for the number of groups was
described by a Dirichlet process prior. The Dirichlet pro-
cess model was used in classifying epidemic curves and
parameters in the fitted model were used in forecasting
the epidemic peak.

Dirichlet process models
The Dirichlet process (DP) represents a process prior
in nonparametric Bayesian mixture models. Here non-
parametric implies that distributions from the Dirichlet
process have an infinite number of parameters [24]. The
Dirichlet process can be defined as follows:
Let H be a distribution over a measurable space � and

α a positive real number. For any finite measurable parti-
tion B1, . . . ,Br of�, the random vector (G(B1), . . . ,G(Br))
has a finite-dimensional Dirichlet distribution with base
measure H and concentration parameter α given by G ∼
DP(α,H) if:

(G(B1, . . . ,G(Br)) ∼ Dir(αH(B1), . . . ,αH(Br)) (1)

The two parameters H and α denote the mean:
E[G(B)]= H(B) and inverse variance: V [G(B)]=
H(B)(1−H(B))/(α+1) of the DP respectively for anymea-
surable partition B ⊂ �. Since α represents the inverse
variance, when α is large, which implies a small variance,
the DP is concentrated around its mean. As α → ∞
for any measurable B, G(B) → H(B). Additionally, draws
from a DP are discrete since G is discrete with countably
infinite point masses, even when H is small [25].
A simple property of a finite-dimensional Dirichlet dis-

tribution is that the sum of the probabilities of disjoint
partitions is also a joint Dirichlet distribution whose
parameters are sums of the parameters of the original
Dirichlet distribution [13]. This property also holds true
for the Dirichlet process. Moreover, samples from a DP
are discrete, which leads to the observation of ties useful
for grouping. The grouping property of the Dirichlet pro-
cess can be best described using the Chinese restaurant
process.

Chinese restaurant process
The Chinese Restaurant Process (CRP) can be described
as follows: consider a restaurant with infinitely many
tables and an infinite number of customers can be seated
at each table. Each customer enters the restaurant and
selects a table. In general, the (n + 1)st customer would
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sit at an occupied table with probability proportional to
the number nk of customers at that table or sit at a
new table with probability proportional to α. This can be
represented as:

Xn|X1, . . . ,Xn−1 ∼
{

Xk
∗ with probability nk

α+n−1 k = 1, . . .
new draw from G with probability α

α+n−1
(2)

An important aspect of CRP, is the fact that most
Chinese restaurants have round tables. This implies that
with n customers in the restaurant, the tables would define
both a distribution over permutations of n and a distribu-
tion over partitions n. The expected number of tables m
among the n customers is given by:

E[m|n]=
n∑

k=1

α

α + k − 1
∈ O(αlog n) (3)

Where α/(α + k + 1) is the probability that the kth cus-
tomer takes a new table. Note that the number of tables
grows logarithmically in the number of observations. A
large α will result in a large number of tables a priori.

Semi-supervised Dirichlet process model
The classification problem was formulated using the CRP
representation of the Dirichlet process. We used the
epidemic curves and reference type for each epidemic
group to represent customers and tables in the restau-
rant respectively. Note that all members of an epidemic
group were assigned to the same table. At each point
of classification, there were at most (k+1) tables, since a
new epidemic curve was either classified to a pre-existing
epidemic group or to a new one based on the posterior
probability of belonging to each of the groups. Initially,
we developed a Dirichlet process model for each of the
three previously selected parametric distributions (nor-
mal, Poisson and negative binomial) and used a Markov
Chain Monte Carlo (MCMC) procedure [26] for param-
eter estimation. After comparing the performance of
the three models, we decided to use the normal model
because the model fit well to the epidemic curve data and
the model parameters were easy to interpret.
The normal Dirichlet process procedure was imple-

mented in four steps. First, we grouped epidemics with the
same disease model parameters (transmissibility value,
incubation and infectious period distributions). Second,
for each day j, for each group, we inferred normal model
parameters using the slice sampling procedure. Slice sam-
pling is also an MCMC method, which enables random
sampling from probability distributions [27]. See Neal

[27] for additional information. This procedure is equiv-
alent to parameter estimation in a nonlinear regression
framework.
The nonlinear regression model relating the daily

infected counts for epidemic curve j, at time t ( yj,t) was
given by:

yj,t = f (θ , t) + εt (4)

θ was the vector of parameters and εt was the random
error. f (θ , x) represented nonlinear basis function, which
was a normal curve with parameters θ = φ,μ, σ given by:

f (θ , t) = φe
−(t−μ)2

2σ2 , (5)

where φ scaled the height of the function, μ was the mean
of the function (representing the peak day), and σ 2 mod-
eled the variability of the epidemic curve. We defined
εt ∼ N(0, 1/γ ) and used standard reference priors for
p(γ ) ∝ 1

γ
and p(θ) ∝ 1 to arrive at the posterior:

p(θ , γ ) ∝
⎛
⎝ N∏

j=1

T∏
t=1

γ 1/2e−γ
(yj,t−f (θ ,t))2

2

⎞
⎠ p(γ )p(θ)

= γ (N∗t−2)/2e−(γ /2)
∑N

j=1
∑T

t=1( yj,t−f (θ ,t))2 ,

where N was the number of epidemic curves in each
group and T was the total number of time points. Third,
at each day j, we calculated the posterior predictive prob-
ability of a new curve belonging to each of the groups
in the library. Last, we classified the new curve to one
of the groups in the library or created a new group. We
performed the prediction procedure independently for six
hundred simulated epidemic curves.
Additionally, we forecasted the timing of the peak and

evaluated the accuracy of the DPmodel in identifying epi-
demic curves different from those in the library. As stated,
if an epidemic curve was different from the curves in the
library, the DP model was expected to create a new group.
The number of new groups created by the DP model is
dependent on the choice of α. To select an appropriate
value for α, we performed a sensitivity analysis by perturb-
ing the value of α and measuring the prediction accuracy.
We set α at 0.001 after comparing the error rates of higher
and lower values.

Forecast of peak time of epidemics in the U.S.
We used both random forest and the DP model to fore-
cast peaks of influenza outbreaks observed in the US from
1997–2013. Data on estimated percent ILI were obtained
from the CDC influenza surveillance website (http://www.
cdc.gov/flu/weekly/pastreports.htm). We divided the data
into training and test sets. The training set consisted of
yearly ILI data from 1997–2007 and the test set contained
data from 2007–2013. Data for the first five influenza sea-
sons started on week 40 in one year and ended on week
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20 in the next year. For consistency, we defined the epi-
demic curve for each influenza season starting from week
40. The data in the training set was used to the train the
random forest algorithm and the DP model, whereas data
in the test set was used for predictions. Each of the ILI
epidemic curves in the training set was placed in a sepa-
rate group in the library and each epidemic curve in the
test set was independently classified.Wemade predictions
using sixteen, twenty-five and thirty-three weeks of data.
The numbers of weeks were selected to make predictions
before and after the peaks of most of the outbreaks, and
towards the end of the influenza season. We evaluated
accuracy of forecast based on prediction of the peak time.

Results
The results are organized into three sections. In the first
section, we discuss the results from classifying epidemic
curves similar to those in the epidemic library. In the next
section, we present additional features of the DP model;
namely the forecasting of the epidemic peak time, and the
identification of novel epidemic curves. Finally, we discuss
the forecasting of the peak time of seasonal epidemics in
the United States using percent ILI data.

Comparison of DPmodel to random forest
The classification was performed at the end of each week
starting from the first week to week twenty-seven since
all the simulated epidemics peaked by the end of week
twenty-seven (day 189). The accuracy of classifying the
epidemic curves, defined as the percent of correctly iden-
tified epidemic curves on day j, given data on the number
of daily infected up to day j, is presented in Figure 4. We
presented the accuracy from day 7 to 189. For four out of
the six groups, the accuracy of the methods was almost
identical. Catastrophic and severe epidemics (Figure 4(a)
and (b)) peaked sooner than the other groups and also had
significantly higher peaks making them more distinguish-
able. In the classification of catastrophic epidemics, both
methods reached over 90% accuracy on day 28, which was
several weeks before the mean peak day of the epidemics.
Similar to the identification of catastrophic epidemics,
over 90% of severe epidemics were correctly identified
several days before the mean peak day of the epidemics,
which was observed on day 67. Strong and milder epi-
demics (Figure 4(c) and (d)) were also easily identified.
The methods both surpassed 95% accuracy by day 63,
which was approximately two weeks before the mean peak
day of 98 for strong epidemics. For milder epidemics, the
DP model commenced with a significantly higher accu-
racy, over 75% on day 7 and consistently improved over
time. RF appeared unstable, which was likely due to the
similarity between milder and mild epidemic curves.
Although the DP model performed extremely well in

identifying previously discussed epidemic curves, the

model encountered difficulties in classifying moderate
and mild epidemics (Figure 4(d) and (e)). This was
likely due to the fact that mild and moderate epidemics
were sandwiched between strong and milder epidemics.
Both methods appeared unstable in identifying these epi-
demics, although the instability was most evident in the
DP model. In several instances, moderate epidemics were
misclassified as strong and mild, while mild epidemics
were misclassified as milder. However, as the epidemics
neared their peaks, both methods could distinguish the
curves from the other groups. Both methods had an accu-
racy of over 90% before day 84, which was several weeks
from the mean peak day; day 121 for moderate epidemics.
On the contrary, the DP model achieved over 90% accu-
racy around day 98 in the classification of mild epidemics,
which had a mean peak day of 136.
The accuracy of classifying partial epidemic curves was

higher for simulated epidemics with a higher reproduc-
tion number (R). The mean R at the start of the simu-
lated epidemics were approximately 1.42, 1.45, 1.51, 1.59,
1.60 and 1.79 for milder, mild, moderate, strong, severe
and catastrophic epidemics respectively. Both methods
achieved significantly higher accuracy in the classification
of catastrophic, severe and strong epidemics compared
to moderate, mild and milder epidemics. In addition, the
accuracy of both methods were more reliable and con-
sistent as epidemics neared their peaks. This agrees with
other published studies, which suggest that the accuracy
of forecasting methods can be sensitive to the point at
which forecasts are made [5,7,28].

Additional features of the DPmodel
As stated, the DP model has additional features, which
are not inherent in the RF approach. The DP model can
be used to identify epidemic curves different from those
in the library and forecast the expected peak based on
parameters estimated using the slice sampling approach.
On the other hand, RF is a fully supervised classification
algorithm, which implies that epidemic curves that are sig-
nificantly different from those in the library will always be
misclassified. In addition, RF can only forecast the peaks
of epidemic curves similar to those in the library.

Forecast of the peak time
Simulated epidemics in the various groups peaked within
the following time ranges (days): severe [63–72], catas-
trophic [73–81], strong [94–106], moderate [116–128],
mild [127–150] and milder [149–179]. Peak days falling
within the true range for severe epidemics were fore-
casted on day 70 with a 95% credible interval of [67.385–
67.726]. For catastrophic epidemics, the peaks were
correctly forecasted on day 77 with a 95% credible inter-
val of [78.964–79.544]. Peak timing for strong epidemics
were correctly predicted on day 91 with a 95% credible
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Figure 4 Accuracy of predicting the epidemic curves in the test set. The accuracy of predicting the epidemic curves in the test set: (a) catastrophic,
(b) severe, (c) strong, (d)moderate, (e)mild and (f)milder. Accuracy on day j is the number of curves correctly identified based on the partial
epidemic curve on day j. The results are presented based on epidemic peak time. The DP (Dirichlet Process) model is compared to RF (random forest).

interval of [104.42–105.08]. Moderate, mild and milder
peak days were also correctly forecasted in the correct
range on days 126, 91, and 133 with 95% credible inter-
vals of [125.07–125.53], [126.57–127] and [149.78–150.1]
respectively. After the specified days, the peak time was
accurately forecasted.
The mean curve for each of the groups and the pre-

dicted curves based on the last 400 MCMC iterations is
shown in Figure 5 and the results are presented by peak

time starting with the earliest peak. The epidemics were
also scaled by the peak height since the aimwas to forecast
the timing of the peak not the peak height.

Identification of new epidemics
The average accuracy based on identifying 600 epi-
demic curves different from those in the library is shown
in Figure 6. Per Figure 6, the accuracy of identifying
new epidemic curves increased rapidly as the epidemics
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Figure 5 Forecasts of peak times for each epidemic group. The true mean curve and predicted curves are presented for: (a) catastrophic,
(b) severe, (c) strong, (d)moderate, (e)mild and (f)milder. The results are presented based on epidemic peak time with the earliest peak presented
first. These fits were made on days 77, 70, 91, 126, 91 and 133 for (a-f) respectively.

neared their peaks. In addition, accuracy also consistently
improved over time, reaching 100% on day 119. The clas-
sification of the known curves using the same value of α

was similar to that observed in Figure 4.

Forecast of peak time of epidemics in the U.S.
Random forest correctly forecasted the peak time for 3/5,
2/5 and 3/5 of the seasonal epidemic curves given sixteen,
twenty-five and thirty-three weeks of data, respectively.
Similarly, the DP model correctly forecasted the peak

time for 2/5, 3/5 and 3/5 of the epidemics in the test set
given sixteen, twenty-five and thirty-three weeks of data,
respectively. This suggests that the methods performed
about the same in the forecasting of seasonal epidemics.
In contrast, the 2009–2010 epidemic curve that was

observed during a pandemic peaked in week 42 of
2009, which was much earlier compared to the seasonal
epidemics. Instead of evaluating accuracy based on pre-
diction of the peak time, we focused on the accuracy
of classification. The epidemic curve was incorrectly
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Figure 6 Accuracy of identifying new epidemic curves. The accuracy of identifying new epidemic curves. Accuracy is defined as the percentage
of new epidemic curves, which are correctly identified as such.

classified by random forest. Since random forest is a fully
supervised classification algorithm, epidemic curves that
are significantly different from those in the library will
always be misclassified. The DP model identified the epi-
demic curve as being distinct from those in the library and
was also able to accurately model the trend of the curve.

Discussion
In this study we presented a Dirichlet process model for
classifying epidemic curves and forecasting the expected
peak time. The focus of this initial study was to establish
the accuracy and usefulness of the method. We achieved
our main objectives which were to: (i) compare the accu-
racy of the Dirichlet process model to that of random
forest, (ii) forecast the epidemic peak time before the peak
was observed and (iii) identify epidemic curves different
from those in the library. We also observed that epidemics
with higher transmission rates, implying higher R values,
were easier to classify.
We acknowledge that there are limitations to using

the proposed approach. For instance, using a paramet-
ric model to describe the epidemic curve might not be
the most suitable option since the shape of the epidemic
curve can vary from one epidemic to another. However,
modeling the dynamics of epidemics using a nonparamet-
ric functional is a viable option (e.g. Gaussian processes,

wavelets, or splines). In addition to limitations in the para-
metric model, inconsistencies in the accuracy of the DP
model could also be attributed to the shape of the epi-
demic curves and the stochasticity inherent in MCMC
methods. Since the DP model tries to capture the shape of
the curve, it is also significantly influenced by the shape
of the curve. In theory, one would expect the accuracy
of the DP model to consistently improve with additional
data. However, this is not always the case especially in
the early stages of an epidemic, when the shape of the
epidemic curve is not yet evident. Random forest on the
other hand fails to take into account the shape of the curve
and is therefore not heavily influenced by the variability
introduced due to the shape of the curves.
The performance of random forest is likely due to its

classification scheme. In this study, random forest classi-
fies each epidemic curve one-thousand times and the final
prediction is based on a voting process [29]. The epidemic
group to which the new epidemic is classified the major-
ity of the times is assigned the epidemic curve. Random
forest also requires a shorter computation time compared
to the DP model. This is because rather than considering
every data point in the library and test set, each of the
one-thousand classifications is based on a random sample
of size

√
j from each curve where j is the day of predic-

tion. The number of classifications enables the method to
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capture different aspects of the curve by drawing different
samples each time. Although the results seem to indicate
that random forest predicts epidemic curves slightly bet-
ter than the DP model, the performances are comparable
especially in the classification of the real epidemics and
epidemics simulated with high transmissibility (R) values.

Conclusion
The results present situations in which the DP model per-
forms well and situations in which it is likely to encounter
problems. In most scenarios, the DP model encounters
problems when distinguishing epidemic curves that are
extremely similar or if the curve shape is not yet visible.
However, there are several advantages to using the DP
model over random forest. First, the DP model captures
the shape and temporal structure which is not the case
with random forest. This implies that under the random
forest method, the data on day twenty can be moved to
day five and the performance of random forest will not
be affected. Second, classification algorithms such as ran-
dom forest can suffer from the curse of dimensionality;
the accuracy of the method depreciates as the dimension-
ality of the data increases. However this does not present
an issue in this study. Third, the DP model does not only
capture the trend of the epidemic but also the mean and
variance of the curve. This information can be used to pre-
dict the peak time and the spread of the epidemic curves.
Lastly, the DP model can also identify epidemics different
from those in the library. However, since there are ben-
efits to using both methods in prediction, an ensemble
approach might be beneficial. In addition, classification
using ILI data suggest that the performance of both meth-
ods could be improved. In future studies, we will explore
ways to make the DPmethod more applicable to real-time
forecasting of the epidemic curve.

Additional file

Additional file 1: Computational model and random forest
description. The file contains additional information on the construction
of the computational epidemiology model and a brief description of
random forest.
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