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Abstract

pathogenesis of experimental PM.

performed using the BV2 mouse microglial cell line.

compared with the wt.

Background: Pneumococcal meningitis (PM) is a life-threatening disease with a high case-fatality rate and elevated
risk for serious neurological sequelae. In this study, we investigated the contribution of three major virulence factors
of Streptococcus pneumoniae, the capsule, pneumococcal surface protein A (PspA) and C (PspC), to the

Methods: Mice were challenged by the intracranial route with the serotype 4 TIGR4 strain (wt) and three isogenic
mutants devoid of PspA, PspC, and the capsule. Survival, bacterial counts, and brain histology were carried out. To
study the interaction between S. pneumoniae mutants and microglia, phagocytosis and survival experiments were

Results: Virulence of the PspC mutant was comparable to that of TIGR4. In contrast, survival of animals challenged
with the PspA mutant was significantly increased compared with the wt, and the mutant was also impaired at
replicating in the brain and blood of infected mice. Brain histology indicated that all strains, except for the
unencapsulated mutant, caused PM. Analysis of inflammation and damage in the brain of mice infected with TIGR4
or its unencapsulated mutant demonstrated that the rough strain was unable to induce inflammation and neuronal
injury, even at high challenge doses. Results with BV2 cells showed no differences in phagocytic uptake between
wt and mutants. In survival assays, however, the PspA mutant showed significantly reduced survival in microglia

Conclusions: PspA contributed to PM pathogenesis possibly by interacting with microglia at early infection stages,
while PspC had limited importance in the disease. The rough mutant did not cause brain inflammation, neuronal
damage or mouse death, strengthening the key role of the capsule in PM.

Keywords: Experimental pneumococcal meningitis, Microglia, PspA, PspC, Capsule

Background

Streptococcus pneumoniae is a coloniser of the human
nasopharynx and can also cause other diseases, includ-
ing sinusitis, otitis media, pneumonia, sepsis and menin-
gitis. The microorganism produces a plethora of virulence
factors, including the polysaccharide capsule, several
surface-located proteins, and the toxin pneumolysin [1,2].
The capsule is a major virulence determinant due to its
anti-phagocytic activity [3-5]. Among the surface-associated
proteins, the pneumococcal surface protein A (PspA) and
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C (PspC) are the best characterised choline-binding pro-
teins. PspA interferes with complement activation and de-
position mediated by both the classical and alternative
pathways [6-9] and also binds lactoferrin [10]. PspC inter-
acts with human immunoglobin A and with the polymeric
immunoglobulin receptor [11,12], thereby promoting adhe-
sion and transcytosis of pneumococci across mucosal sur-
faces [13,14]. PspC also shows anti-phagocytic properties
due to its capability to bind to complement C3 [15] and
factor H [11,16-18].

Pneumococcal meningitis (PM) is a life-threatening
disease with high rates of mortality and neurological se-
quelae [19,20]. The hallmark of meningitis is represented
by cerebrospinal fluid (CSF) pleocytosis, which largely
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contributes to brain inflammation and damage [20,21].
It is well accepted that meningitis-induced brain injury
depends on both the host inflammatory response and
the direct bacterial toxicity [19-21]. The pneumococcal
cell wall and pneumolysin initiate immune activation in
the CSF by engaging the toll-like receptors 2 and 4,
respectively [22]. Peptidoglycan and teichoic acid have
been shown to trigger meningeal inflammation in ex-
perimental PM [23,24]. Pneumolysin interferes with the
beat frequency of brain ependymal cilia [25], damages
the blood-brain-barrier (BBB) [26], mediates apoptosis
of microglial and neuronal cells in vitro [27] and partici-
pates in hearing loss and cochlear damage associated
with experimental PM [28]; moreover, a pneumolysin-
deficient mutant showed reduced virulence in murine
PM [29]. Other pneumococcal knock-out mutants have
been analysed in PM models, including strains devoid of
the neuroaminidases NanA and NanB [29], the hyal-
uronidase [29] and the fibronectin-binding protein PavA
[30]. To our knowledge, so far the role of PspA and
PspC has not been assessed in experimental PM.

Microglial cells, comprising about 15% of brain cells,
are located within the brain parenchyma and constitute
the main phagocytic population of the central nervous
system (CNS) [31,32]. Activated microglia can wield
several effector functions, such as phagocytosis, inflam-
matory responses and antigen presentation [32]. During
infection of the CNS, microglial cells secrete pro-
inflammatory mediators involved in the recruitment of
peripheral immune cells to the site of infection and also
exert antimicrobial activity towards invading pathogens
[33]. Microglia is therefore considered a key player
in the initial innate immune response against CNS
infections.

In the present study, we tested the serotype 4 TIGR4
strain and three isogenic mutants deficient in PspA,
PspC and capsule in an intracranic mouse model of PM.
We also focused on anti-phagocytic pneumococcal viru-
lence determinants and on microglial cells, key effectors
of innate immunity and first line of defence against S.
pneumoniae invading the brain, especially in the early
phases of PM.

Methods

Bacterial strains and growth conditions

S. pneumoniae TIGR4 (type 4) and the isogenic mutants
FP23 (rough), FP28 (PspC-) and FP262 (PspA-) were
used in this work. Bacteria were grown in Tryptic Soy
Broth (TSB, Becton Dickinson, Milano, Italy) until mid-
logarithmic phase and stored at -80°C with 10% gly-
cerol. Solid media were prepared by addition of 1.5%
agar and 3% defibrinated horse blood (Oxoid, Hamp-
shire, UK) to TSB. Counts of colony forming units (cfu)
were performed on blood-agar plates at 37°C with 5%
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CO,. When necessary, chloramphenicol, erythromycin
and kanamycin were used at the concentrations of
2.5 pg/ml, 1 pg/ml and 500 pg/ml, respectively.

Construction of knock-out mutants

All mutant strains were generated by gene SOEing [34].
Construction of the unencapsulated derivative of TIGR4
(FP23) and of the PspC-deficient mutant (FP28) has
already been described [35,36]. To construct the PspA-
deficient strain, the pspA gene was replaced with an
erythromycin-resistance cassette (ermB) [37] using
primers IF188 (5'-AAGTGATTTGTGATTGTTGATG-
3’) and IF189 (5'-ACCTCTTTAGCTCCTTGGAAG-3")
[38]. Primer pairs employed to amplify the regions up-
stream (845 bp) and downstream (587 bp) of the pspA
gene were IF215 (5'-TTGGGCAGTAGTGAGAACTG-
3")/ IF216 (5'-CATCAACAATCACAAATCACTTCAG
ACTATACTTATATTAAG-3") and IF217 (5'-CTTCCA
AGGAGCTAAAGAGGTGCCGATTAAATTAAAGCAT
G-3")/ IF218 (5'-ATCTTCGGTCGCCGTACAGA-3’),
respectively. A 2571 bp-long PCR fragment was used to
transform TIGR4, and an erythromycin-resistance mu-
tant was selected and designated as strain FP262. Mu-
tant construction was verified by PCR and sequencing.

Mice, model of meningitis and experimental design

Outbred 8 to 10-week-old female MF1 mice (Harlan
Nossan, Monza, Italy) were used. Animal experimenta-
tion was approved by the local ethical committee, and
all experiments were performed according to institu-
tional and national guidelines (‘Ministero della Salute’,
Decreto no. 72/2012-B). The method to induce PM in
mice has been previously reported [39]. Briefly, mice
were lightly anesthetised by intraperitoneal (i.p.) injec-
tion of xylazine hydrochloride (Bio 98 S.r.l, Bologna,
Italy) and zolazepam tiletamine (Virbac S.r.l., Milano,
Italy) and inoculated by the intracranial route (i.c.) with
50 pl of the bacterial inoculum using a micro-syringe
with 26 gauge needles (Hamilton, Bonaduz, Switzerland).
Studies on survival and cfu determinations in tissues
were conducted on animal groups infected with 10%, 10°
and 10* cfu/mouse. For the rough strain FP23, rodents
were also infected with larger doses up to 107 cfu/
mouse. Animal group sizes are provided in Additional
file 1: Tables S1, S2 and S3. Mice were monitored twice
a day for clinical signs as described by Sandgren et al.
[40]. Briefly, disease severity was graded using end-
points on a scale of 0-5, with O=normal, 1=
piloerection and decreased spontaneous activity, 2=
hunched position and loss of vigilance, 3 = turns upright
in>5 sec when positioned on the back, 4 =does not
turn upright, 5=moribund. Mice were euthanised if/
when they reached a score of 4. Body weight and
temperature were recorded once per day for 10 days and
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compared to those of naive uninfected control mice.
Survival was recorded for 10 days. Assessment of PM by
histology was carried out on the brain of animals (n =3/
group) infected with 10* cfu/mouse of S. pneumoniae
strains and sacrificed 48 h post-infection. For histo-
logical evaluation of the role of capsule in PM, two
groups of mice were infected with 10° cfu/mouse of
TIGR4 (n=6) or FP23 (n=16) and sacrificed after 24
and 48 h (3-8 mice/time point). To strengthen the re-
sults obtained with the dose of 10° cfu, another group of
mice (n=4) was challenged with 10’ cfu of FP23 and
sacrificed 72 h post-infection. Control mice were inocu-
lated with 50 pl of phosphate buffered saline (PBS).

Sample collection

Blood and brain were collected from infected mice for
histological analysis and cfu counts. Blood samples were
obtained by the sub-mandibular vein. For cfu counts,
100 U/ml of heparin (MS Pharma, Milano, Italy) were
added to blood samples to prevent coagulation, whereas
brains were homogenised in 1 ml of TSB. Blood and
brain samples were frozen at —80°C with 10% glycerol
until use. Bacterial counts were performed by plating
10-fold dilutions onto blood-agar plates.

Brain histology

For histological analysis, brains were immediately fixed
in formalin for 24 h and then embedded in paraffin
according to standard procedures. The brains were en-
tirely sectioned along a coronal plane. Sections were
stained with haematoxylin-eosin according to standard
techniques. The presence and degree of inflammation
and neuronal damage were evaluated by using routine
light microscopy (at least 100 power fields were exam-
ined). Inflammation was estimated by counting the num-
ber of polymorphonuclear cells (PMN) in four different
brain regions: superficial meningeal regions over the
convexities, frontal interhemispheric region, hippocam-
pal fissure and third ventricle. Based on the number of
PMN for each power field, a score was attributed as fol-
lows: 0 (0 PMN), 1 (<10 PMN), 2 (10-50 PMN) and 3
(>50 PMN). For every animal, scores of each brain re-
gion were summed up into a final inflammation score
(IS). Neuronal damage was evaluated by estimating the
percent of damaged neurons in one power field and cal-
culating a score as follows: 0 (no damaged neurons), 1
(<10%), 2 (10-30%) and 3 (>30%). Both apoptotic and
necrotic neurons were considered injured. Apoptosis was
represented by cell shrinkage, homogenous chromatin
condensation, nuclear shrinkage and nuclear transform-
ation into apoptotic bodies. Cell swelling, eosinophilic
degeneration of the cytoplasm, nuclear shrinkage with
chromatin clumping were considered signs of necrosis.
Four different brain areas were analysed: neocortex,
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striatum, hippocampus/dentate gyrus and cerebellum.
Scores of each brain region for each mouse were
summed, and the resulting number represented the final
damage score (DS).

Microglial cells

The murine microglial cell line BV2 [41] was main-
tained in RPMI 1640 medium supplemented with 10%
heat-inactivated fetal calf serum (hiFCS) (Defined
Hyclone, Logan, UT, USA), gentamicin (50 pg/ml; Bio
Whittaker, Verviers, Belgium) and L-glutamine (2 mM;
EuroClone, Milan, Italy) (complete medium). Cells were
detached biweekly by vigorous shaking, and fresh cul-
tures were started at a concentration of 5 x 10°/ml.

Phagocytosis assay

For all fluorescence-based assays, pneumococci were
thawed, washed and suspended at the desired concentra-
tions. Staining of bacteria was performed by incubating
10° cfu/ml with 5 mM of Hoechst 33342 (Sigma-
Aldrich, St. Louis, MO, USA) in the dark at 37°C for 1 h
as described [42,43]. After labelling, pneumococci were
washed four times with PBS and then suspended at the
desired concentration in complete RPMI medium with-
out antibiotics. To strengthen the attachment of BV2
cells to wells, Lab-Tek II chamber slides (Nalge Nunc
International, Naperville, IL, USA) were pretreated with
poly-L-lysine (Sigma-Aldrich; 10 pg/well) for 30 min and
then washed with PBS. BV2 cells (10°/ml, 100 ul/well)
were seeded, incubated for 15 min and infected (moi=
10) with 100 pl of 10’/ml cfu of Hoechst 33342-labelled
S. pneumoniae in RPMI containing L-glutamine and
normal FCS (nFCS). After incubation for 3 h, cells were
treated with trypan blue for 5 min to quench the fluores-
cence of bound bacteria, washed with PBS to remove
extracellular bacteria and fixed for 30 min with 4% para-
formaldehyde (PFA) (Sigma-Aldrich) in PBS. Finally,
BV2 cells were washed with PBS and treated with Pro-
Long Gold Antifade Reagent (Molecular Probes,
Invitrogen, St. Louis, Mo, USA) to suppress the photo-
bleaching effect and preserve the signals of fluorescent
molecules. Remaining fluorescence of phagocytosed bac-
teria was visualised by epifluorescence microscopy. At
least 200 microglial cells from each sample were exam-
ined, and the percentage of cells with intracellular bac-
teria was defined as the ratio of the number of BV2 cells
containing one or more bacteria to the total number of
cells examined.

Phagolysosome acidification assay

Visualisation of bacteria-containing acidic phagosomes
was performed as described [42,43]. Briefly, BV2 cells
were infected for 3 h (see phagocytosis assay), washed
to eliminate extracellular bacteria, and exposed to 4 pl
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of the acidotropic dye LysoTracker Red DND-99 (Molecu-
lar Probes, Invitrogen) at a final concentration of 5 uM.
Thirty minutes before the end of incubation, an additional
volume (4 pl) of the same dye was added. Finally, 5 min
before the end of incubation, 100 ul of trypan blue were
dispensed into each well. After PFA fixing, BV2 cells
were washed and treated with ProLong Gold Antifade
Reagent (Molecular Probes, Invitrogen). Acidification of
phagosomes containing Hoechst 33342-labelled bacteria
was visualised by epifluorescence microscopy by the simul-
taneous appearance of LysoTracker Red DND-99 (red) and
Hoechst 33342 (blue) fluorescence within the phagosomes,
resulting in purple fluorescence when merging images. For
quantitative analysis, the number of bacteria-containing
acidic phagosomes per image was determined by counting
the number of purple phagosomes within phagocytic cells.
The percentage of colocalisation was then calculated as the
number of cells with bacteria-containing acidic phagosomes
over the total number of phagocytic cells.

Epifluorescence microscopy

Prior to visualisation, Lab-Tek II chamber slides were
washed with PBS and treated with Prolong Gold antifade
Reagent (Molecular Probes, Invitrogen). Epifluorescence
and differential interference contrast (DIC) microscopy
were performed using a Nikon Eclipse 90i imaging system
equipped with Nomarski DIC optics (Nikon Instruments
Inc., Melville, NY, USA). Samples were photographed with
a DS-2Mv Nikon digital camera, and the resulting photo-
graphs were analysed by using the Nikon NIS-ELEMENTS
version D3.1 software.

Intracellular survival assay

Bacterial survival inside microglial cells was assessed by
performing an antibiotic-protection assay as previously
described [42,43]. Briefly, BV2 cells (10%/ml) were incu-
bated for 3 h with bacteria (moi=10) in RPMI with
nFCS. Cells were washed with PBS to remove extracellu-
lar bacteria and exposed for 1.5 h to gentamicin
(150 pg/ml) and vancomycin (10 pg/ml) in RPMI with
L-glutamine. BV2 cells were washed twice with PBS and
suspended in complete RPMI without antibiotics (time
0). Following 4 h of incubation (time 4), cells were
lysed with 0.2% (v/v) Triton X-100 for 15 sec to release
intracellular bacteria, and serial dilutions of the lysates
were plated onto blood-agar plates. After 36-48 h cfu
were counted, and the survival index (SI) of each
strain was calculated as the number of cfu at time 4 h
divided by the number of cfu at time 0 h. In all assays
where microglial BV2 cells were exposed to S.
pneumoniae, the viability of infected cells was tested
and found comparable to that of uninfected control
cells.
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Statistical analyses

Detailed data on mouse survival are described in Additional
file 1: Table S1 which reports the median survival time (h)
with 95% confidence interval (CI) for each mouse group to-
gether with the related statistical analysis (Log Rank test).
Additional file 1: Tables S2 and S3 describe the mean and
standard deviation (SD) of log cfu counts in the brain and
blood of infected mice, respectively. Complete data on
phagocytosis and intracellular survival of S. pneumoniae in
BV2 microglial cells are reported (mean + SD) in Additional
file 1: Table S4. Differences between TIGR4 and the mu-
tants in Additional file 1: Tables S2, S3 and S4 were
analysed by the Bootstrap (BCa method) performed on
1000 stratified resampling [44]. Data on IS and DS from
mice challenged with TIGR4 and FP23 are shown as me-
dian with interquartile range (IQR). Analysis of differences
in DS and IS was carried out by the Mann—Whitney U test
(Table 1). P values <0.05 were considered as statistically
significant.

Results

Analysis of virulence of TIGR4 and the isogenic mutants
FP28 (PspC-), FP262 (PspA-) and FP23 (rough) was
performed both in vivo in a PM mouse model and
in vitro using a murine microglial cell line. Although a
few results on FP23 have already been published [42],
we still decided to include this strain in all experiments
to provide the reader with a complete comparative view

Table 1 Brain inflammation and damage over time in
mice infected with TIGR4 or FP23

Strain®  Inflammation score pd Damage score pd
[median (IQR)]® [median (IQR)I¢
24 h 48 h 24 h 48 h
TIGR4 2 (2-6) 12 (2-12) 2 (2-3) 6 (1-8)
<0.001 <0.05
FP23 0 (0-0.75) 0 0(0-3) 0(0-1.75)

Two groups of MF1 mice were infected via the i.c. route with 10° cfu/mouse
of TIGR4 (n=6) or FP23 (n = 16). Animals were sacrificed at 24 or 48 h, and
brains were removed and treated for haematoxylin-eosin staining. Three
(TIGR4) or 8 (FP23) mice per time-point were used.

PInflammation in the brain was evaluated by counting the number of PMN in
one power field (x 40) and calculating a score as follows: 0 (0 PMN), 1 (<10
PMN), 2 (10-50 PMN) 3 (>50 PMN). Four different brain regions were analysed:
superficial meningeal regions over the convexities, frontal interhemispheric
region, hippocampal fissure and third ventricle. For every animal, scores of
each brain region were summed up into a total inflammation score (IS).
Results are expressed as the median IS with the interquartile range (IQR) for
each mouse group at 24 and 48 h.

“Neuronal damage was evaluated by estimating the percent of damaged
neurons in one power field (x 40) and calculating a score as follows: 0 (no
damaged neurons), 1 (<10%), 2 (10-30%), 3 (>30%). Four different brain areas
were analysed: neocortex, striatum, hippocampus/dentate gyrus and
cerebellum. For each mouse, scores of each brain region were summed, and
the resulting number represented the total damage score (DS). Results are
expressed as the median DS with the interquartile range (IQR) for each mouse
group at 24 and 48 h.

4Mann-Whitney U test. Differences in inflammation and damage between the
groups infected with TIGR4 and FP23 were analysed by combining IS and DS
scores from all mice of each group, regardless of the euthanasia time.
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of the different behaviours of pneumococcal mutants de-
void of three major virulence determinants.

Analysis of mouse survival after infection with
pneumococcal strains

Based on previous data on lethal doses of S. pneumoniae
killing 50% of animals (LDsp) in experimental PM [39],
mice were infected by the i.c. route with different doses
of S. pneumoniae strains TIGR4, FP28, FP262 and FP23.
Analysis of mouse clinical parameters (body temperature
and weight) showed no significant differences among the
groups infected with the encapsulated strains (data not
shown). All animals died following challenge with
10* cfu of TIGR4, while survival percentages of mice
infected with FP28 and FP262 were 21 and 36, respect-
ively (Figure 1A). At 10% cfu/mouse, survival dropped to
0 and 23% in the groups infected with FP28 and FP262,
respectively (Figure 1A). No animals survived challenge
with 10* cfu of TIGR4, FP28 and FP262 (Figure 1A).
The LDsq of all strains, except for FP23, were below
10*> cfu/mouse. Upon time-to-death analysis, mice
infected with the PspA-deficient strain FP262 showed
significantly prolonged survival at all doses (Figure 1B
and Additional file 1: Table S1, p <0.01). In order to un-
ravel differences among the groups, a Kaplan-Meyer
analysis was carried out only on data from mice infected
with the smallest dose of 10> cfu. Median survival times
of rodents challenged with TIGR4, FP28, FP262 and
FP23 were 48, 56, 144 and >240 h with significant differ-
ences for the groups TIGR4-FP262 and TIGR4-FP23
(Figure 1B and Additional file 1: Table S1, p <0.01 for
both groups). In accordance with previously published
data [42], mice injected with the rough mutant FP23
presented clinical signs comparable to uninfected naive
animals and survived all challenge doses.

Replication of pneumococcal strains in the brain and
blood of mice following i.c. infection

Analysis of the growth features of the mutants in stand-
ard media showed no differences compared with TIGR4
(data not shown).To evaluate their capability to replicate
in the CNS, viable counts were determined over time (at
6, 24 and 48 h) in the brain of infected mice. No differ-
ences in bacterial titers were observed between FP28
and TIGR4 at any time-point. In contrast, the FP262
bacterial load in the brain was significantly lower than
that of TIGR4 at 24 h post-infection (Figure 2A and
Additional file 1: Table S2; p <0.05). This finding sug-
gests that the PspA mutant is impaired at replicating in
the CNS in the early phase of infection. As previously
reported [42], the rough strain FP23 was cleared from
the brain by 24 h despite injection of animals with a high
bacterial inoculum. As our PM model is characterised by
the occurrence of both meningitis and sepsis [39],
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Figure 1 Survival curves of mice infected with S. pneumoniae
strains. A. MF1 mice were infected by the ic. route with 107, 10°
and 10* cfu/mouse of TIGR4 (wt, open squares), FP28 (PspC-, closed
circles) and FP262 (PspA-, closed triangles). As a control, animals
were also inoculated with different doses (10%-10” cfu/mouse) of the
unencapsulated mutant FP23 (open circles). Percent survival at
different doses is shown. Data of two independent experiments are
combined. B. Kaplan-Meyer curve of mouse survival following
infection with 10% cfu/mouse of TIGR4, FP28, FP262 and FP23. Mice
were monitored for 10 days. Asterisks indicate statistical significance
(**, p < 0.001; Log Rank test).

pneumococci were enumerated in the blood 24 h after i.c.
infection with different bacterial doses (10>-10* cfu/mouse).
At the lowest inoculum of 10* cfu/mouse, the number of
cfu counts was significantly different between mice infected
with TIGR4 and those challenged with the mutants FP28,
FP262 and FP23 with a progressively decreasing trend in
mean log cfu/ml of blood (Figure 2B and Additional file 1:
Table S3; p < 0.05). In addition, significant differences could
also be observed for the groups TIGR4-FP262 (at 10° cfu/
mouse; p <0.05) and TIGR4-FP23 (at 10° and 10* cfu/
mouse, p < 0.05), (Additional file 1: Table S3).

Evaluation of PM development in mice infected i.c. with S.
pneumoniae strains

To assess whether the mutant strains were able to in-
duce PM, mice were infected i.c. with 10* cfu of TIGR4
and the three mutants. Brains were collected 24 h after
infection and subjected to histological analysis. Results
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Figure 2 Bacterial loads in the brain and blood of mice i.c.
challenged with S. pneumoniae. A. Mice were infected with

102 cfu/mouse of strains TIGR4 (wt, open squares), FP28 (PspC-,
closed circles) and FP262 (PspA-, closed triangles). Control mice were
inoculated with 10° cfu/mouse of the mutant FP23 (rough, open
circles). Animals were sacrificed at different time-points (6, 24 and
48 h) after infection, and brains were collected to determine the
viable counts. Results are represented as mean log (+ SD) cfu/brain
over time. B. Animals were infected with 10? cfu/mouse of strains
TIGR4, FP28, FP262 and FP23. Twenty-four h after infection, blood
was collected and subjected to viable counts. Data are shown as log
cfu/ml of blood, and horizontal bars represent the mean cfu for
each group. For both panels, asterisks indicate statistical significance

(*, p < 0.05; Bootstrap method).

showed the presence of granulocytic infiltrations involv-
ing both the subarachnoid and ventricular spaces of the
brain from mice inoculated with all the encapsulated
strains, and no major differences could be observed be-
tween animals infected with TIGR4 and those challenged
with the mutants FP28 and FP262 (data not shown). In
contrast, no inflammation was detected in the brain of
animals challenged with the rough FP23 mutant.

To further investigate this evidence, two groups of
mice were inoculated with 10° cfu of TIGR4 and FP23
and euthanised 24 and 48 h later. Histological analysis of
the brain from mice injected with TIGR4 showed severe
inflammation characterised by massive infiltrations of
PMN both on the meninges (Figure 3A) and in the ven-
tricles, where accumulation of fibrin was also observed
(Figure 3C). In contrast, the unencapsulated FP23 strain
failed to cause inflammation on the meninges (Figure 3B)
and in the ventricular spaces (Figure 3D). The TIGR4
strain also induced brain injury in the dentate gyrus of
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hippocampus, where shrunk neurons with picnotic nu-
clei were found (Figure 3E). No damage was found in
samples from mice infected with FP23 (Figure 3F). A
semi-quantitative analysis of brain inflammation and
damage over time was carried out by determining the
number of infiltrating PMN and the percentage of in-
jured neurons in different brain regions, respectively,
and by assigning each animal with an inflammation
score (IS) and a damage score (DS). All mice infected
with TIGR4 presented mild to severe inflammation that
increased over time reaching a median IS (with IQR) of
12 (2-12) at 48 h post-infection (Table 1). Likewise, all
animals challenged with TIGR4 showed neuronal injury
of different degrees peaking at 48 h with median DS
(IQR) of 6 (1-8) (Table 1). In contrast, median IS and
DS from mice infected with the FP23 strain were equal
to 0 at both time-points (Table 1), although some mice
still showed mild brain damage (data not shown). The
above data were also confirmed by infecting animals
with a larger dose of FP23 (107 cfu/mouse) and analys-
ing their brains at a later time-point (72 h) (data not
shown). The brain tissue of control mice injected with
PBS appeared normal. Differences in brain inflamma-
tion (p < 0.001) and neuronal damage (p < 0.05) between
the groups infected with TIGR4 and FP23 were statisti-
cally significant.

In vitro interaction of S. pneumoniae with microglia

The susceptibility of TIGR4 and FP23 to BV2 microglial
cells was recently investigated to elucidate the import-
ance of the capsule in phagocytosis and killing by brain
macrophages [42]. To understand the role of PspC and
PspA in the interaction of S. pneumoniae with microglia,
phagocytosis and intracellular survival of FP28 and
FP262 were assessed in comparison with the parental
strain TIGR4. The rough strain FP23 was employed as a
control. By using a previously established fluorescent
assay that allows to distinguish attached from internalised
bacteria [42,43], the number of phagocytic cells was mea-
sured at 3 h post-infection. Levels of phagocytosis were
similar for all strains (Figure 4A and Additional file 1:
Table S4), suggesting that in a serotype 4 background
PspC and PspA do not significantly affect uptake by BV2
microglial cells. As the TIGR4 strain was shown to resist
intracellular killing by BV2 cells despite being phagocy-
tosed to the same extent of its isogenic unencapsulated
strain FP23 [42], we investigated the behaviours of FP28
and FP262 in microglial cells. Bacteria associated with
acidic phagosomes (phagolysosomes) were visualised by
incubating Hoechst-labelled pneumococci with BV2 cells
in the presence of LysoTracker, a marker of phagosome
acidification. The number of phagolysosomes within each
microglial cell was determined, and the percentage of
colocalisation was calculated. At 3 h post-infection, the
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Figure 3 Brain histology of mice infected with TIGR4 or FP23. Mice were infected i.c. with 10° cfu/mouse of TIGR4 or FP23 and sacrificed

24 h later. Brains were removed, fixed in formalin, embedded in paraffin, and stained with haematoxylin-eosin. The histopathological features of
surface meninges (A, B), ventricular spaces (C, D) and hippocampus (E, F) of animals infected with TIGR4 (A, C, E) or FP23 (B, D, F) were
compared. A, C. Severe inflammation with massive PMN infiltrations over the inter-hemispheric fissure (A) and in the third ventricle (C). A bulk of
fibrin is clearly visible in the ventricular space (C). B, D. No signs of inflammation on the meninges (B) and in a ventricle (D). E, F. Brain damage
in the dentate gyrus (neuronal shrinkage is shown in the inset) of mice infected with TIGR4 (E), while the hippocampus of animals infected with

FP23 was normal (F).

mean percentage of TIGR4-containing phagolysosomes was
significantly lower (p < 0.05) than those of all mutant strains,
suggesting that PspC and PspA may influence phagosome
maturation in microglia (Figure 4B and Additional file 1:
Table S4). Finally, to examine the capability of FP28 and
FP262 to survive within microglia, an intracellular survival
assay was carried out by infecting BV2 cells with bacteria for
3 h, followed by treatment with antibiotics, and then
counting the number of intracellular surviving pneumococci
at 4 h post-phagocytosis. Consistently with previous data
[42], the survival index of FP23 was significantly lower (13-
folds; p <0.05) than that of TIGR4. Survival of the PspA
mutant FP262 was also significantly lower (4-folds; p < 0.05)
compared with the wt strain. No differences were observed
between TIGR4 and FP28 (Figure 4C and Additional file 1:
Table S4).

Discussion

Animal models of disease have significantly improved
our knowledge on the interaction between S. pneumoniae
and the host, and on the pathophysiological mechanisms
involved in inflammation and brain damage during PM.
Nevertheless, several issues remain to be clarified, includ-
ing the role of different pneumococcal virulence factors in
the disease. So far, only pneumolysin [29] and PavA [30]
have been shown to contribute to PM development when
tested via the i.c. route.

In this study, we used a mouse model of PM based on
the inoculation of bacteria into the subarachnoid space
[39] to test the pathogenicity of three different pneumo-
coccal mutants in a type 4 background. PspA and PspC
are well-known pneumococcal virulence factors [1,2],
but their impact on PM has not been investigated before.
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Figure 4 Phagocytosis and intracellular survival of S.
pneumoniae strains in microglial cells. A. BV2 cells were infected
for 3 h with bacteria (moi = 10). A minimum of 200 BV2 cells were
examined, and any cell containing one or more bacteria was
considered as phagocytic. B. Quantification of acidic phagosomes in
microglial cells infected with S. pneumoniae. Hoechst-labelled
bacteria were exposed to BV2 cells (moi= 10) for 3 h, and the
acidotropic dye LysoTracker Red DND-99 was added. Accumulation
of the dye in phagosomes containing Hoechst-labelled bacteria was
observed by epifluorescence microscopy. At least 200 BV2 cells were
counted, and the number of cells with bacteria-containing acidic
phagosomes was scored. The percentage of colocalisation was
determined as the number of BV2 cells with pneumococci-
containing phagolysosomes over the total number of phagocytes. C.
Intracellular survival of pneumococcal strains within microglial cells.
TIGR4 FP28 FP262 FP23 BV2 cells were infected for 3 h with S. pneumoniae strains (moi =10),
washed to eliminate extracellular bacteria, and treated with
antibiotics (time 0). After 4 h, BV2 were lysed, and viable counts
were performed. The SI was calculated as the number of cfu

60 % % % detected at time 4 h divided by the cfu number at time 0 h post-
phagocytosis. For all above assays, data from 4-5 independent
experiments are shown as mean + SD. Asterisks indicate statistical
significance (¥, p < 0.05; Bootstrap method).
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Once S. pneumoniae enters the CNS after crossing the
BBB [52], the brain resident macrophages act as key ef-
fectors of initial innate immunity, by clearing bacteria
and recruiting peripheral blood cells to the site of infec-
tion [33]. To investigate the role of PspA and PspC in
the interaction with microglia, in vitro phagocytosis as-
says were performed using the well-established mouse
microglial cell line BV2 [41]. Bacterial uptake by BV2
cells was comparable among the strains, in accordance
with previous observations on TIGR4 and FP23 [42].
Nonetheless, when the fate of the different mutants in-
side microglia was analysed by evaluating colocalisation
of intracellular pneumococci with acidic phagosomes
and bacterial survival, both the unencapsulated strain
FP23 and the PspA mutant FP262 showed significantly
increased association with phagolysosomes and killing
compared with the wt. As previously shown for the type
4 polysaccharide capsule [42], these data suggest that
PspA may also participate in pneumococcal resistance to
microglial killing, possibly by interfering with phago-
some maturation. In contrast, survival of the PspC mu-
tant FP28 in BV2 cells was similar to that of TIGR4,
despite an increased association with phagolysosomes.
This observation seems to disagree with a previous work
reporting that the lack of PspC increased the susceptibil-
ity of pneumococcal killing by microglia [53]. Such
discrepancy may be explained by the different pneumo-
coccal strains employed in the assays, a serotype 3 PspC
mutant [53] and a serotype 4 PspC-deficient strain (this
work), which are resistant and susceptible to phagocyt-
osis by microglia, respectively. In summary, the data on
PspA and PspC in our ic. model (characterised by
concurrent sepsis and meningitis) confirm previous
reports on their key roles in experimental sepsis
[6,7,36,45-48,54]. In addition, the decreased ability of
FP262 of replicating in the brain at early time-points
(24 h post-infection) together with its increased suscepti-
bility to microglial killing also suggest that PspA may play
a role in early stages of CNS infection by S. pneumoniae.

Rough strains are virtually unable to cause pneumo-
coccal invasive disease [55], and to support this observa-
tion, fresh isolates from patients with pneumococcal
infection are encapsulated [56]. However, early studies in
a PM rabbit model showed that large inocula (107 cfu/
ml) of rough pneumococci could also be lethal, and that
CSF inflammation could be induced by heat-killed
unencapsulated S. pneumoniae (R6 strain) or their iso-
lated cell walls, but not by heat-killed encapsulat-
ed pneumococci or their capsular polysaccharides
[23,24,57]. Bacterial cell walls are potent inflammatory
components, and the threshold of bioactivity of
pneumococcal cell wall (PCW) corresponds to ~10° cfu/
ml of intact bacteria [58,59]. In our study, infection with
up to 107 cfu (in 50 pl) of unencapsulated FP23 bacteria
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(corresponding to 2x10° cfu/ml of CSF) caused no men-
ingeal inflammation or animal death ([42] and this
work). Other than the PCW concentration, different fac-
tors may be responsible of the discrepancies observed,
including the choice of different readouts to assess men-
ingeal inflammation (i.e. cytochemical features of CSF
versus histological analysis), the use of heat-inactivated
versus live bacteria, and/or the type of PCW fragments
released in the CSF of infected animals. As only specific
motifs (i.e. trimeric stem peptides) of PCW are highly
inflammatory [59], these structures may have not been
accessible in FP23-infected mice, while being available in
rabbits inoculated with heat-inactivated R6 bacteria [23].
Despite the lack of brain inflammation in mice injected
with the FP23 mutant, a degree of neuronal damage was
still found in the dentate gyrus of the hippocampus of
some mice. As the effector mechanisms of neuronal
damage in PM are both the host inflammatory response
and the direct citotoxicity of bacterial components
[19-21], the brain damage observed in mice infected
with FP23 may be due to toxic molecules of S
pneumoniae, including pneumolysin and/or H,O, in ac-
cordance to previous animal studies [21,27,28].

Conclusions

The pathogenesis of PM is highly complex and multifac-
torial, and it is difficult to ascribe a precise role to a bac-
terial virulence factor in the disease. The results obtained
with our ic. model indicate a limited role for PspC,
whereas PspA participates in PM pathogenesis possibly by
interacting with microglial cells at an early phase of infec-
tion. The unencapsulated pneumococcal mutant failed to
induce meningeal inflammation, brain injury and animal
death even at high challenge doses, emphasising the piv-
otal role played by the capsule in invasive pneumococcal
disease. The virulence factors evaluated in this study are
either antigens of existing vaccines or strong candidates
for vaccine development. The fact that they have been
shown to contribute, to various degrees, to experimental
PM support their use in current/future vaccine formula-
tions against S. pneumoniae because vaccine efficacy may
be enhanced by impairment of pneumococcal virulence.
In conclusion, the data presented here may be relevant for
translational research studies aimed at improving or devel-
oping effective and sustainable preventive measures against
infectious diseases such as PM.

Additional files

Additional file 1: Detailed data with related statistical analysis on
mouse survival (Table S1), viable counts in the brain over time
(Table S2), viable counts in the blood 24 h post-infection (Table S3),
and phagocytosis/colocalisation/survival assays using microglial
cells (Table S4).
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