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Abstract

hypothesis regarding dengue disease biology.

Background: Dengue virus infection is a public health threat to hundreds of millions of individuals in the tropical
regions of the globe. Although Dengue infection usually manifests itself in its mildest, though often debilitating
clinical form, dengue fever, life-threatening complications commonly arise in the form of hemorrhagic shock and
encephalitis. The etiological basis for the virus-induced pathology in general, and the different clinical
manifestations in particular, are not well understood. We reasoned that a detailed knowledge of the global
biological processes affected by virus entry into a cell might help shed new light on this long-standing problem.

Methods: A bacterial two-hybrid screen using DENV2 structural proteins as bait was performed, and the results
were used to feed a manually curated, global dengue-human protein interaction network. Gene ontology and
pathway enrichment, along with network topology and microarray meta-analysis, were used to generate

Results: Combining bioinformatic tools with two-hybrid technology, we screened human cDNA libraries to
catalogue proteins physically interacting with the DENV2 virus structural proteins, Env, cap and PrM. We identified
31 interacting human proteins representing distinct biological processes that are closely related to the major
clinical diagnostic feature of dengue infection: haemostatic imbalance. In addition, we found dengue-binding
human proteins involved with additional key aspects, previously described as fundamental for virus entry into cells
and the innate immune response to infection. Construction of a DENV2-human global protein interaction network
revealed interesting biological properties suggested by simple network topology analysis.

Conclusions: Our experimental strategy revealed that dengue structural proteins interact with human protein
targets involved in the maintenance of blood coagulation and innate anti-viral response processes, and predicts
that the interaction of dengue proteins with a proposed human protein interaction network produces a modified
biological outcome that may be behind the hallmark pathologies of dengue infection.

Background

Dengue virus infections affects scores of people world-
wide and represent a serious, recurrent public health
and social-economical problem, especially in developing
countries. Although the disease usually manifests itself
in its mildest form, dengue fever, severe forms of the
disease: dengue hemorrhagic fever and dengue shock
syndrome frequently arise, and are responsible for the
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majority of dengue related deaths, especially in children.
The pathophysiological mechanisms that distinguish
between the disease forms are still not well understood,
but among all variables, levels of viremia seem to corre-
late best with disease outcome. Current models of virus
assembly and export indicate that three types of dengue
virus particles co-exist during the viral infection cycle:
(7)) mature particles containing the structural proteins E,
cap and M, (ii) immature particles containing the struc-
tural proteins E, Cap and PrM and (iii) a third kind of
particle, representing partially mature virions, often
found in the supernatants following replication of
DENV-2 virus in cultured insect cells. These retain the
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full unprocessed prM protein and may represent up to
40% of all extracellular particles in that setting. We rea-
soned that a more detailed knowledge of the protein
interaction partners of these proteins might provide
important clues to help understand the biology of the
host-dengue virus relationship, and possibly help to
uncover novel avenues for therapeutic intervention. Our
data, from two-hybrid technology and systems biology
tools, provide evidence that dengue virus structural pro-
teins establish direct interactions with human proteins
participating in crucial coagulation and inflammatory
responses. These observations may help to explain the
faulty behavior of the coagulation pathway in subjects
infected by dengue virus.

Methods

Media and chemicals

Luria-Bertani (LB) liquid media, LB-agar and common
molecular biology reagents were purchased from Invi-
trogen (Invitrogen, Carlsbad, CA). Antibiotics and X-gal
used in the two-hybrid screen were from Sigma (Sigma
Aldrich, St. Louis, MO), and were prepared as fresh
stock solutions prior to each assay. Oligonucleotide pri-
mers used for the amplification of the cDNA for dengue
structural proteins were obtained from the Stanford
University PAN facility. PCR amplification was per-
formed with Ultra-PFU (Agilent Technologies, Santa
Clara, CA) according to the manufacturer’s instructions.

Bacterial two-hybrid screens

A dengue-2 virus cDNA derived from the dengue-2
infectious clone 16681 (a kind gift from Mitchell Lunn
and Karla Kirkegaard, Stanford University) was used as
a template for PCR amplification of the Env, PrM and
Cap coding sequences according to the published
sequence [1]. cDNAs were originally cloned into the
pCR4-TOPO blunt vector (Invitrogen, Carlsbad, CA),
fully sequenced and then subcloned into the bait vector
pBT (Agilent Technologies, Santa Clara, CA), and again
sequenced to verify the open reading frame continuity
with the fusion partner. pTRG plasmids harboring
human liver and whole brain cDNA libraries were
obtained from Agilent, and handled according to the
manufacturer’s instructions. Bacterial two hybrid screens
were performed according to the manufacturer’s man-
ual, with some modifications [2] in order to decrease
the rate of false positives. Briefly, after transformation of
the amp_LacZ reporter cells, carbenicilin-resistant
(250 ug/ml) positive colonies were replated at increasing
carbenicillin concentrations, and colonies still scoring
positives with a concentration of 350 ug/ml or higher
were used for the secondary screen, with LacZ. At this
stage, only the colonies with an intense blue coloration
were selected for revalidation and sequencing. In a
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previous work (our unpublished observations), these
modifications resulted in validation rates above 75%
when putative interaction partners were assayed by co-
immunoprecipitation in mammalian cells.

Construction and analysis of the interactome networks
All network graphical assembly and manipulations were
performed on Cytoscape [3]. For the construction of the
human protein interaction network, physical binary inter-
actions were imported from the web through the Path-
way Commons Cytoscape plug-in [4], and further
enriched with information retrieved directly from the
BioGrid [5], HPRD [6], DIP [7] and IntAct [8] databases.
The NCBI gene name attribute was used to unify the
protein lists and is used throughout this paper. The den-
gue-human primary network was built manually in
Cytoscape, and attributes for each gene given name
(NCBI gene name) were imported through the Biomart
plug-in [9]. The network for the dengue primary interac-
tors direct neighbors (level 2) was built from within the
human network by creating a group (through the group
tool plug-in) consisting of DENV2-human interacting
proteins. The group was selected and served to populate
a sub network with the first neighbors and adjacent
edges into a unified interactome. Topological analysis of
individual and combined networks was performed with
Network Analyzer, a Cytoscape plug-in that allows analy-
sis and visualization of network topological features [10].

Functional analysis

Gene ontology enrichment and pathway analysis was
performed with either BinGO [11], DAVID [12,13],
Webgestalt [14] or directly at KEGG [15,16]. BinGO,
DAVID and Webgestalt built-in statistical modules
automatically compute the enrichment of specific path-
ways or gene ontology terms for every binary interaction
in the network, and can be customized to calculate sig-
nificance by the Fisher’s exact test and the multiple test
correction techniques Benjamini, Bonferroni and FDR
for larger gene lists. Pathways retrieved from KEGG
were compared to similar pathway denominations at the
Reactome, Wiki Pathways and the InnateDB databases
for additional components and accuracy.

Microarray analysis

Datasets of dengue infection experiments deposited either
at the GEO database http://www.ncbi.nlm.nih.gov/geo/ or
ArrayExpress http://www.ebi.ac.uk/microarray-as/ae/ were
imported as raw signal (CEL files) values into Genespring
GX11 using built in import modules for Affymetrix arrays.
Values were normalized by log transformation and group
replicates compared by either unpaired t-test or two-way
ANOVA, depending on the dataset. Fold-change analysis
was used to compare expression between groups.
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Results and Discussion

To study dengue-human protein-protein interactions,
we individually cloned the Env, PrM and Cap genes
from a DENV2 [1] isolate into the bacterial two-hybrid
vector pBT. Interactions were identified in the bacterial
two-hybrid screen by assaying the individual baits
against a whole brain, and a liver cDNA library, both
cloned into pTRG vectors. In total, 10° clones were
screened in each library. Carbenicillin resistant beta-Gal
positive colonies were retested at higher stringency con-
ditions by gradually increasing the dose of carbenicillin.
Surviving colonies were re-assayed for beta-Gal activity,
and colonies staining for the highest intensity beta-Gal
expression (blue coloration) were selected and
sequenced. Forty-seven, and 30 in-frame sequences were
obtained for the brain and liver screens, respectively,
representing 31 unique proteins, presented here in
Cytoscape (Figure 1A and Table 1). A few human pro-
teins in our screen interacted with more than one viral
protein, a feature also found in a recent HCV interac-
tome study, and attributed to a biological “essentiality”
of these host proteins for the virus life cycle.

From the 31 interactions catalogued, 4 appear to be
essential nodes in the human protein interaction net-
work, as knockout of genes encoding these proteins in
mice can be either embryonic lethal (NF1, OXSR1 and
TMOD1) or shorten life span considerably (MBP).
Another 11 interactions take place with proteins whose
mutations cause disease in man or mice (APOA2, TOBI,
PEBP1, SLC24A2, F8, HPX, NRGN, HPX, CLU, PLG and
TUBA1A) [17,18] indicating the importance of these pro-
teins in maintaining network structure, that is, the cell’s
biological functions. While the set of 31 identified pro-
teins is in itself, however, poorly connected, as there are
only 2 inter-connecting edges, collectively, these proteins
are critical for host development and/or survival.

An ontological analysis of the putative interactors using
DAVID [12,13] revealed that the gene ontology groups
“Response to stress”, “Wound healing” and “Protein
import” were overrepresented in the dataset (Table 2). In
addition, proteins from the dataset for the KEGG path-
ways shows overrepresentation for a single pathway,
“Complement and coagulation cascades” and corre-
sponds to the Plasminogen (PLG) and Factor VIII (F8)
proteins (Table 2). Binding to and altering the properties
for plasminogen and factor VIII may be the molecular
basis to link the clinical and pathological relationship
between dengue infection and haemostatic abnormalities
such as vascular leakage, thrombocytopenia and hemor-
rhage [19,20]. Several reports have shown that cell sur-
face receptor-bound plasminogen, or plasminogen
coupled to its soluble receptor, are more readily activated
to plasmin than free plasminogen [21-23]. Thus, it is pos-
sible that at high viremia, the availability of free
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plasminogen for cell surface binding is decreased, result-
ing in down-regulation of cell-bound dependent plasmin
activation of matrix-degrading proteinases [24]. If the
association with factor VIII proves to be inhibitory, then
a combined effect of increased plasmin conversion and a
factor VIII “deficiency” may represent a negative double
hit, and could be at least be partially responsible for the
haemostatic imbalance seen in dengue infections (sup-
plemental figure S1, see Additional file 1). Recently it
became clear that dengue viral particles have intimate
interactions with platelets, not only associated at the cell
surface, but also using this cell type as transient replica-
tion hosts. This a critical point, as platelet surface assem-
bly of tenase (factor VIII/IX) and plasminogen
conversion may become deregulated upon viral binding.
Adding to this scenario it has been proposed that the
degree of haemostatic imbalance in dengue fever is also
highly influenced by the complement system [25]. As
reported before for the non-structural dengue protein
NS1 [26], we show here that DENV2 PrM also binds to
clusterin (CLU) in our two-hybrid assay. The authors in
the previous report [26] hypothesize that the association
of NS1 with clusterin may free C7, which normally
associates with clusterin, therefore facilitating the forma-
tion of the terminal complement complex (TCC). It is
possible that the association with PrM also produces a
similar scenario and, in addition, facilitates immune eva-
sion by inhibiting the formation of the membrane attack
complex (MAC) at the virion surface which is commonly
decorated with anti-E/PrM antibodies. This is reportedly
a common solution adopted by a diverse group of envel-
oped viruses as HIV, HBV and Poxviruses, which either
incorporate host-derived anti-complement factors in
their envelope, e.g. CD59, or, for large genome viruses,
encode complement regulator genes [27]. Thus, although
it is understandable that viruses exploit the complement
pathway for avoiding lysis and at the same time enhance
virus uptake, the reason for their involvement with the
coagulation pathway is not clear. It is possible that this is
just a facet of another intrinsic immune defense hurdle
that the virus has to overcome, given the fact that deposi-
tion and polymerization of fibrin on the surface of micro-
organisms (albeit not yet demonstrated for dengue virus
particles) has been shown, and is proposed to be, one
way the host may impose barriers on the infecting agent
to curtail dissemination of infection [28,29]. Another
intriguing possibility is that the binding of the structural
PrM and Env to PLG and CLU strengthen the already
existing connectivity between the complement pathway
and fibrinolytic activity at the interactome level [30,31],
via CLU-C7-PLG and CLU-PRNP-PLG, causing “over-
sensitivity” in the system.

To gain a better insight into the working of the pro-
tein interaction network during dengue infection, we
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Figure 1 Graphical representation of the DENV2 structural protein interactome. (A) Primary network formed by the D2 structural proteins
and its targets, obtained experimentally in the two-hybrid assay. (B) Topological representation of the network in (A) overlayed on a human-
human interaction network. Red nodes and red edges represent the nodes and edges seen in “A” and blue nodes and edges the remainder of

the human-human network.
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Table 1 Gene ID, Gene Symbol and common name for the proteins rescued from the two-hybrid assay

BAIT SYMBOL GENE ID NAME

Cap ACY1 95 Aminoacylase 1

Cap ALDOB 229 Aldolase B, fructose-bisphosphate

Prvt APOA2 336 Apolipoprotein A-ll

Env ARHGEF11 9826 Rho guanine nucleotide exchange factor (GEF) 11
Env BAAT 570 Bile acid Coenzyme A: amino acid N-acyltransferase (glycine N-choloyltransferase)
Env/PrM CLIC2 1193 Chloride intracellular channel 2

Cap/PrM CLU 1191 Clusterin

Env F8 2157 Coagulation factor VIII, procoagulant component
Cap HLAB 3106 Major histocompatibility complex, class |, B

PrM HMGXB3 22993 HMG box domain containing 3

Env/PrM HN *Q8IVG9 Humanin (*UniProt ID)

Env HPX 3263 Hemopexin

Env IPO13 9670 Importin 13

Cap MBP 4155 Myelin basic protein

Cap MFAP3L 9848 Microfibrillar-associated protein 3-like

Cap MPRIP 23164 Myosin phosphatase Rho interacting protein

Prv NF1 4763 Neurofibromin 1

Env NRGN 4900 Neurogranin (protein kinase C substrate, RC3)
Prvt OXSR1 9943 Oxidative-stress responsive 1

Cap PCP4L1 654790 Purkinje cell protein 4 like 1

Prvt PEBP1 5037 Phosphatidylethanolamine binding protein 1
Env/PrM PLG 5340 Plasminogen

Env RUFY3 22902 RUN and FYVE domain containing 3

Cap SLC24A2 25769 Solute carrier family 24 (sodium/potassium/calcium exchanger), member 2
Env SMU1 55234 Smu-1 suppressor of mec-8 and unc-52 homolog (C. elegans)
Prv TMEM1678B 56900 Transmembrane protein 1678

Env TMOD1 7111 Tropomodulin 1

PrM TOB1 10140 Transducer of ERBB2, 1

Prv TSPAN3 10099 Tetraspanin 3

Cap/PrM TUBATA 7846 Tubulin, alpha 1a

Prv ZNF365 22891 Zinc finger protein 365

Notice that for the gene coding for the functional peptide Humanin, the UniProt ID is given.

manually increased our primary network by using data
from the Pathway Commons database Cytoscape import
plug-in (4) to include proteins interacting with the pri-
mary dengue structural protein interactors (immediate
neighbors), and overlaid this on a manually curated
human PPI made of the union of networks retrieved

from four databases, HPRD [6], Biogrid [5], DIP [7] and
IntAct [8]. The condensed human PPI has 11.479 nodes
and 52.208 edges to which our primary 31 interactors
made 351 connections (Figure 1B). A topological analy-
sis of this DENV2-human (D2-H) protein interaction
network revealed that the average degree of the primary

Table 2 Gene ontology categories and pathways over-represented for the proteins shown in the network in

Figure 1A, according to DAVID

GENE ONTOLOGY p-VALUE GENES

Response to stress 1.50E-03 CLU, OXSR1, PLG, F8, ALDOB, TMOD1, NF1
Wound healing 1.10E-02 PLG, F8, NF1

Protein import 8.00E-03 IPO13, TOBT, NF1

PATHWAYS - KEGG p-VALUE GENES

Complement and coagulation cascades 9.40E-02 PLG, F8

Gene ontology (Biological Process) and Pathway (KEGG) terms, p-value (calculated against DAVID's human reference set) and gene names are given.
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31 interactors is 11.19 (+/- 12.5, range 2-52) as 27 of the
31 primary targets were represented in the condensed
human PPI network. This is an increase of over 75% in
connectivity compared to the average degree of our human
PPI network, which is 6.93, and indicates that the dengue
structural proteins are highly connected in the human
interactome. Although our D2-H interactome is only par-
tial, not accounting for the non-structural proteins, the
high connectivity observed is in line with results from
other viral interactome studies such as the EBV-human
interactome (average degree 15) and the HCV-human
interactome (average degree 15.6). Other topological fea-
tures of the D2-human interaction network are an average
between the value of 2.1 x 10™* (compared to 1.4 x 107 for
our human-human reference interactome) and an average
shortest path of 3.1 (compared to 3.8 for the reference net-
work). Together the result of these studies suggest, as was
proposed before [32,33], that high connectivity may indeed
be a common feature of viral-human interactomes and
would be born out of the necessity of the virus to hijack
major cellular systems in order to replicate the viral gen-
ome and produce virions. Given the fact that in biological
networks, nodes with a number of interactions above the
average, called hubs, are usually essential, as its loss results
in severe phenotypes [34], it appears that the infection net-
work constructed for HCV, EBV and the DENV2 infection
network shown here, corroborate that assertion.

Ontological analysis of the D2-H network, now includ-
ing the level 2.351 interactions, again making use of
DAVID, revealed that the categories “Blood coagulation”,
“Regulation of body fluid levels”, “Cell death”, “Response
to wounding” and “Acute inflammatory response” were
overrepresented (Table 3 and Figure 2B) as were the
KEGG pathways “Complement and coagulation cas-
cades”, “MAPK signaling”, “TGF-beta signaling”, “Focal
adhesion”, “Adherens junctions” and “Toll-like receptor
signaling” (Table 3). Particularly important to this analy-
sis, it seems that the dengue virus targets distinct path-
ways, as it has to deal with distinct biological processes in
order to achieve stable infection.

The association of the Env protein with the cytoskele-
tal module via ARHGEF11 and RhoA may play an
important role during viral entry, as reorganization of
the cortical actin cytoskeleton into filopodia is essential
for DENV2 infection of HMEC-1 cells [35]. ARHGEF11
(PDZ-RHOGEEF) is a guanine exchange factor for Rho
proteins and is an upstream regulator of Rho-dependent
actin reorganization downstream from diverse receptors.
Interestingly, DC-SIGN, a putative dengue virus receptor
uses LARG (ARHGEF12), an ARHGEF11 close homolo-
gue, to activate Rho in association with HIV infection
[36]. In addition MRIP, another regulator of Rho-
dependent actin rearrangement [37], associates directly
with the DENV-2 Capsid (Cap) protein. Together with
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the data showing that Env interacts with tropomodulinl
(TMOD1) (Figure 2A) it allow us to speculate that the
interactions of dengue structural proteins with members
of the actin remodeling machinery may act in an inhibi-
tory fashion as both Rho activation and TMOD1 inhibi-
tion of elongation favor the formation of stress fibers,
rigid structures which unlike filopodia may interfere
negatively with virus entry. Another Env interaction we
detected may be involved with F-actin dynamics and
filopodia formation. RUFY3 (also known as Singarl or
RIPX) is a putative inhibitor of PI3K and is predicted to
have a role in filopodia and lamelipodia structures. In
addition, the presence of the kinase OSR1 (OXSR1) in
association with PrM may further argue in favor of the
notion that such a circuitry might be operational. OSR1
is a SOK1-related kinase that phosphorylates various
chloride channels, PAK1 and RELT under conditions of
environmental stress [38,39]. PAK1 is the upstream
kinase controlling the effector function of CDC42 and
Racl functioning in the dissolution of stress fibers and
reorganization of focal complexes [40] and mutation of
the putative residue in PAK1 phosphorylated by OSR1
reduced the activation of PAK1 by CDC42.

This interpretation, which could account for this sce-
nario taking place in dendritic cells for example, does
not exclude an alternative interpretation when infection
is occurring in endothelial cells. In this case, not only
viral entry would benefit from inhibition of Rho activa-
tion, but Rho inhibition could also contribute to the dis-
organization of stress fibers subjacent to the adherens
junctions facilitating vascular leakage, as seen in den-
gue-infected endothelial cells [41]. In the same way, the
PrM associating protein TSPAN3 and its cognate inter-
actors Claudinll (CLDN11) and integrin-betal (ITGB1)
that are involved in the formation of tight junctions,
structures suspected of being deregulated upon dengue
infection [41] (see above), may also contribute to the
hallmark vascular leakage in DHF.

Another biological process that seems to be targeted is
the nuclear import/export module as evidenced by the
association of Env with Importinl3 (IPO13), a nuclear
transport protein belonging to the importin-beta family.
IPO13 is known to mediate the import of UBC9, PAX3,
PAX6 (and others), as well as the nuclear export and cyto-
plasmic release of elF-1A [42,43], a translation initiation
factor that reportedly binds to the 3’SL of the DENV4 and
West Nile virus genomic RNA [44,45]. One may suspect
that as elF-1A release in the cytoplasm is dependent upon
binding of an import cargo to IPO13, binding of Env to
IPO13 must stimulate elF-1A release, which is presumed
to serve as a bridge enhancing the association of the 3’and
5UTR of the viral RNA so to facilitate cap- dependent
and independent translation [45]. Although dengue virus
NS5 and West Nile capsid proteins are normally imported
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Table 3 Gene ontology categories and pathways over-represented for the proteins shown in the network in Figure 1C

and 1D (level 2 interactions), according to DAVID

GENE ONTOLOGY p-VALUE GENES

Blood coagulation 2.50E-18 CXCL2, STK39, SERPING1, MAPK9, LMANT, MAPK1, HSPA5, F10, MAPK11, PLG, MDK, HMGB1, EGFR, PRKCG,
PLAT, THBST, F3, MAPK13, F2R, PRNP, BCL2, HSP90AAT, ALDOB, SERPINF2, VWF, OXSR1, MAP2K1, ALB, C7,
RPS6KAS, MAPKAPKS, PRKCA, F8, PROC, KNGT1, NF1, TFPI2, GRM7, CLU, SERPINET, SFN, PLA2G7, TLK2,
MAPK14, C8B, XRCC6, GNA12, SERPINC1, APTX, MMP25, C9, TRIB3, F2, TMOD1, FN1, F2RL1, PLAU, BMPR1B,
TLK1, CEBPB, APOH, HSPA8, COL1A, BAX, PROST, TF, VCP, F9, GNA13

Regulation of body fluid 330E-16 SERPINGT, LMANT, F2R, F8, PROC, KNGT, F2, F10, TFPI2, F2RL1, VWF, SERPINET, PLG, PLAU, APOH, PLAT,

levels PROST, GNA12, THBST, F3, F9, SERPINC1, GNA13

Cell death 490E-13 PRKCZ, MAPK1, HSPA, NEB, CALR, PLG, HMGB1, MARK4, PRKCG, MAP3K7, PPARD, F2R, PRNP, BCL2, APP,
RAF1, C7, ALB, IGFBP3, BCL2L1, PRKCA, ATN1, PROC, KNGT1, NF1, PAKT, CLU, SFN, MCL1, BAK1, SIAHT, C8B,
SNCA, BCL2L10, APTX, TRAF6, C9, TUBB, F2, TRIB3, STK4, PAX3, SMAD3, CEBPB, RTN4, BAX, ATXN1, VCP,
MMP9

Response to wounding 2.70E-16 CXCL2, SERPINGT, LMANT, PRKCA, F8, KNG1, PROC, F10, NF1, TFPI2, SERPINET, CLU, PLG, MDK, PLA2G7,
(8B, PLAT, F3, THBS1, GNA12, SERPINCT, F2R, MMP25, C9, F2, SERPINF2, FN1, F2RL1, VWF, PLAU, BMPR1B,
CEBPB, APOH, C7, BAX, TF, PROST1, F9, GNA13

Acute inflammatory 8.50E-07 SERPINGT, CLU, F8, C9, F2, CEBPB, C7, TF, C8B, SERPINF2, FN1

response

PATHWAYS p-VALUE GENES

Complement and 8.90E-14 SERPINGT, F2R, C9, F8, PROC, KNGT, F2, F10, SERPINF2, VWF, SERPINE1, PLG, PLAU, C7, CPB2, PROST, PLAT,

coagulation cascades (8B, F3, F9, SERPINC1

MAPK signaling pathway 1.90E-08 MAPKAPKS, MAPK9, PRKCA, MAPK1, NF1, MKNKT, PAK1, MAPK11, PRKCB1, CHUK, EGFR, MAPK14, PRKCG,
MAP3K7, GNA12, MYC, TRAF6, MAPK13, RPS6KAT1, STK4, TGFBR2, MAP3K14, MAP2K1, NGFB, IKBKB, RAF1,
RPS6KAS5, TGFBR1, PRKACA, MAPK3

TGF-beta signaling pathway 4.60E-07 SMAD2, SMAD9, SMURF1, SMAD6, MAPK1, TGFBR2, RHOA, BMPR1B, SMAD3, SMAD1, TGFBR1, MAPK3,
THBS1, SMADS5, SMAD4, MYC

Focal adhesion 2.10E-05 LAMAT, LAMAS5, MAPK9, PRKCA, MAPK1, BCL2, SRC, FN1, PAK1, VWF, RHOA, ERBB2, PRKCB1, MAP2K1, RAFT,
EGFR, COL1AT1, PRKCG, THBS1, MAPK3, LAMA3

Adherens junction 5.20E-05 SMAD?2, TGFBR2, ERBB2, RHOA, MAPK1, SRC, SMAD3, EGFR, TGFBR1, MAP3K7, MAPK3, SMAD4

Toll-like receptor signaling 9.30E-04 MAPK9, MAPK11, MAPK3, MAPK13, TRAF6, MAPK1, CHUK, MAP2K1, IKBKB, MAPK14, IRAK1, AP3K7, MAPK3

pathway

Gene ontology terms (Biological Process) and Pathway (KEGG) terms, p-value (calculated against DAVID’s human reference set) and gene names are given.

into the nucleus [46,47] to date there are no reports of the
Env protein being imported.

As virus entry, disassembly and packaging are tightly
choreographed, fine tuned conditions are required to maxi-
mize viral cycling. One critical parameter is the regulation
of the pH of virus containing organelles [48]. During viral
entry the membrane fusion apparatus is set in gear by the
acidic pH of the endosome [49] and, during provirus
assembly in the ER and then the Golgi, pH is one major
determinant of infectivity, as furin mediated cleavage of
PrM is only possible around pH 5-6.0. Elevation of the pH
at these steps renders the incoming virus infection-defec-
tive and the secreted virus infectivity is decreased by three
orders of magnitude [49]. Thus tight control of the endoso-
mal and secretory pathway pH is necessary for the virus to
achieve maximal throughput. Vacuolar-type H+-Atpase
(V-ATPase) is a major proton pump regulating pH home-
ostasis, which is essential for vesicular trafficking. The
V-ATPase is a multimeric complex with several subunits
some of which functions to recruit the remaining members
of the complex in an organelle-specific fashion [50]. The

V-ATPase generates an electrochemical proton gradient
and in endosomes it promotes an eletrophoratic chloride
transport via the CLC5 exchanger, to increase the acidity
of the compartment [51]. In our assay, PrM interacted with
the proposed intracellular chloride channel protein CLIC2,
and CLIC2 associates with the Golgi tethering factor
TRAPPC2. This protein is localized to Golgi buds and
COPI-coated vesicles, and is part of the TRAPP complex,
that specializes in vesicle and other intracellular cargo
transport [52]. Thus it is possible that the PrM-CLIC2-
TRAPPC2 interaction would be involved with the late
virus maturation processes that take place in the late Golgi.
Whether CLIC2 plays a role similar to CLC5 in the acidifi-
cation of this particular set of organelles is an interesting
possibility, and we plan to investigate it further as for
another flavivirus, Murray Valley Encephalitis, virions with
particle-bound prM were up to 400-fold more resistant to
low pH environment, a fact that might have important
consequences for E conformational changes in the acidic
exocytic pathway [53]. Nevertheless such a mechanism has
been proposed before for the proton-transporting,
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classifications.
A\

Figure 2 (A) Graphical representation of the interaction network from “figure 1A” after enrichment with first neighbors (level 2
interactions) for the 31 primary interactors. In (B), the same network seen in “A” with the nodes colored according to their gene ontology
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osteoclast ruffled membrane, where the CLIC2 homologue
CLIC5B may be coupled to the ATPase to form the eletro-
genic complex acidifying the bone reabsorption compart-
ment [54].

Another aspect of PrM-host protein interaction is its
association with RKIP (PEBP1). Initially identified as a

RAF-1 kinase inhibitor, it is now known to be involved
in the inhibition of several signaling pathways, including
the MAPK, G-protein coupled receptor (GPCR) and
NF-KB pathways [55,56]. The requirement for NFKB
activation as a component of IFN-beta regulation is well
accepted and is an essential part of the innate immune
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response against viral infection. Thus association of PrM
with RKIP opens up the possibility of another mode of
viral subversion of the innate cellular response to infec-
tion by modulating the activity of upstream kinases in
the NFKB signaling pathway induced upon recognition
of viral RNA by the TLR-RIG-I system. Several reports
on global gene expression profiles in patients, as well as
in vitro models of infection, report a strong bias toward
the up-regulation of immune response, inflammation,
metabolism and response to wounding ontology genes
and down-regulation of cytoskeletal and curiously, NF-
KB-related genes [57-59]. The immune-associated genes
were mostly interferon-related as expected, given the
strong association between RNA virus infection and the
RLR-IEN or TLR3/7-IFN pathways. Nevertheless
there were notable differences between samples from
uncomplicated DF and severe DSS patients regarding
immune-related genes as DF samples show a robust up
regulation of IFN pathway related genes while DSS sam-
ples do not [59]. Curiously gene ontology analysis of our
dengue structural proteins network does not show direct
association with IFN pathway GO terms but it does with
response to wounding and inflammation (Table 3 and
Figure 2B). Despite the lack of GO association with the
immune response/IFN pathways, the association of PrM
with the RKIP kinase is intriguing as this kinase associ-
ates with and inhibits the TAK-1/NIK NFKB kinases
that usually operate downstream of the Toll receptors 3
and 7 (TLR3/7) and TNF receptors, mediating NFKB
-dependent as well as IRF7-dependent gene activation
[60,61]. Both TLR3 and TLR7 are used during dengue
infection [62,63] and levels of TNF-alpha and TNFRI
have been correlated with hemorrhagic manifestations
[25]. As induction of IFN-alpha gene family is depen-
dent on IRF7, it is formally possible that the PrM-RKIP
(PEBP1) complex might be inhibiting TAK1/IKK-depen-
dent IRF7 phosphorylation and activation, possibly
downstream of the TLR3/7 receptors, negating the
expression of IFN-alpha and therefore, IFN-alpha
dependent genes. It may play a similar role downstream
of the TNF receptor. In addition, there is a connection
in our interaction network between two pathways that
respond to RNA-dependent innate anti-viral response,
the IKK-NFKB pathway, described above, and the JNK2-
AP1 pathways. Here these two components are brought
together via the concomitant association of MAPK1
with RKIP and TOBI, both PrM primary interactors.
Chu et al. describes a condition where both these path-
ways are essential for efficient induction of type I IFN
[64]. The possible subduction of the TLR pathway is
not an exclusivity of the human host as the same path-
way controls dengue virus infection in the Aedes aegypti
vector along with a JAK-STAT pathway [65]. Interest-
ingly, Reumer et al., recently demonstrated that the
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human RKIP ortholog, Drosophila PEBP1 is involved in
a conserved immune defense pathway in the fly, down-
stream of the TLR receptor and possibly a JAK-STAT
pathway [66]. Put together, the interaction of PrM with
RKIP (PEBP1) seems to be involved in a conserved
innate immune response pathway that may operate
both, in the mosquito vector and in the human host,
likely to the advantage of the virus. Probably related to
the same pathway, we find an association between PrM
and HMGXB3. This protein belongs to the high mobi-
lity group box proteins (HMGBs), which besides their
well described functions in chromatin remodeling and
transcription, have recently been linked to inflammation
and the initiation of innate immune responses [67].
Yanai et al. recently demonstrated that HMGBI, 2 and
3 bind to many kinds of immunogenic nucleic acids
recognized by TLR3, 7 and 9, and that HMGB1 and
2 knockout mouse cells are defective in interferon
induction by TLR-targeted DNA and RNA [68]. In
addition dengue infected macrophages secrete large
amounts of HMGB1 [69].

We find that the Env protein of DENV2 associates
with hemopexin (HPX) but the significance of this inter-
action remains to be deciphered. The hepatitis E virus
structural component Orf-3 has also been shown to
bind HPX and SIV and HCV infected subjects show an
increased level of hemopexin (HPX) expression, which
has been linked to disease [70-72]. One possible link to
the pathology of DHF is that adult patients with dengue
show high levels of oxidative stress, which also may be
associated with vascular leakage [73]. Production of
ROS by endothelial cells and immune cells have been
reported to occur after dengue virus infection [73] and
HCYV infection leads to a four-fold decrease in heme-
oxygenase (HO-1) in the liver and in cell lines stabling
expressing the HCV core protein [74]. HO-1 mRNA is
normally induced by receptor-mediated signaling after
uptake of heme by macrophages, hepatocytes and
endothelial cells, a function prevented by hemopexin.
Hemopexin is considered an acute phase protein and is
regularly induced by acute phase cytokines, IL-1 and
TNF-alpha [75]. Thus binding of hemopexin to DENV2
ENV might disturb such a circuitry aggravating oxida-
tive stress in the blood vessels endothelial lining. Inter-
estingly, Xi et al. reported decreased expression of
several heme-oxygenases in dengue-infected Aedes
aegypti in a NF-KB dependent fashion [76].

As is the case with HIV and many other small RNA
viruses, a compact genome demands maximal interaction
with the diverse cell machineries in order to successfully
produce a progeny. Such intense interactions may have
unforeseen consequences depending on viral loading,
host genetic background and other relevant factors [77]
and may create havoc at the system level and deeply
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disturbing the operation of a cell and eventually tissues
and organs. It is well accepted that changes in protein
abundance and post-translational modifications can func-
tion as switches in the interactome and a viral infection
of a cell can fulfill, perhaps more than any other condi-
tion, the requirements for the dynamic perturbation of
the cell’s interaction network, a situation believed to be
central in the development of disease. Thus, depending
on variables such as initial viral load and rate of viral
replication, the abundance of viral proteins interacting
with the preexisting network may change dramatically
and significant increases in a protein abundance have
been known to cause a increase in its interaction promis-
cuity [78] whose biological effects will vary depending on
the role of the host interaction partner in the network,
whether they represent hubs or non-hubs. We analyzed
several microarray experiments deposited in the GEO
database for dengue infections both in vitro and in vivo
(e.g., GSE18090, GSE9378 and GSE13052). To our sur-
prise only 8 out of the 31 proteins obtained in the two-
hybrid assay, RUFY3, MBP, TMEM167B, TSPAN3,
OXSR1, TOBI, CLU and HLA-B were differentially
expressed in at least one of the microarray studies. Only
CLU and HLA-B were up regulated upon infection and
all the others were down regulated, suggesting that the
virus structural proteins tend to associate with proteins
coded by genes whose expression is stable under infec-
tion conditions. When we expanded our search for the
genes at the level 2 of the D2-human interactome, we
found that at least 50% of the genes coding for the pro-
teins associated with TOB1, OXSR1, RUFY3, HLA-B,
MBP, TSPAN3, MPRIP, NRGN and PEBP1 were differ-
entially regulated upon infection. On the other hand less
than 20% and, in many instances, none of the genes for
the proteins associated with F8, PLG, ALDOB, TMOD1
and others were regulated. Remarkably more than 85% of
all the regulated genes related to the D2-human interac-
tome were down-regulated upon infection (results not
shown).

Conclusions

In summary, we present data that support a scenario
where DENV2 structural proteins interact with diverse
cellular proteins representing many biological functions,
but with its greatest impact pointing toward the inter-
ference with coagulation and inflammatory pathways.
The conditions by which dengue proteins interact with
these pathways are manifold and range from direct
interactions with effector cascades as well as with struc-
tural components serving as targets for those cascades.
Although the use of analytical tools to decode protein-
protein interaction networks is of great help for the gen-
eration of hypothesis and the prevision of biologically
relevant scenarios, our inability to incorporate into the

Page 10 of 12

network, biological variables such as time of expression,
concentration and affinity of network components pre-
cludes us from getting a more accurate view of the
inner workings of a dengue infection upon the host’s
biology. Nevertheless the approximation allowed by this
relatively new methodology gives us previously unattain-
able views of the global behavior of a host’s biological
network during a loss of homeostasis enforced by the
sudden introduction of alien proteins resulting from a
virus infection. The observation of these very changes in
connectivity may shed new light on the etiology of
broad pathogenesis traits seen in infected individuals
and stir up the search for new therapeutic strategies.

Additional material

Additional file 1: Supplemental Figure S1 - Schematic
representation of the complement and coagulation pathway
adapted from Wikipathways and possible sites of interference from
the Dengue structural proteins as discussed in the text. Red arrows
and (+) signs suggest an additive effect and T-bars a negative effect.
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