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Abstract

Background: China is a country that is most seriously affected by hemorrhagic fever with renal syndrome (HFRS)
with 90% of HFRS cases reported globally. At present, HFRS is getting worse with increasing cases and natural foci
in China. Therefore, there is an urgent need for monitoring and predicting HFRS incidence to make the control of
HFRS more effective. In this study, we applied a stochastic autoregressive integrated moving average (ARIMA)
model with the objective of monitoring and short-term forecasting HFRS incidence in China.

Methods: Chinese HFRS data from 1975 to 2008 were used to fit ARIMA model. Akaike Information Criterion (AIC)
and Ljung-Box test were used to evaluate the constructed models. Subsequently, the fitted ARIMA model was
applied to obtain the fitted HFRS incidence from 1978 to 2008 and contrast with corresponding observed values.
To assess the validity of the proposed model, the mean absolute percentage error (MAPE) between the observed
and fitted HFRS incidence (1978-2008) was calculated. Finally, the fitted ARIMA model was used to forecast the
incidence of HFRS of the years 2009 to 2011. All analyses were performed using SAS9.1 with a significant level of p
< 0.05.

Results: The goodness-of-fit test of the optimum ARIMA (0,3,1) model showed non-significant autocorrelations in
the residuals of the model (Ljung-Box Q statistic = 5.95,P = 0.3113). The fitted values made by ARIMA (0,3,1) model
for years 1978-2008 closely followed the observed values for the same years, with a mean absolute percentage
error (MAPE) of 12.20%. The forecast values from 2009 to 2011 were 0.69, 0.86, and 1.21per 100,000 population,
respectively.

Conclusion: ARIMA models applied to historical HFRS incidence data are an important tool for HFRS surveillance in
China. This study shows that accurate forecasting of the HFRS incidence is possible using an ARIMA model. If
predicted values from this study are accurate, China can expect a rise in HFRS incidence.

Background
Hemorrhagic fever with renal syndrome (HFRS), or epi-
demic hemorrhagic fever (EHF) is an acute viral syn-
drome caused by infection with one of hantaviruses.
HFRS is an important infectious disease in developing
countries. In China, HFRS is caused mainly by 2 types
of hantaviruses, Hantaan virus (HTNV) and Seoul virus
(SEOV), each of which has coevolved with a distinct
rodent host. HTNV is associated with Apodemus agrar-
ius, whereas SEOV, which causes a less severe form of
HFRS, is associated with Rattus norvegicus [1]. In

hantavirus -endemic areas, HFRS is most common
among farmers and others who may have close contact
with excreta of infected rodents [2,3]. In mainland
China, HFRS remains a serious public health problem
with approximately 20,000-50,000 human cases reported
annually, approximately 90% of the total cases world-
wide [4-6]. Currently, HFRS is endemic in 28 of 31 pro-
vinces in mainland China [4,7].
In response to the spread of HFRS in China, the Chi-

nese Center for Disease Control and Prevention
designed a surveillance system for HFRS and created
educational programs for the general public. However,
the impact of control efforts remains difficult to mea-
sure due to the inherent complexities of HFRS as a dis-
ease: multiple viral strains with identified genetic
polymorphisms, complex disease manifestation, diverse
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animal reservoirs, and multiple routes of transmission [8].
Infectious diseases have certain characteristic features that
lead themselves to modeling, such as: speed of pathogen
variation, accumulation of susceptible hosts, and environ-
mental indices [9]. Thus, epidemic modeling and forecast-
ing can be essential tools to prevent and control HFRS.
Recently, statistical methods including linear regression
[10-12], correlation coefficients [13], grey swing model
[14], back propagation artificial neural network model [15]
have been used for prediction of HFRS incidence. The var-
iation of HFRS incidence, which is influenced and con-
strained by diversified factors, is characterized by tendency
and randomicity. These statistical tools are inappropriate
for analyzing the randomicity of HFRS. Autoregressive
integrated moving average (ARIMA) models, which take
into account changing trends, periodic changes, and ran-
dom disturbances in time series, are very useful in model-
ing the temporal dependence structure of a time series. In
epidemiology, ARIMA models have been successfully
applied to predict the incidence of infectious diseases,
such as influenza mortality [16], malaria incidence [17], as
well as other infectious diseases [18,19]. This study aimed
to develop a univariate time series model for the HFRS
incidence; specifically, a stochastic ARIMA model, for
short-term forecasting of HFRS incidence (per 100,000
population) in China.

Methods
Materials
Chinese HFRS incidence data from 1975 to 2008 was
obtained from the Chinese Center for Disease Control
and Prevention. All HFRS cases were initially diagnosed
by clinical symptoms. Patient blood samples were also
collected and sent to local Centers for Disease Control
and Prevention (CDC) laboratories for serological con-
firmation. Finally, data were collected by case number
according to the sampling results. There might be
admission rate bias in the disease report, but this has
been reduced as much as possible. In China, HFRS is a
nationally notifiable disease and hospital physicians
must report every case of HFRS to the local health
authority within 12 hours. Local health authorities later
report monthly HFRS case totals to higher the national
level CDC for surveillance purposes. Due to mandatory
reporting, it is believed that the degree of compliance in
disease notification over the study period was consistent.
We used the Box-Jenkins approach to ARIMA (p, d,

q) modeling of time series [20]. This model-building
process is designed to take advantage of associations in
the sequentially lagged relationships that usually exist in
periodically collected data [21]. The following were the
parameters selected when fitting the ARIMA model: p,
the order of autoregression; d, the degree of difference;
q, the order of moving average.

The annual data used in this study did not show sea-
sonal pattern, so the series was differenced at the non-
seasonal level to induce stationarity. Autocorrelation
function (ACF) graph and Partial autocorrelation func-
tion (PACF) graph were used to identify the order of
moving average (MA) and autoregressive (AR) terms
included in the ARIMA model. Estimates of the model’s
parameters were obtained by the conditional least
squares method. Diagnostic checking including residual
analysis and the Akaike Information Criterion (AIC) was
used to compare the goodness-of-fit among ARIMA
models. The Ljung-Box test was used to measure the
ACF of the residuals. In addition, we used the mean
absolute percentage error (MAPE) and fitting effect dia-
gram to assess forecast accuracy.

MAPE =
1
n

n∑

t=1

∣
∣
(
xt − x̂t

)/
xt
∣
∣ , where xt and x̂t denote

observed and fitted values at time point t. The MAPE
value was calculated based on observed values and fitted
values from 1978 to 2008. A lower MAPE value indi-
cates a better fit of the data. Finally, the fitted ARIMA
model was used for short-term forecasting of HFRS inci-
dence for years 2009 to 2011. All analyses were per-
formed using SAS9.1 with a significant level of p < 0.05.

Ethical review
The present study was reviewed by the research institu-
tional review board of Shandong University and the
China CDC, and found that utilization of disease sur-
veillance and meteorological data did not require over-
sight by an ethics committee.

Results
Temporal analysis
From 1975 to 1986, the HFRS incidence in China rose
regularly with a peak in 1986 of 11.06 cases per one
hundred thousand population. After 1986, the incidence
descended sharply with a dramatic fluctuation until
2008 (Figure 1). The lowest incidence could be seen in
2008, 0.68 per one hundred thousand.

Model identification
According Figure 1, the series showed a non-stationary
mean, so we stabilized the mean of HFRS incidence by
taking both second and third order differences. All
further statistical procedures were performed on the
transformed HFRS incidence. Based on the distribution
characteristics, we conducted five models, ARIMA(0, 2,
1), ARIMA(1,2,1), ARIMA(0,3,1), ARIMA(1, 3, 1), and
ARIMA(2, 3, 1). Of all the models tested, the ARIMA
(0,3,1) model was the best fit for the data (Table 1). The
transformation series by taking third-order differences is
shown in Figure 2. The plots of ACF and PACF (Figure
3) described the temporal dependence structure in
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HFRS incidence. The slow decay in the PACF, associated
with a ACF cutoff at lag 1 suggested a MA(q = 1).

Model diagnosis
The parameter estimates for the optimum ARIMA(0,3,1)
model are shown in Table 2. The model’s fitted (1975-
2008)and predicted values (2009-2011) are presented in
Figure 4. The MAPE value was 12.20%. The forecast
values of the years 2009, 2010, and 2011 were 0.69, 0.86,
and 1.21 per 100,000 population, respectively.

Discussion
Time series analysis of surveillance data on incidence of
various infections is very helpful in developing hypoth-
eses to explain and anticipate the dynamics of the
observed phenomena and subsequently in the establish-
ment of a quality control system and reallocation of
resources [22]. ARIMA model is one of the most widely
used time-series forecasting techniques because of its
structured modeling basis and acceptable forecasting
performance [23]. In this paper, we applied an ARIMA
(p, d, q) model to analyze the surveillance data of HFRS
in China. Disease monitoring by public health

department entails ongoing data collecting, processing,
and updating. However, the national level China CDC is
the appropriate level of organization for the implemen-
tation of an ARIMA predictive model, because reported
data is continually received and updated. We found that
model predictions are further improved by the assured
availability of the Health Department data. In this study,
we have obtained an ARIMA model that closely fits
HFRS incidence in China. The autoregression and mov-
ing average parameters of our model imply the inci-
dence of HFRS in a month can be estimated by the
residual occurring one month prior. According to the
results above, the conducted model is reliable with a
high validity. Once a satisfactory model has been
obtained, it can be used to forecast expected numbers of
cases for a given number of future time intervals [24].
Thus, the fitted ARIMA(0,3,1) model can be used to
predict the next three years’ HFRS incidence in China.
The forecast results suggest that the HFRS incidence in
China will experience a slight growth in the next three
years (2009-2011). A rise in the number of HFRS inci-
dence may also result from an increase in the number
and size of natural foci [25], climate change, especially
the increase of mean temperature [26,27]. Therefore,
knowledge of HFRS forecasts is necessary to prompt
health departments to strengthen surveillance systems
and reallocate resources in anticipation of increasing
HFRS incidence.
Several studies have used ARIMA model to fit and

predict changing trends in infectious disease. Luz et al
applied an ARIMA(2,0,0)×(1,0,0)12 model to predict
dengue incidence in Rio de Janeiro [18] and found that

Figure 1 The incidence of HFRS in China from 1975 to 2008.

Table 1 Comparisons of tested models

Model Ljung-Box Q statistic P value AIC

ARIMA(0,2,1) 5.78 0.3869 117.7200

ARIMA(1,2,1) 7.97 0.0488 119.6435

ARIMA(0,3,1) 5.95 0.3113 116.7075

ARIMA(1,3,1) 8.46 0.0453 118.6647

ARIMA(2,3,1) 9.33 0.0260 120.1425
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ARIMA models were useful tools for monitoring dengue
incidence. Earnest et al indicated that ARIMA models
provided useful tools for administrators and clinicians in
planning for real-time bed capacity during infectious
diseases outbreaks such as SARS [28]. Li et al have

applied an ARIMA model to monthly incidence of
HFRS in Linyi City, China to predict HFRS incidence,
and found that the ARIMA model could be used to pre-
dict HFRS incidence with high predictive precision in
the short-term [29]. In the present study, we further

Figure 3 Autocorrelation(acf, top) and partial autocorrelation(pacf, bottom) functions of third-order differences HFRS incidence. Dotted
line: 95% confidence intervals.

Figure 2 Third-order differences of HFRS incidence(per 100,000 pop.).
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confirmed the consensus that ARIMA model is a useful
tool in monitoring and predicting changing trends in
infectious diseases.
To the best of our knowledge, this is the first study to

apply ARIMA model to fit the HFRS incidence in China
with as many as 34 observations at year level. Some pre-
vious studies [30,31] in China also used ARIMA model
to fit and forecast HFRS incidence of some regions, but
they had the same problem that the number of observa-
tions was not enough, which led to the instability of
their forecast results. In order to conduct a stable and
effective ARIMA model, we have to collect at least 30
observations [32]. Thus, parameter estimates of the
fitted model would be more robust. The longer the ser-
ies, the better; however, the series should not extend so
far into the past as to include periods during which a
different case definition was applied or in which any
other reporting artifact resulted in a mean number of
cases per interval that differs from the mean of recent
intervals. As mentioned above, for adequate ARIMA
modeling, a time series should be stationary with respect
to mean and variance. If the mean increases or
decreases over time, or if the variance does, the series
may need to be transformed to make it stationary,
before being modeled. Otherwise, the prediction effect
of the model will be poor.

In order to improve the model, updating the forecasts
is very important. A model without seasonal terms will
need to be updated frequently. Confidence intervals that
widen rapidly as time increase from the starting point of
the forecasts also indicate a model that needs frequent
updating. Generally speaking, there are two ways to
implement the updating. The model can be reapplied to
the original series with extra observations added at the
end to give forecasts based on a later starting point.
Alternatively, a new model can be fitted to the longer
series. This is probably preferable, since fitting a model
is quick, especially when the old model is used as a
guide, and it makes better use of the additional
observations.
Some limitations of this study also need to be taken

into account when interpreting the results. In this study,
the interval of HFRS incidence is one year, so we could
not analyze its seasonal characteristic. In further study,
we would use monthly data to predict HFRS incidence
in order to get seasonal pattern and higher predictive
precision. In addition, the data are from a passive sur-
veillance system, the possible biases in disease reporting
and potential underreporting of HFRS cases might influ-
ence the precision of our analysis.

Conclusion
There is an urgent need for monitoring and predicting
HFRS incidence to reduce the substantial morbidity and
mortality caused by this disease [33]. ARIMA models
applied to historical HFRS incidence data are an impor-
tant tool for HFRS surveillance. Accurate forecasting of

Figure 4 Black dots: observed values of HFRS incidence, for the period 1975-2008. Red solid line: ARIMA(0,3,1) model’s fitted curve(1978-
2008). Red dots: ARIMA(0,3,1) model’s fitted values(1978-2008). Dashed lines: 95% confidence intervals.

Table 2 Parameter for the final ARIMA(0,3,1) model

Parameter Coefficient Standard error t statistic P value

MA1 0.9675 0.0599 16.14 < 0.0001
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the incidence of HFRS is possible. Our modeling
approach can be used to monitor and predict HFRS
incidence in China. The ARIMA model could be used
to optimize HFRS prevention by providing estimates on
HFRS incidence trends in China.
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