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Dry weather induces outbreaks of human West
Nile virus infections
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Abstract

Background: Since its first occurrence in the New York City area during 1999, West Nile virus (WNV) has spread
rapidly across North America and has become a major public health concern in North America. By 2002, WNV was
reported in 40 states and the District of Columbia with 4,156 human and 14,539 equine cases of infection.
Mississippi had the highest human incidence rate of WNV during the 2002 epidemic in the United States.
Epidemics of WNV can impose enormous impacts on local economies. Therefore, it is advantageous to predict
human WNV risks for cost-effective controls of the disease and optimal allocations of limited resources.
Understanding relationships between precipitation and WNV transmission is crucial for predicting the risk of the
human WNV disease outbreaks under predicted global climate change scenarios.

Methods: We analyzed data on the human WNV incidences in the 82 counties of Mississippi in 2002, using
standard morbidity ratio (SMR) and Bayesian hierarchical models, to determine relationships between precipitation
and human WNV risks. We also entertained spatial autocorrelations of human WNV risks with conditional
autocorrelative (CAR) models, implemented in WinBUGS 1.4.3.

Results: We observed an inverse relationship between county-level human WNV incidence risk and total annual
rainfall during the previous year. Parameters representing spatial heterogeneity in the risk of human exposure to
WNV improved model fit. Annual precipitation of the previous year was a predictor of spatial variation of WNV risk.

Conclusions: Our results have broad implications for risk assessment of WNV and forecasting WNV outbreaks.
Assessing risk of vector-born infectious diseases will require understanding of complex ecological relationships.
Based on the climatologically characteristic drought occurrence in the past and on climate model predictions for
climate change and potentially greater drought occurrence in the future, we suggest that the frequency and
relative risk of WNV outbreaks could increase.

Background
Initially detected in Uganda in 1937, West Nile virus
(WNV) spread across Africa to the Middle East, West
Asia, and eastern Europe [1,2]. The first occurrence of
WNV in the Western Hemisphere was in the New York
City area during 1999, where 59 patients were hospita-
lized with WNV infection during August and September
[2]. West Nile virus spread rapidly across North America
and by 2002, was reported in 40 states and the District of
Columbia of the United States (US) with 4,156 human
and 14,539 equine cases of infection [3]. West Nile virus
infection can cause neuroinvasive diseases (e.g., encepha-
litis) and even human fatalities [3]. Additionally, an

epidemic of WNV can impose enormous impacts on
local economies. For instance, the estimated short-term
economic cost incurred from the 2002 WNV epidemic in
Louisiana was $20.1 million [4]. West Nile virus disease
will continue to be a public health concern in the fore-
seeable future; therefore, the assessment and prediction
of human WNV risk within an administrative unit (e.g.,
county) is critical for effective WNV control and preven-
tion and resource allocation [5].
Understanding ecological factors influencing the trans-

mission of WNV can help predict human WNV risk and
improve effectiveness of control measures [1]. Birds are
the predominant hosts of WNV, whereas mammals
(including humans and equines) are accidental, dead-
end hosts [6]. West Nile virus is transmitted between
birds by enzootic, ornithophilic mosquito vectors and to
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humans and horses primarily by bird-to-mammal bridge
vectors, such as Culex mosquitoes [5,7]. Several environ-
mental factors including landuse, climate, and host com-
munity composition can influence the abundance of
WNV hosts and vectors, and subsequently, affect WNV
transmission rates. For example, increased temperatures
from April through October and increased agricultural
activities enhanced human WNV disease prevalence in
Colorado, Louisiana, Nebraska, and Pennsylvania [1].
Also, increased percentage of urban land or decreased
percentage of forest land increases the human WNV
incidence in the northeastern United States [8]. Finally,
increased avian species diversity was associated with
reduced WNV host prevalence and consequently lower
WNV transmission rates throughout the United States
[9]. However, Yiannakoulia and Svenson [10] found that
inclusion of data on corvids did not improve predictive
powers of their models for WNV spread in Alberta,
Canada.
The role of precipitation in the WNV transmission is

inconclusive. It is generally thought that precipitation
limits mosquito abundance and that mosquito popula-
tions are positively correlated with precipitation. How-
ever, Miramontes et al. [1] found no association
between annual precipitation and human WNV inci-
dence. Surprisingly, Chase et al. [11] found that mos-
quito outbreaks were associated with droughts during
the previous year, suggesting that droughts reduce mos-
quito predators and competitors, allowing mosquito
abundance to increase the following year. Although it
seems counterintuitive, it is plausible to extend this rea-
soning and hypothesize that dry weather or low precipi-
tation would increase the number of the human WNV
incidences the following year due to increased mosquito
abundance. It is known that periodic droughts are asso-
ciated with certain climate regions and with global tele-
connection phenomena such as the El Nino-Southern
Oscillation; thus, knowledge of relationships between
precipitation and WNV transmission is crucial for pre-
dicting the risk of the human WNV disease outbreaks
under predicted global climate change scenarios. How-
ever, the hypothesis regarding the effects of dry weather
on WNV transmission has not been tested empirically.
Spatial heterogeneity exists in the risk of human expo-

sure to infectious disease vectors [8,9,12]. For example,
occurrences of infectious diseases often are spatially
(auto-) correlated; human disease incidence at a location
is positively related to incidences at neighboring loca-
tions. Therefore, models using geospatial statistics and
disease mapping methods are necessary to explicitly esti-
mate the influence of neighboring site’s risks on the risk
at a specific site [13,14].
We developed a Bayesian hierarchical spatial model with

conditional autocorrelation (CAR) distributions to

estimate the relative risk of human WNV infection in Mis-
sissippi, the United States of America (USA), and account
for spatial autocorrelations. Mississippi had the highest
human incidence rate (57 cases per million people) in the
2002 WNV epidemic in the US [3]. Our objective was to
test the hypothesis that dry weather would induce out-
breaks of human WNV the following year, assuming that
dry weather-induced increases in mosquito abundance
would increase WNV transmission from birds to humans.

Methods
Human incidence data and expected number of human
West Nile virus cases
We used numbers of human WNV cases (O) by county
in Mississippi in 2002 http://ems.msdh.state.ms.us/
msdhsite/_static/resources/524.pdf. Overall, 193 human
cases of WNV were reported in 50 of the 82 counties in
Mississippi. The expected counts or rates of human
WNV cases (e) of a county was estimated with the

equation e r Ni i

i

n

= ∑ following the method described

by Lawson et al. [14], where ri is the 2002 US national
human incidence rate by age group (i) [3], and Ni is the
number of people by age group for the county from the
2000 US Census data obtained from the Mississippi
Automated Resource Information System http://www.
maris.state.ms.us. This method assumes that age-specific
rates of human WNV cases in Mississippi can be
approximated by the national age-specific rates. It is
possible that some human WNV cases in Mississippi
during 2002 were not reported. However, possible addi-
tional unreported cases had little effects on our esti-
mates of relative human WNV risk because the same
possibility existed in the 2002 national data that were
used to compute national human incidence rates.

Weather data
Seventy three Mississippi counties had at least one
weather station. We used the total annual precipitation
recorded at a weather station during 2001 to represent the
annual precipitation for an entire county. We interpolated
annual precipitation for the 9 counties missing precipita-
tion records during 2001, using an ordinary kriging
method [15]. Briefly, we first occularly fitted a semivario-
gram model to the observed data to generate initial values
of the parameters range and sill. We then fitted a semivar-
iogram model using the maximum likelihood function and
the initial values of range and sill. For kriging, we
employed the Marten function as a spatial correlation
function and varied values of the order parameter (�) to
maximize the model likelihood [15]. The predicted annual
precipitations at the centroids of the 9 counties were then
used to interpolate missing annual precipitation.
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Bayesian hierarchical models for relative human
West Nile virus risk
We assumed that the observed number of human WNV
cases had a Poisson distribution. The mean number of
human WNV cases reported (i.e., the Poisson para-
meter) is the product of the expected rate (e) and rela-
tive risk (θ) in a county, i.e. Oi ~ pois (l1) and li = eiθi,
where li is the Poisson parameter; ei is the expected
rate of the ith county, representing the background
population effect; and θi is the relative risk. The
expected rate is assumed to be known. The relative risk,
θ, is either a constant or a function of environmental
variables. If the value of θ is greater than 1, the risk of
disease is greater than expected based on information
from the standard population.
To test our hypothesis regarding the effects of pre-

vious precipitation on the human WNV epidemic, we
developed a set of candidate models with and without
precipitation using the logarithmic link function,

log log ,e i e i i ie v u = + + + (1)

log log ,e i e i i i ie prec v u  = + + + + (2)

where a is an intercept representing a fixed, popula-
tion-level effect; b is the regression coefficient; preci is
the annual precipitation during the previous year; vi is a
spatially independent random variable normally distrib-
uted, vi ~ N (0,  v

2 ), representing spatially uncorrelated
heterogeneity (UH); and ui is spatially-structured ran-
dom variable representing effects of (the first-order or
directly bordering) neighboring counties on the relative
risk. In our preliminary analysis, a model including pre-
cipitation of both the previous and the current years
did not explain more variability than did a model only
including precipitation of the previous year. We aimed
to test the predefined hypothesis regarding the time-lag
effect of precipitation [11]; thus, we did not include pre-
cipitation of the current year in our analysis. We used
conditionally autocorrelative distributions (CAR) to
model the spatially correlated heterogeneity (CH) in the
relative risk [14]. We built our candidate models and
estimated the unknown parameters and the UH and
CH effects within the framework of Bayesian hierarchi-
cal models using the following prior distributions
assigned,

a ~ flat ( ),
b ~ N (0,  

2 ),
 

2 ~ inverse gamma (0.5, 0.0005),
 v

2 ~ inverse gamma (0.5, 0.0005).

These priors are relatively non-informative. The hier-
archical models were implemented with the program

WinBUGS 1.4.3 [16]. A sample WinBUGS code was
presented in Appendix A. We initialized two chains for
parameters a and b with different starting values and
convergence was assessed by the Brooks-Gelman-Rubin
method offered in WinBUGS [16]. The MCMC chains
were run for 20,000 iterations with the first 10,000 itera-
tions as a burn-in period. Although we were not able to
test the assumption that the observed number of human
WNV cases had a Poisson distribution in the Bayesian
context, extra variability that often was observed in the
number of the infection incidences of an infectious dis-
ease was accounted for by the unstructured and struc-
tured heterogeneity vi and ui in models (1) and (2).
When information about reported infections is known
at given time points, a Poisson distribution may be valid
for infectious diseases [14]. Poisson distributions were
applied to incidence data of infectious diseases in the lit-
erature [17,18]. Moreover, we used estimated precipita-
tion by the kriging interpolation for missing data in nine
counties. Estimation uncertainty of missing precipitation
and its effects on estimates of the parameter b measur-
ing rain effects were not assessed in this study.
We created a set of 5 models according to pre-defined

hypotheses in a forward stepwise manner. We used
deviance information criterion (DIC) to select the best
approximating models from the candidate models [19].
The lower the DIC value, the better the model fit. We
also used Moran’s I [18] for the Poisson data to assess
goodness of fit. A significant Moran’s I indicates a lack
of fit due to spatial autocorrelation.

Results
Annual precipitation varied across Mississippi in 2001,
ranging from 111.9 cm to 208.1 cm (Figure 1). Central
and western Mississippi received less precipitation than
northern Mississippi. Smoothed estimates of the relative
risks of human WNV from Eqn 1 also suggested consid-
erable spatial variation across Mississippi with the great-
est human WNV risk in west central Mississippi. The
areas of highest relative risk ( ̂ >1.0) during the 2002
human WNV epidemic generally received less precipita-
tion during 2001 (Figure 1, 2).
Annual precipitation during the previous year

improved model fit and reduced the DIC value by 17.19
compared to the Poisson constant model (Table 1). The
95% credible interval (CI) of coefficient b ranged from
-0.02 to -0.007, indicating an inverse relationship
between the relative risk of human WNV and annual
precipitation during the previous year. However, the
Poisson regression model without UH and CH compo-
nents was insufficient; Moran’s I had a 95% CI from
0.07 to 0.1. The UH and CH components substantially
improved model fitting and resulted in lower DIC values
(Table 1). Models 1 and 2 were competing models with
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ΔDIC <0.6. Although the 95% CI included zero, most of
the CI range was negative, suggesting an inverse rela-
tionship between the relative risk of human WNV and
annual precipitation during the previous year.

Discussion
West Nile virus is amplified in its avian hosts and is
transmitted to humans by Culex mosquitoes. Abun-
dance of mosquito larvae is inversely related to the pre-
sence and abundance of predatory fish [11]. Droughts

presumably reduce predators and competitors of mos-
quitoes, allowing mosquito abundance to increase [11].
In a survey following a drought, Chase et al. [11] found
a significant decline in the biomass of mosquito’s preda-
tors and competitors in dried natural wetlands com-
pared to that in permanent wetlands. Drought-induced
declines in the predator and competitor biomass of
mosquitoes and subsequent increase in mosquito abun-
dance were confirmed in a controlled mesocosm experi-
ment [11]. In addition, Culex mosquitoes are a “foul

Figure 1 Kriging of annual precipitation (cm) during 2001 using data from 73 weather stations (circles) in Mississippi, the United
States.
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water species,” thriving in dry conditions by breeding in
standing water in old tires or pooled in tire tracks
[10,20]. Future studies should address the effects of dry
weather conditions on the abundance of the predators
and competitors of mosquitoes to better understand cli-
mate effects on human WNV risks.
Increased bird abundance at refuges with congrega-

tions of Culex mosquitoes during droughts was

suggested to amplify the transmission risk of St. Louis
Encephalitis virus (SLEV) [21]. Dispersing mosquitoes
and SLEV-infected birds were associated with increased
risk of SLEV infection in humans [21]. The inverse rela-
tionship between annual precipitation of the previous
year and the relative risk of human WNV suggests that
drought-induced increases in mosquito abundance ulti-
mately increase the risk of transmitting WNV from

N
(11) <    0.5

(29)     0.5 -     1.0

(27)     1.0 -     1.5

(10)     1.5 -     2.0

(3)     2.0 -     2.5

(0)     2.5 -     3.0

(2) >=    3.0

Figure 2 Relative risk of human West Nile virus of 2002 in Mississippi, the United States, estimated by Bayesian hierarchical models.
Counties with values exceeding 1 have greater than expected risk.

Table 1 Bayesian hierarchical models for the effects of annual precipitation on the relative risk of human West Nile
virus in Mississippi, the United States

Model DIC ΔDIC Weight Mean and 95% CI of precip coefficient

c 326.77 76.73 0.00 NA

c + Precip 309.58 60.54 0.00 -0.014 (-0.020, -0.007)

c + Precip + UH 257.80 8.76 0.01 -0.008 (-0.020, 0.005)

c + Precip + UH + CH 249.58 0.54 0.43 -0.005 (-0.020, 0.008)

c + UH +CH 249.04 0.00 0.56 NA

Note: letter c denotes constant; Precip is annual precipitation of the previous year; UH is uncorrelated heterogeneity; CH is the correlated heterogeneity modeled
by conditional autocorrelative distribution; DIC is deviance information criterion; ΔDIC is the difference between the DIC of a candidate model and the lowest
DIC; weight is equivalent to Akaike weight; and CI is credible interval.
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birds to humans. Therefore, drought-induced mosquito
outbreaks and congregations of WNV-infected mosqui-
toes and birds are potential mechanisms for increased
post-drought WNV risks. Post-drought recolonization
and dispersal of infected mosquitoes and birds may in
part have caused the observed time lags between
droughts and WNV epidemics.
Landuse can alter the suitability of mosquito and bird

habitats and consequently influence the transmission of
WNV among birds and to humans [8]. Deforestation
increases water surface runoff and water table levels
which in turn can improve habitat suitability and
increase mosquito densities [22,23]. Consequently, urba-
nization and reduction of forest cover can increase the
risk of human WNV incidence [8]. The central part of
Mississippi, including the Jackson area, is the most den-
sely populated portion of the state and had a high rela-
tive risk of human WNV. Our models included the
expected rate of human WNV, which was a function of
the population size of a county and represented the
expected number of people exposed to WNV. However,
it is unknown whether the higher risk around the Jack-
son area of Mississippi was due to urban development
or the population disparity with surrounding areas.
Yiannakoulias et al. [10] found that estimating the
spread of WNV without including landuse (i.e., urban,
rural, and natural areas) was potentially biased. Further-
more, reductions in water table levels may fragment
mosquito habitat with remaining fragments providing
refuges for mosquitoes and birds to congregate. Loss of
bird habitat due to forest fragmentation can increase
avian densities within remaining fragments and may
facilitate the transmission and amplification of WNV.
Therefore, assessments of the effects of bird habitat
fragmentation on WNV risk and other avian transmitta-
ble diseases are warranted.
Moran’s I of the Poisson constant model (the first

model of Table 1) was significant; thus, the CAR distri-
bution was needed to model the correlated structure in
human WNV counts. However, a mixed model of the
CAR distribution often results in poor estimation of
covariate effects in a linear relationship even when the
relationship is actually strong [24]. Although the 95%
CI of coefficient b in the competing models 1 (Precip
+ UH) and 2 (Precip + UH + CH) included zero, most
of the 95% CI was negative (Table 1). Additionally, the
DIC difference between the best model without preci-
pitation and the second best model including precipita-
tion of the previous year was very small (0.54). We
concluded that the model (Precip + UH + CH)
received considerable support by data with the
deviance weight of 0.43. Derived from SMR models
and the models (1) and (2), relative human WNV risk
(RR) of a county was predicted by the nonlinear

equation RR ei
preci= − − ∗0 2 0 01. . , where precii is the

annual precipitation deviation from the mean annual
precipitation over all the Mississippi counties. An
increase of 10 cm in annual precipitation from 120 cm
resulted in a 10% decrease in predicted relative risks.
During 2001, annual precipitation changed substan-
tially from county to county in Mississippi, from the
minimum of 120.8 cm in Jackson County to the maxi-
mum of 208.9 cm in Lafayette County. The relative
risk model predicted a 143% decrease in human WNV
relative risk when annual precipitation of a county
changed from the maximum to the minimum. There-
fore, annual precipitation of previous year was a signif-
icant predictor of human WNV risk. The relatively
poor estimation of the effects of precipitation on the
relative risk of human WNV in the UH and CH model
might be in part due to poor representation of annual
precipitation within a county. We used precipitation
data from one weather station for each county, which
might be insufficient to estimate annual precipitation
for the entire county. Furthermore, precipitation may
interact with landscape variables to affect the transmis-
sion of WNV.

Conclusions
Our results have broad implications for the assessment
of WNV risk and forecasting WNV outbreaks. Delayed
effects of dry weather on the WNV epidemic provided
an opportunity to forecast the human WNV outbreak in
Mississippi USA. As the magnitude and frequency of
droughts are predicted to increase from global warming,
our work and previous studies [11,21] suggest the risk
of human WNV will also increase. Moreover, the coun-
ter-intuitive effects of dry weather on WNV risk reiter-
ate the importance of interspecific interactions or food-
web theory in the studies of climate effects on vector-
born infectious disease [6,11,25].

Appendix
A. Sample WinBUGS code for the estimation of relative
human West Nile virus risk using conditional autore-
gressive distributions for spatial autocorrelation and
annual precipitation as an independent variable.
model {

d<-mean(X[]) #X[] is a vector of annual
precipitation

for (i in 1 : N) { #N is the totoal number of counties
O [i] ~ dpois(mu[i]) #O[] is a vector of observed

numbers of human WNV incidences
log(mu[i]) <- log(E[i]) + alpha0 +c*(X[i]-d)+b[i]+u[i]
RR[i] <- exp(alpha0 +c*(X[i]-d)+ b[i]+u[i]) # RR[]

is county-specific relative risk
u[i]~dnorm(0, tau1)

}
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# CAR prior distribution for correlated
heterogeneity

b[1:N] ~ car.normal(adj[], weights[], num[], tau)
for(k in 1:sumNumNeigh){
weights [k] <- 1

}
# Other priors:
alpha0 ~ dflat()
c~dnorm(0,0.000001)
tau1 ~ dgamma(0.5, 0.0005)
tau ~ dgamma(0.5, 0.0005)

}
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