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Background: It remains unclear whether it is possible to develop a spatiotemporal epidemic prediction model for
cryptosporidiosis disease. This paper examined the impact of social economic and weather factors on
cryptosporidiosis and explored the possibility of developing such a model using social economic and weather data

Methods: Data on weather variables, notified cryptosporidiosis cases and social economic factors in Queensland
were supplied by the Australian Bureau of Meteorology, Queensland Department of Health, and Australian Bureau
of Statistics, respectively. Three-stage spatiotemporal classification and regression tree (CART) models were
developed to examine the association between social economic and weather factors and monthly incidence of
cryptosporidiosis in Queensland, Australia. The spatiotemporal CART model was used for predicting the outbreak of

Results: The results of the classification tree model (with incidence rates defined as binary presence/absence)
showed that there was an 87% chance of an occurrence of cryptosporidiosis in a local government area (LGA) if
the socio-economic index for the area (SEIFA) exceeded 1021, while the results of regression tree model (based on
non-zero incidence rates) show when SEIFA was between 892 and 945, and temperature exceeded 32°C, the
relative risk (RR) of cryptosporidiosis was 3.9 (mean morbidity: 390.6/100,000, standard deviation (SD): 310.5),
compared to monthly average incidence of cryptosporidiosis. When SEIFA was less than 892 the RR of
cryptosporidiosis was 4.3 (mean morbidity: 426.8/100,000, SD: 319.2). A prediction map for the cryptosporidiosis
outbreak was made according to the outputs of spatiotemporal CART models.

Conclusions: The results of this study suggest that spatiotemporal CART models based on social economic and
weather variables can be used for predicting the outbreak of cryptosporidiosis in Queensland, Australia.

Background

Cryptosporidiosis is a diarrhoeal disease caused by
microscopic parasites of the Cryptosporidium parvum
[1]. The parasite is one of the most common causes of
waterborne disease in Australia and globally and is
found in drinking water and recreational water [2].
Cryptosporidiosis can also be transmitted via contami-
nated food, contact between people, or contact between
people and animals. It is considered a drinking-water-
borne disease because the largest outbreaks of

* Correspondence: w.hu@sph.ug.edu.au

'School of Mathematical Sciences, Queensland University of Technology,
Brisbane, Australia

Full list of author information is available at the end of the article

( ) BiolVled Central

cryptosporidiosis have been associated with contami-
nated drinking water. The individual risk factors for
cryptosporidiosis in humans include drinking water
from poorly treated public and private supplies, commu-
nity swimming pools, day care centres and contact with
farm animals. The seasonal occurrence of cryptospori-
diosis has been cited as circumstantial evidence of a cli-
matic link [3,4].

Spatiotemporal analyses of disease have played a major
role in environmental epidemiology. Logistic regression,
polyclass and generalised linear models have been widely
used to study relationships between diseases and various
environmental risk factors. However, these statistical
techniques also perform relatively poorly with high
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dimensionality in spatiotemporal context [5-7]. For
example, incidence rates, climate and social economic
factors often involve high-order interactions and colli-
nearities, which are often difficult to cope with using
these models [8]. Moreover, infectious disease incidence
data at finer spatial scales often have a preponderance
of zero counts. In this case, the use of the convention-
ally employed standard statistical models may result in
poor estimates and prediction [9-11]. An alternative
approach for analysing such data with many zeros is to
consider a suite of the spatiotemporal classification and
regression tree (CART) models that take advantage of
the natural categorisation of these types of populations
into zero incidence, “normal” incidence and outbreaks.
The CART models provide a non-parametric approach
that can potentially better accommodancite these com-
plex interactions since they avoid any assumption
among the variables or homoscedasticity in variances
[12]. The integrated use of spatial statistics and CARTs
at a variety of spatial scales has provided new insights
into ecology and environmental epidemiology [13-15].

The aims of this paper are to examine the potential
impact of social economic and weather factors by LGAs
on the incidence of cryptosporidiosis using spatiotem-
poral CART models and explore their potential as a pre-
dictive model for cryptosporidiosis in Queensland,
Australia.

Methods

Study area

Queensland, located in the northeast of Australia, 10-28°
south latitude and 138-153° east longitude, is the second
largest state (after Western Australia) with the largest
habitable area in Australia. It occupies the north-eastern
quarter of the continent and covers approximately
1,727,000 km?, with 7,400 km of mainland coastline
(9,800 km including islands). It has typically sub-tropical
climate characteristics with average temperatures of
25°C in summer and 15°C in winter. Rainfall varies
regionally and seasonally, and most of the state receives
over 50% of its rainfall during summer. Average rainfall
varies from less than 150 mm in the southwest region
to more than 4,000 mm on the far northern coast.
Queensland consists of 125 statistical local government
areas (LGA), with populations ranging in size from 312
to 888,449. LGA are widely used by researchers in Aus-
tralia because of the availability in many datasets.

Data collection

We obtained the computerised data set on the notified
cryptosporidiosis cases by LGA in Queensland for the
period of 1 January - 31°" December 2001 from the
Queensland Department of Health. Weather and socio-
economic index for areas (SEIFA) data were obtained
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for the same period from the Australian Bureau of
Meteorology and the Australian Bureau of Statistics,
respectively. SEIFA is a continuum of advantage (high
values) to disadvantage (low values) and takes into
account variables relating to education, occupation,
wealth and living conditions. Australian Bureau of Sta-
tistics does not provide SEIFA data by temporarily
(month-to-month). SEIFA variables vary spatially but
rarely from month-to-month during one year period (ie.,
2001) and each LGA had an observation for the period
of this study. Weather data comprised monthly mean
maximum temperature (°C) and monthly rainfall (mm),
which was an interpolated climate surface with a 0.25 x
0.25° grid resolution (about 30 x 30 km) at the equator.
Climate grid cells were calibrated using the GIS software
package Vertical Map to extract average pixel values of
the weather variables for each LGA.

Spatial autocorrelation analysis

Moran’s I spatial autocorrelation statistic was calculated
to determine whether spatial clustering was a feature of
cryptosporidiosis disease. Moran’s [ is defined by:

I(d):iiwii(xi—i)(x]—E)/(Szzn:iwij)wheresz=%i(x,—§)
i i i

x; and x; denote the observed value at location i and j,
x is the average of the x values over the # locations,
and w;; is the spatial weight measure [16]. Moran’s I can
be interpreted as follows: a value close to 0 indicates
randomness, while a positive (negative) value indicates
positive (negative) autocorrelation.

Spatial empirical Bayes rates smoothing

We used a Bayesian random effects model to compute
the spatial empirical Bayes rates smoothing and estimate
the underlying distributions of incidence rates of cryp-
tosporidiosis disease for each LGA and for Queensland
overall. Spatial smoothing can be used to reduce ran-
dom variation associated with small populations at each
LGA. Spatial smoothing enables observations of gradi-
ents in cryptosporidiosis disease incidences that may not
be apparent from the direct observation of raw inci-
dences. Assume that the underlying rates for each LGA
are drawn from a population of rates with prior distri-
bution characterised by a mean § and variance ¢. The
Bayesian posterior estimate for the underlying risk at
the ith LGA is a weighted average of the raw rate p; and
the prior, with weights inversely related to their var-

iance. The equation is: 7,—yp +(1-w)9, Where

) . . o
Wi ST P; is the population at risk in area
i [16]. The smoothed incidences of cryptosporidiosis

were computed from the total number of
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cryptosporidiosis cases in a spatial window divided by
the total number of people at risk within the window.
The spatial window was specified by a spatial weights
file including each LGA and its neighbours. Thus the
observed cryptosporidiosis rate for a LGA with a small
population at risk will be adjusted considerably toward
the average whereas for a larger LGA the rate will barely
change.

The spatial empirical Bayes analyses were performed
using GeoDa [16,17]. The locations of cryptosporidiosis
cases by LGA were geo-coded to the digital base maps
of localities using MaplInfo [18], GeoDa [17] and Micro-
soft Access software.

Spatiotemporal CART models

Since monthly cryptosporidiosis count data at the LGA
level have a high incidence of zero counts (about 85% in
the dataset considered here), the analysis requires spe-
cial care to account for the extra variation unaccounted
for with a typical Poisson assumption. Moreover, these
data typically here “outbreaks” characterised as very
high incidences that can be difficult to model with a sin-
gle parameter Poisson distribution. The mass of extra
zeros can be thought of as two subgroups: LGA which
due to some characteristic could not have cryptospori-
diosis disease during the study period and LGA that
could have cryptosporidiosis disease but this did not
appear or was not reported. We considered a suite of
three spatiotemporal CART models: 1) fitting a tree to
data categorised as binary: incidence/no incidence; 2) fit-
ting a tree to just the incidences (ignoring all of the
zeros). The first two models are equivalent to a zero-
inflated mixture model comprising some probability of a
zero response (no incidence) and some probability of a
(positive) truncated Poisson model [9]. Zero-inflated
models are used when excess zeros result in a bimodal
distribution which has a mixture of a mass of extra
zeros and a mass that has a Poisson [10,19]. 3) fitting a
tree for outbreak of cryptosporidiosis

CART 1: fitting a tree to data categorised as binary:
incidence/no incidence

Classification trees are used to predict membership of
cases or objects in the classes of a categorical dependent
variable based on one or more exploratory variables
[12]. A classification tree is built in accordance with a
set of binary splitting rules that successively divide the
data into subgroups with maximum homogeneity, where
the latter is by some measure such as the change in the
impurity [12]. A classification tree model was developed
to explore possible relationships between socio-eco-
nomic and weather factors and monthly cryptosporidio-
sis incidence. A dichotomous outcome variable was
defined as whether or not one or more cryptosporidiosis
cases occurred in the LGA in one month. The spatial
CART model was thus described as: monthly
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cryptosporidiosis presence/absence ~ SEIFA + maxi-
mum temperature + rainfall + factor (season). The
results are reported as the probability of occurrence of
cryptosporidiosis in an LGA in a month.

CART 2: fitting a tree to positive incidences

Like a classification tree, a regression tree is built by
binary recursive partitioning, but the response variable
is continuous [12]. The splitting rules used in the algo-
rithm are based on measures such as minimising the
sum of the squared deviations from the mean in the two
separate subgroups. The squared residuals minimisation
algorithm is identical to a Gini splitting rule [12]. Posi-
tive monthly cryptosporidiosis incidence rates (1/
100,000) by LGA were used as a continuous response
variable in this model. The spatial CART model was
thus described as: Monthly cryptosporidiosis rate ~
SEIFA + maximum temperature + rainfall + factor (sea-
son). The results are reported as the relative risk (RR) of
positive incidence of cryptosporidiosis, compared to
average incidence rate of cryptosporidiosis. RR =
(expected incidence - mean of incidence)/mean of
incidence.

CART3: fitting a tree to outbreaks of cryptosporidiosis

We defined an outbreak if the incidence rate (without
zeros) in any month exceeded the third quartile of the
incidence rates per LGA in Queensland during the 12
months of 2001. The spatial CART model was thus
described as: monthly cryptosporidiosis outbreak/non-
outbreak ~ SEIFA + maximum temperature + rainfall +
factor (season). The results are reported as the probabil-
ity of occurrence of an outbreak cryptosporidiosis in a
month. A map of predicted probabilities was developed
using the outputs of the CART model.

Each CART analysis consisted of three basic steps.
Firstly, a preliminary tree was grown by recursive data
partitioning. Secondly, nested trees were formed by
reducing the number of nodes in the tree (pruning).
Thirdly, 10-fold cross-validation was used to address
over-fitting and to identify the optimal tree with
respect to its predictive ability. A minimum node
deviance of 25% of the total deviance was used to
prune the trees. To control for the impact of seasonal-
ity, we decomposed the cryptosporidiosis incidence
into four seasonal categories (coded as Spring: Septem-
ber-October-November; Summer: December-January-
February; Autumn: March-April-May; Winter: June-
July-August) [20,21]. Finally, we validated the model
and tested the residual mean deviance and misclassifi-
cation rates (predicted number of months without
cryptosporidiosis occurrence/total number of months).
The statistical analysis was conducted using the S-plus
software package [22].

For each CART model, the predicted probabilities or
relative risks can be presented as a map. A map of
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predicted probabilities of an outbreak was developed
using the outputs of the CART 3 model.

Results

Descriptive analysis

Table 1 shows the summary statistics for each variable.
The monthly mean incidence rate of cryptosporidiosis,
maximum temperature, rainfall and SEIFA were 15.11,
28.17°C, 59.64 mm and 934.17, respectively. Figure 1
depicts the variation over time in cryptosporidiosis
between January 2001 and December 2001. The curves
indicate a seasonal pattern. About 45% of cryptospori-
diosis cases occurred in children under 4 year old in
2001.

Bivariate analyses
Table 2 shows the linear associations between the cryp-
tosporidiosis incidence and temperature, rainfall and
SEIFA. It also summarises the bivariate linear relation-
ships between all the independent variables. For the data-
base without zero incidences, SEIFA (r = -0.535, p =
0.000) and temperature (r = 0.349, p = 0.000) were signif-
icantly associated with cryptosporidiosis incidence. For
the full database including zero incidences, rainfall (r =
0.152, p = 0.000) and SEIFA (r = 0.192, p = 0.000) were
significantly linearly associated with cryptosporidiosis
incidence. Rainfall was also statistically associated with
temperature for the database without zero incidence (r =
0.346, p = 0.000) and for the full database (r = 0.378, p =
0.000). The pairwise scatter-plot with spline regression
line depicts the relationships between all the variables by
season in Figure 2. As suggested by this figure, the inci-
dence rates were associated with the SEIFA and tempera-
ture for the database without zero incidences in summer
and autumn. However, the incidence rates were not asso-
ciated with the SEIFA and temperature for the full data-
base in any season (Figure 3).

There was a significant positive spatial autocorrelation
of cryptosporidiosis incidence (including zero inci-
dences) with a Moran’s I statistic of 0.213 (p = 0.015).

Spatial distribution empirical Bayes rates smoothing
Figure 4 depicts the geographic distribution of the noti-
fied cryptosporidiosis incidences in Queensland during

Page 4 of 13

2001. The figure confirms that the risk for cryptospori-
diosis varied with geographical location. The Bayesian
posterior estimates of the cryptosporidiosis rates for
each LGA are depicted in Figure 5. The spatial empirical
Bayes analysis showed that the cryptosporidiosis infec-
tion activity was primarily concentrated in the north,
southeast and southwest of Queensland, Australia.

CART 1 model

Figure 6 represents the final CART model for presence/
absence of cryptosporidiosis. This figure indicates that
presence of cryptosporidiosis was predominantly
explained by SEIFA, with an 87% chance of an occur-
rence if the SEIFA was in excess of 1021 (2 LGA, 24
months). The validation analyses indicate that the mis-
classification error rate was13% and residual mean
deviance was 0.72.

CART 2 model

Figure 7 represents the final CART model for positive
incidence of cryptosporidiosis in a month, by LGA. The
results indicate that when the SEIFA was between 892
and 945, and temperature was over 32°C (8 LGA, 8
months), the relative risk (RR) of cryptosporidiosis rose
to 3.9 (mean morbidity: 390.6/100,000, standard devia-
tion (SD): 310.5), compared to monthly average inci-
dence of cryptosporidiosis. When the SEIFA was less
than 892 (7 LGA, 9 months) the RR of cryptosporidiosis
was 4.3 (mean morbidity: 426.8/100,000, SD: 329.2),
compared to the same baseline. No further splits were
found to substantially improve the homogeneity of the
subgroup outcome of non-zero incidence. The validation
analyses indicate that the residual plots appear reason-
able well.

CART 3 model

Figure 8 represents the final CART model which indi-
cates that an outbreak of cryptosporidiosis, defined as
exceeding the third quartile of the incidence rates, was
best explained by SEIFA. The analysis indicates that
there was a 100% chance for an outbreak of cryptospori-
diosis if the SEIFA was less than 892 (7 LGA, 9 months)
or the SEIFA was between 933 and 941 (4 LGA, 5
months) during an epidemic period. There was a 60%

Table 1 Descriptive statistics of monthly cryptosporidiosis and social economic and weather variables by LGA in

Queensland*

Mean SD Minimum Q1 Median Q3 Maximum
Cryptosporidiosis incidence (1/100,000) 15.11 69.07 0.00 0.00 0.00 1161.67 1332
Maximum temperature (°C) 28.17 461 16.54 2455 2848 3149 4011
Total rainfall (mm) 59.64 80.18 0.00 1444 40.26 7270 916.60
SEIFA 934.17 4317 831.36 907.28 92856 963.04 1059.84

* Q1: first quartile value; Q3: third quartile value.
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Figure 1 The cryptosporidiosis counts between January 2001 and December 2001 in Queensland, Australia.
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chance of an outbreak of cryptosporidiosis if the SEIFA
was greater than 941 and temperature was greater than
34°C (5 LGA, 5 months) during an epidemic period. Fig-
ure 9 shows a high risk map of predicted monthly cryp-
tosporidiosis incidence rates in Queensland based on
the CART models, which took into account local varia-
tion (ie., SEIFA, temperature and season) from the
model prediction. The validation analyses indicate that
the misclassification error rate was18% and residual
mean deviance was 0.73.

These results of validation analysis reveal that the
three CART models had reasonable accuracy, and its
utility in research needs to be further explored.

Discussion
The results of this study indicate that there was remarkable
variation in the spatial distribution of cryptosporidiosis and

Table 2 Matrix of correlation coefficients between
cryptosporidiosis and social economic and weather
factors*

Incidences Temperature Rainfall
Temperature (°C) 0.349t
(-0.033)
Rainfall (mm) -0.008 03461
(0.1521) (0.3781)
SEIFA -0.535t -0213t 0018
(0.1921) (0.024) -0.035

*.Coefficients for data without zero incidence, and for data with zero
incidence in brackets; t:p < 0.01.

suggest that temperature and SEIFA are statistically asso-
ciated with the probability of occurrence and the magni-
tude of the incidence of the disease in Queensland, either
directly or through other unmeasured variables.

Cryptosporidiosis is one of the common waterborne
diseases globally. Therefore, from a public health per-
spective, there is a need to control and prevent this dis-
ease. There is evidence that education and behaviour
might be direct risk factors for cryptosporidiosis infec-
tion [23]. People with a lower SEIFA level often have
poor health knowledge about disease transmission and
personal protection from water-borne diseases. Thus, it
is important to educate people in lower SEIFA areas
about how to avoid contracting this infection especially
in epidemic periods.

Cryptosporidium parvum thrive in warm waters of
moderate salinity. Thus, with changing weather patterns,
the geographic range of cryptosporidiosis may also
change. For example, severe weather events appear to be
correlated with outbreaks of cryptosporidiosis in hot
summers in Brisbane and South Sydney, Australia
[24,25]. In the summer and autumn the cryptosporidio-
sis rate was positively associated with temperatures in
the current and previous month in New Zealand [26].
The autumn cryptosporidiosis peak has been linked to
increased recreational water use, swimming and outdoor
activities [27]. Our research shows that high tempera-
ture (>32°C) has a significantly effect on cryptosporidio-
sis incidence in LGAs with high SEFIA values. This
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Figure 2 Pairwise scatterplot (with regression line) of cryptosporidiosis without zero incidences and explanatory variables.
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Figure 4 Choropleth map of notified incidence rates of cryptosporidiosis.
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Figure 5 Choropleth map of spatial empirical Bayesian smoothed incidence rates of cryptosporidiosis.
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could be explained by the observation that people in
these higher SEIFA classes may be more likely to under-
take recreational activities such as camping and swim-
ming in high temperature which may increase the
chance of cryptosporidium [28]. SEIFA allows ranking of
regions/areas, providing a method of determining the
level of social and economic well-being in each region.
Although SEIFA is a useful overall index, two areas may
have a similar SEIFA score for very different reasons.
Thus, it may be important to require additional detailed
information (eg., education and income etc) for particu-
lar analyses. Our previous research has shown that the
proportion of residents with low educational attainment
has a positive and significant association with cryptos-
poridiosis, especially in the regions with high SEIFA
value [15].

Three-stage spatiotemporal CART models are based
on simple splits of the data and thus do not require the
assumptions such as the existence of linear regression
among the variables [12]. The visualized tree structure
of the CART model makes the analysis results easier to
understand and explain. The structure of the CART
model is a set of nodes from the top to the bottom, in
which the terminal nodes show the specific pattern

features of the subpopulations (eg, the number of SLA,
mean, risk, and probability etc) [15].

The suite of spatiotemporal CART models proposed
have provide a comprehensive approach to modelling
count data that have many zero counts and few very
large counts. Because the ordinary CART do not take
into account the extra variation, the test of regression
parameters often fails to control Type I error rate. To
overcome this problem, we developed three stage CART
models. Our study shows that the three CART models
can be applied in count data with extra zeros. The mod-
els can determine which predictors affect the probability
of being an incidence of cryptosporidiosis, which predic-
tors affect how positive incidence rates and which pre-
dictors affect the probability of an outbreak of
cryptosporidiosis. The three models use the same social
economic and weather predictors, but allow for different
interactions and estimates of relative importance of the
variables in describing the difference outcomes. Hence
the predictors appear vastly different effects on the
three models. They may not be the same predictors for
the three models, or they could even have opposite
effects on the three outcomes. It is thus advantageous to
consider the set of models together when assessing the
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association between cryptosporidiosis disease and social
economic and weather factors in the model.

The models proposed here can be extended in a num-
ber of lags. A lag of 0 month was considered because of
biological plausibility (i.e., the incubation period for
cryptosporidiosis ranges from 2 to 12 days). Longer lags
(e.g., 2 1 month) were found to be less important in this
study.

This study has four major strengths. Firstly, to our
knowledge, this is the first spatiotemporal study examin-
ing the spatial variation of cryptosporidiosis disease and
temperature, rainfall and SEIFA at a LGA level. Sec-
ondly, three spatiotemporal CART models were used to
identify overall patterns of cryptosporidiosis transmis-
sion. Thirdly, detailed information on social economic
and weather factors (temperature, rainfall and SEIFA) by
LGA was incorporated in the statistical models, which
may be helpful for further ecological research and devel-
opment of early warning system. Finally, a map of pre-
dicted occurrence of cryptosporidiosis from this study
may have important implications for public health deci-
sion-making in identifying high-risk communities to tar-
get for control and prevent cryptosporidiosis infection.

Limitations of this study should also be acknowledged.
Firstly, the study suffers from the usual problems of an
ecological design [29]. Further researches need to take
into account temporal change in long term period (ie.,
more than 5 years) during the ecological studies at fine
spatial scales (ie., postal areas). Secondly, the mechanism
and pathways underlying the association of cryptospori-
diosis with SEIFA and temperature remain unclear [4].
In this study, only the SEIFA, temperature and rainfall
were considered. Other factors (eg., water reservoirs or
large farms) may also be directly or indirectly related to
cryptosporidiosis transmission. However these data were
unavailable in this study. Finally, under-reporting is
likely to occur when people infected by cryptosporidiosis
have sub-clinical conditions and/or did not seek to see a
doctor because they knew there is no effective treatment
for this disease.

The identification of disease high risk areas provided
the chance to explore social economic and weather fac-
tors that may be responsible for developing early warn-
ing systems of cryptosporidiosis. Early outbreak
detection provides the chance to implement control
measures and education campaigns. The effectiveness of
public health interventions can be improved using spa-
tiotemporal models to identify and monitor hot spots of
cryptosporidiosis and identify major risk factors and the
risk areas of cryptosporidiosis, and then targeting educa-
tion campaigns and disease control activities at specific
areas.
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Conclusions

The findings of this study indicate that spatiotemporal
CART models based on social, economic and weather
variables can be used for predicting the outbreak of
cryptosporidiosis in Queensland, Australia, and the
research approach developed in this study may have
wide applications in the surveillance and risk manage-
ment of infectious diseases.
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