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Abstract 

Background The association of the oral microbiome with SARS‑CoV‑2 infections and disease progression has been 
documented in European, Asian, and American populations but not in Africa.

Methods We conducted a study in Ghana to evaluate and compare the naso‑oropharyngeal microbiome in SARS‑
CoV‑2‑infected and uninfected persons before (pre‑vaccine) and after vaccine availability (post‑vaccine) in the coun‑
try. 16S rRNA V3‑V4 variable region was sequenced and analysed from DNA extracted from naso‑oropharyngeal 
swabs.

Results Considering only the infection status, infected and uninfected groups had no difference in their within‑
group diversity and was evident in the study population pre‑ and post‑vaccine availability. The introduction of vac‑
cines reduced the diversity of the naso‑oropharyngeal microbiome particularly among SARS‑CoV‑2 positive per‑
sons and, vaccinated individuals (both infected and uninfected) had higher microbial diversity compared to their 
unvaccinated counterparts. SARS‑CoV‑2‑positive and ‑negative individuals were largely compositionally similar 
varying by 4–7% but considering vaccination*infection statuses, the genetic distance increased to 12% (P = 0.003) 
and was mainly influenced by vaccination. Common among the pre‑ and post‑vaccine samples, Atopobium and Fine-
goldia were abundant in infected and uninfected individuals, respectively. Bacteria belonging to major butyrate‑
producing phyla, Bacillota (particularly class Clostridia) and Bacteroidota showed increased abundance more strikingly 
in infected individuals before vaccines were available. They reduced significantly after vaccines were introduced 
into the country with Fusobacterium and Lachnoanaerobaculum being the only common bacteria between pre‑
vaccine infected persons and vaccinated individuals, suggesting that natural infection and vaccination correlate 
with high abundance of short‑chain fatty acids.

Conclusion Our results show, in an African cohort, the abundance of bacteria taxa known for their protective 
pathophysiological processes, especially during infection, suggesting that this population is protected against severe 
COVID‑19. The immune‑related roles of the members of Bacillota and Bacteroidota that were found associated 
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with infection and vaccination require further studies, and how these may be linked to ethnicity, diet and age. We 
also recommend expansion of microbiome–disease association studies across Africa to identify possible bacterial‑
mediated therapeutics for emerging infections.

Keywords Naso‑oropharyngeal microbiome, SARS‑CoV‑2, COVID‑19, Bacillota, Bacteroidota, Butyrate producers

Background
SARS-CoV-2, which causes COVID-19, emerged at the 
end of 2019 and spread rapidly through populations. By 
March 2020, when the WHO declared the disease a pan-
demic, approximately 118,000 cases and over 4000 deaths 
had already been recorded across all continents [1]. At 
the peak of the COVID-19 pandemic, cases and mortal-
ity varied widely across the globe. Mortality became the 
measure by which the burden of COVID-19 was evalu-
ated. Together, Europe and the Americas recorded more 
than 70% of deaths resulting from COVID-19 [2], and 
it was initially expected that Africa would be the worst 
hit by the pandemic. This assumption is because among 
other factors, health care systems are crucial in deter-
mining the general recorded outcomes of infected popu-
lations, and Africa is notable for low healthcare delivery 
[3]. However, the African continent recorded relatively 
low cases and mortality [2]. Several reasons have been 
attributed to these statistics, including underreport-
ing, limited testing capacity, high tropical temperatures, 
increased use of herbal medicine, malaria coinfection 
with COVID-19 and the frequent use of anti-malarial 
drugs that inhibit SARS-CoV-2 replication [4, 5].

Host factors also contribute significantly to disease 
outcome resulting from SARS-CoV-2 infection [6], and 
identifying these factors is important in explaining indi-
vidual and population variations in disease epidemiology. 
The interaction between the host and virus is complex 
and initiated at the site of entry. For SARS-CoV-2, the 
naso-oropharyngeal cavity is the major site for viral entry 
and infection initiation [7]. Here, the binding of the viral 
receptor to human angiotensin-converting enzyme 2 
(ACE2) expressed in epithelial cells is crucial for estab-
lishing infection [8, 9]. The virus may lodge here for 
several weeks, replicating in epithelial cells and elicit-
ing a cascade of immune responses that characterize the 
course of the disease. Low levels of ACE2 expression in 
the nasal cavity would therefore lead to decreased viral 
acquisition [10]. Another cellular activation known to be 
associated with SARS-CoV-2 infection is the expression 
of transmembrane serine protease-2 (TMPRSS2), which 
acts as a significant determinant of the entry pathway 
for the virus; overexpression inhibits viral infection [11]. 
These findings represent a few examples of our under-
standing of the intricacy of SARS-CoV-2 infection which 
could contribute to potential avenues for therapy.

Interactions between bacteria and viruses are common 
in viral infections. Bacteria may impact viral infectivity 
and stability, and these interactions could influence how 
the host responds to viral infections (reviewed in [12]). 
Oral bacteria could complicate respiratory infections 
through various suggested mechanisms including pro-
moted adhesion of pathogens to mucosal surfaces and 
alteration of infection site tissues through periodontal-
originating cytokines [13]. The human naso-oropharynx 
is an environment with a residing community of bacte-
ria, some of which have been reported to be associated 
with various clinical statuses of COVID-19. Bacterial 
taxa linked to poor oral hygiene and some opportunistic 
microbes have been shown to proliferate in COVID-19 
patients [14, 15]. Whether this dysbiosis results from the 
viral infection and facilitates the progress of the disease 
severity remains unclear. A decrease in gut and oral bac-
terial diversity has also been linked to elevated levels of 
proinflammatory cytokines which characterises SARS-
CoV-2 [14] and other viral infections, such as hepatitis 
C virus (HCV) [16] and human immunodeficiency virus 
(HIV) [17]. Understanding the mechanism of the asso-
ciation of oral bacteria in COVID-19 infection could 
make useful contributions to our knowledge of COVID-
19 pathogenesis and improve care through advanced 
therapeutics.

In this study, we focused on the naso-oropharyngeal 
microbiome of SARS-CoV-2-infected and uninfected 
individuals in an African population with the aim of 
identifying signature microbes whose known proper-
ties may potentially explain the reduced disease sever-
ity recorded. We also assessed potential changes in the 
naso-oropharyngeal microbiome following vaccination, 
as COVID-19 vaccines have been shown to cause dysbio-
sis of the gut microbiome [18]. Our study contributes to 
addressing recent concerns about the neglect of microbi-
ome research in Africa [19, 20], particularly in the face of 
emerging infections.

Methods
Clinical samples
Two sets of clinical samples were used in this study; 
those obtained during the peak of the COVID-19 pan-
demic, and the other after vaccination was rolled out in 
the country. We refer to these samples as ‘pre-vaccine’ 
and ‘post-vaccine’ sample sets, respectively. For the 
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pre-vaccine set, we randomly selected 49 and 40 previ-
ously confirmed SARS-CoV-2 positives and negatives, 
respectively, from archived naso-oropharyngeal swabs 
that were tested prior to March 2021 when the AstraZen-
eca vaccines first became available in Ghana through the 
UN-partnered COVAX initiative [21, 22]. SARS-CoV-2 
detection was performed with standard RT‒qPCR using 
the Veri-Q PCR 316 COVID-19 Detection Kit (MiCo 
Biomed Corporation, South Korea), with Ct values < 40 
reported as positive. We set a selection criterion to 
retrieve only naso-oropharyngeal swabs that were col-
lected into and eluted in sterile water. This was to avoid 
possible loss of microbial richness that could result from 
the use of viral transport medium (VTM) which may be 
incorporated with antibiotics.

The post-vaccine samples were swabs collected in June 
– July 2022 as part of a previous study [23]. These swabs 
were also placed into 2 mL of sterile water for the same 
reason already explained and were used for RT‒qPCR 
viral detection as previously described. Based on the 
results of the RT-qPCR and the vaccination information 
collected from participants, samples were grouped into 
unvaccinated uninfected (UU), unvaccinated infected 
(UI), vaccinated uninfected (VU) and vaccinated infected 
(VI).

Sample processing for microbiome analyses
Total DNA was extracted from 500 µL each of 89 pre-
vaccine and 232 post-vaccine samples, respectively, using 
the ZymoBIOMICS DNA Miniprep kit (Zymo Research, 
USA). Extractions were performed in batches based on 
sample availability, especially with the post-vaccine sam-
ples which was a running study. To check for potential 
contamination in downstream analyses, mock (no tem-
plate) samples were included in each extraction batch. 
The mock samples totalled 5 and 9 for the pre- and post-
vaccine sets, respectively. Eluted DNA was quantified 
with the Qubit Fluorometer 3.0 (Invitrogen). Based on 
the DNA quantities obtained and funding availability, 
89 pre-vaccine, 68 post-vaccine and all 14 mock sam-
ples were prepared for sequencing. Briefly, the bacterial 
16S rRNA V3-V4 region was amplified with barcoded 
primers: 341F: 5’-CCT AYG GGRBGCASCAG- 3’ and 
806R: 5’- GGA CTA CNNGGG TAT CTAAT- 3’. Thermal 
cycling consisted of initial denaturation at 98℃ for 1 
min, followed by 30 cycles of denaturation at 98℃ for 10 
s, annealing at 50℃ for 30 s, and elongation at 72℃ for 
30 s, then a final extension at 72℃ for 5 min. Amplicons 
with the required size were selected, pooled by equimolar 
concentrations, end-repaired, A-tailed and ligated with 
Illumina adapters. Libraries were purified and sequenced.

Eighty (out of 89) pre-vaccine and 65 (out of 68) post-
vaccine test samples successfully amplified for 16S rRNA 

and were processed for sequencing. The pre-vaccine 
samples consisted of 33 SARS-CoV-2-negative and 47 
SARS-CoV-2-positive samples. The post-vaccine samples 
included 19 unvaccinated uninfected (UU), 7 unvacci-
nated infected (UI), 19 vaccinated uninfected (VU) and, 
20 vaccinated infected (VI). All 14 mock samples were 
sequenced, whether they amplified or not. The two sets 
of test samples (including their mocks) were sequenced 
separately but with the same sequencing criteria on a 
NovaSeq 6000 platform to generate 250-paired-end reads 
at a depth of 50 K tags of raw data per sample.

Sequence processing
Primers and adapters were trimmed off raw reads and 
resulting sequences < 60 bp long were removed. Reads 
that contained more than 10% N’s (ambiguous bases) 
and quality base score ≤ 5 in over 50% of total read 
length were also filtered out. These resulted in a total 
of 15,356,104 filtered paired end reads from the pre-
vaccine (minimum = 123,189, maximum = 268,461, 
median = 180,257.0), and 12,707,463 from the post-
vaccine set (minimum = 71,449, maximum = 189,728, 
median = 179,516.0). The sequences obtained from the 
two sets of samples were merged and processed using 
customized pipelines and scripts in Quantitative Insights 
into Microbial Ecology (QIIME2) package version 2023.7 
[24] and R-software [25].

The paired sequences were demultiplexed, derepli-
cated and filtered of chimeras using dada2 [26] to obtain 
amplicon sequence variants (ASVs). The ASVs were tax-
onomically assigned against the SILVA 138.1 database 
[27] using a customized classifier based on the V3-V4 
primers used. Unassigned reads and those identified as 
Eukaryota, Archaea, Chloroplasts and Mitochondria 
were removed from the ASV table and representative 
sequences. A midpoint rooted tree was obtained follow-
ing the align-to-tree-MAFFT-fasttree pipeline under the 
q2-phylogeny plugin in QIIME2. The resulting rooted tree 
and ASV table were exported into R-software for detec-
tion and removal of potential contaminants based on 
ASV prevalence in the mock samples using decontam 
[28]. A total of 895 ASVs were detected as ‘contaminants’ 
and excluded from the dataset. Further downstream pro-
cessing and analyses were performed using R-custom 
scripts on a phyloseq [29] object built with the 145 test 
samples only. We set an arbitrary filtering criterion to 
retain taxa that were observed more than once in at least 
3% of samples. This identified and removed 4885 ASVs as 
singletons (taxa represented by one sequence). Because 
the two sample sets were sequenced separately, Condi-
tional Quantile Regression (ConQuR) was applied on the 
ASV table to remove batch effect [30]. Rarefaction was 
performed on this ‘corrected’ data to allow visualization 
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of the adequacy of the sequencing depth to represent the 
entire microbial contents of all test samples.

Diversity analyses
Total taxa richness, Shannon‒Wiener, and Simpson 
⍺-diversity indices were estimated on rarefied data. The 
indices were compared among infection and vaccination 
status using a pairwise Wilcoxon Rank Sum test with a 
Benjamin-Holchberg (BH) P-adjusted correction. Beta 
(β) diversity analyses were performed in the microeco 
package [31] and were based on Bray‒Curtis dissimilarity 
[32] and weighted UniFrac distances [33] to allow estima-
tions of variation based on count and taxa phylogenetic 
distances, respectively. The degree of similarity was esti-
mated using Analysis of Similarity (ANOSIM), while 
group dispersion was statistically tested with betadisp. 
The amount of variation explained by bacterial composi-
tion between test groups was tested with Permutational 
Multivariate ANOVA (PERMANOVA) accepting as sig-
nificant adjusted P-values < 0.05.

Differential microbial abundance
Differential taxa abundance analysis was performed at 
the genus level with microeco package [31] in R based on 
LEfSe [34]. The linear discriminant analysis (LDA) score 
was set at a threshold of 3 for discriminative features 
instead of the default of 2 to make the discovery more 
stringent. Each analysis was bootstrapped 1000 times 
and P-value for test of significance was maintained at the 
default 0.05.

Results
Sequence exploration and statistics
After accounting for and removing batch effects, 
6,618,391 reads remained for the merged dataset 
(Table  S1). The average number of reads was 45,644.07; 

minimum and maximum reads was 1514 and 111,200, 
respectively. The two datasets had positively skewed dis-
tributions but with different read frequencies, indicat-
ing that few samples had relatively large number of reads 
(Fig. 1A). Each dataset was rarefied separately with their 
respective median read (pre-vaccine = 43,932; post-vac-
cine = 50,262) providing evidence that the sequencing 
depth and data processes applied resulted in adequate 
representations of the total bacterial content per sample 
and test group without sample size bias (Fig.  1B). The 
median number of ASVs was higher in the pre-vaccine 
than in the post-vaccine population (Fig. 1B).

Within‑group microbial diversity increased 
with vaccination
Alpha (⍺) diversity did not differ between infection sta-
tus (positive vs negative) pre- or post-vaccine availability 
(Fig S1). When infected individuals from the two sam-
ple sets were compared, however, species richness and 
⍺-diversity estimated by Shannon–Wiener index were 
higher among the population before the availability of the 
vaccine (P.adj < 0.05) (Fig. 2A). Uninfected individuals in 
both sample sets only differed in species richness, again 
being significantly higher pre-vaccine (P.adj = 0.0001) 
(Fig.  2B). Therefore, individual-to-individual microbial 
diversity was more varied in the study population prior 
to the introduction of vaccines than after people received 
COVID-19 vaccination.

We further investigated the post-vaccine dataset to 
identify whether vaccination influenced within-group 
diversity. Overall, all vaccinated individuals (infected 
and infected) showed more variable richness than unvac-
cinated individuals (P.adj = 0.006), but other ⍺-diver-
sity indices were similar (Fig.  2C), implying that the 
vaccinated group had many rare species. When infec-
tion statuses were considered (vaccination * infection), 

Fig. 1 Sequence distribution and rarefaction for sample sets analysed following removal of batch effects. Kernel density plot (A) show the reads 
frequency distribution for pre‑ and post‑vaccine sample sets. Both curves show multimodal distribution and positively skewed distribution. 
Sub‑sampling of resulting sequences produced rarefaction curves (B) that depict adequate saturation of the taxa richness from both sample sets
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vaccinated individuals showed more varied richness 
whether they were positive (VI) or negative (VU) for the 
virus compared to their unvaccinated counterparts (VU 
vs UU [P.adj = 0.02]; VI vs UI [P.adj = 0.04) (Fig.  2D). In 
addition, Shannon–Wiener index was higher in vacci-
nated infected (VI) compared to unvaccinated infected 
individuals (UI) (P.adj = 0.024), suggesting a significant 
increase in taxa abundance and richness following vac-
cination. The impact of vaccination is further confirmed 
with increased within-group diversity among vaccinated 
uninfected (VU) compared to unvaccinated infected (UI) 
individuals (Shannon–Wiener and Simpson indices: P.
adj < 0.05) (Fig. 2D). The significant Simpson index indi-
cates a change in evenness between microbial diversity 
associated with being infected without vaccination, and 
receiving the attenuated virus through vaccines.

Phylogenetically distinct taxa explain higher diversity 
between groups
Principal coordinate analysis (PCoA) was used to visual-
ize the ordination of dissimilarity between sample groups 

based on Bray‒Curtis (BC), which considers species com-
position and weighted UniFrac (wUF) distances for bac-
terial phylogenetic relatedness. Both approaches showed 
that infected and uninfected groups shared largely simi-
lar microbes with few taxa driving little yet significant 
differences between them. Variation based on bacteria 
abundance was between 4–7% (PERMANOVA:  R2 > 0.03; 
P.adj = 0.001) (Fig.  3A). Diversity between infected and 
uninfected individuals in the post-vaccine population 
was lower than observed pre-vaccine with no difference 
between the infection groups (PERMANOVA:  R2 < 0.015; 
P-adj. > 0.05), unless vaccination statuses were considered 
(Fig. 3B).

Clustering based on phylogenetic distances always 
explained a higher variation between test groups than 
compositional dissimilarity based on counts (Fig.  3). 
However, there were also significant group dispersions 
(betadisp: Bray–Curtis [P.adj = 0.005]; weighted UniFrac 
[P.adj = 0.01]) in the pre-vaccine population suggest-
ing that besides distinct taxa, β-diversity was also influ-
enced by differences in taxa composition within groups 

Fig. 2 Comparison of taxon richness, Shannon and Simpson alpha (⍺) diversity indices. SARS‑CoV‑2‑infected (A) and uninfected (B) samples 
are compared separately between pre‑vaccine and post‑vaccine sample sets. Among the post‑vaccine sample set, comparisons are made first 
between vaccination statuses (without considering infection status) (C) and while considering the virus infection status (D). Colored dots represent 
individual samples, and box plots show first and third quartiles of the distribution. The solid horizontal line in the box shows the median index value 
per group. Pairwise comparison was achieved with the Wilcoxon test with Benjamin‑Holchberg (BH) P‑adjusted (P.adj) correction
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in this sample set. Despite this, the microbial differences 
between SARS-CoV-2-positive and -negative groups 
were still larger than individual-to-individual differences 
within each group (⍺-diversity) (ANOSIM: R = 0.17; 
P = 0.001).

Bacillota and bacteroidota constitute majority of high 
abundant bacteria
The relative abundance of bacterial taxa was observed at 
the genus level and plotted to show those with > 0.01 total 
relative abundance. Out of 200 genera identified in the 
merged dataset, 23 (pre-vaccine = 21; post-vaccine = 16) 
constituted those with relative abundance > 0.01 and were 
considered ‘high abundant’ bacteria (Fig.  4). Majority 
(22 out of 23) of these genera belonged to 5 phyla that 
together made up > 90% of the bacteria present (Fig S2). 
Nine genera belonged to Bacillota (formerly Firmicutes) 

and four were Bacteroidota (formerly Bacteroidetes). 
Twelve of these genera, including Prevotella, Lachnoan-
aerobaculum, Rothia, Actinomyces and Fusobacterium, 
were common among pre- and post-vaccine populations. 
Brevundimonas, Corynebacterium, Dolosigranulum 
and Finegoldia were ‘high abundant’ taxa only among 
pre-vaccination samples, while Methylobacterium-
Methylorubrum and Leifsonia were prevalent among 
post-vaccine samples (Fig.  4). Distribution of bacteria 
was generally very patchy, with between 1–5 constitut-
ing majority (> 90%) of the microbes in any given sample 
(Fig. 4).

Many butyrate‑producing bacteria are associated 
with infection and vaccination
Differentially abundant bacteria that are associated 
with test groups were also investigated at the genus 

Fig. 3 Non‑metric dimensional scaling (NMDS) showing sample ordination based on Bray–Curtis dissimilarity and weighted UniFrac phylogenetic 
distances. The microbial diversity is compared between SARS‑CoV‑2‑positive and ‑negative individuals before vaccine (A) and post‑vaccine (B) 
availability considering the vaccination status in the latter sample set. UU = unvaccinated uninfected; VU = vaccinated uninfected; UI = unvaccinated 
infected and VI = vaccinated infected. Samples are coloured dots and ellipses depict 95% confident intervals of the sample clustering per group. The 
inserted table are PERMANOVA results for vaccination*infection status groups, showing the F‑statistic (effect size of variance between compared 
pair),  R2 (quantified variation) and P. adjusted value (significant results are in bold.)
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level since species level classification with short reads 
of the 16SrRNA variable regions are often inconclusive 
[35]. The range of identification was not limited to ‘high 
abundant’ (total average relative abundance > 0.01) but, 
included low-abundance taxa if they were at least 0.01 
relative abundance in one of the tested groups. Although 
many bacteria could be identified as differentially signifi-
cant between groups, linear discriminant analyses (LDA) 
were only plotted for bacteria that satisfied this crite-
rion (Table S2) and had an LDA score ≥ 3 instead of the 
default LDA score of 2 [34].

A total of 16 bacterial genera were differentially abun-
dant between SARS-CoV-2-positive and SARS-CoV-
2-negative individuals pre-vaccine availability (Fig.  5A). 
These included 13 of the ‘high abundant’ taxa previously 
observed (Fig. 4A) and 3 ‘low abundant’ bacteria. Two of 
these ‘low abundant’ or rare bacteria were differential dis-
criminants of infected individuals (Fig.  5A). About 64% 
of the differentially abundant bacteria in SARS-CoV-2 
positive samples were members of the phylum Bacteroi-
dota and Bacillota (particularly class Clostridia), which 
are known to be important butyrate producers [36]. Two 
members of class Clostridia; Finegoldia and Peptoniphi-
lus, were also more abundant in negative individuals.

In the post-vaccine population, however, only Atopo-
bium differed between infection status (Fig. 5B), reiterat-
ing reduced diversity in this cohort. It was observed to 
be more abundant in positive individuals as was observed 
in the pre-vaccine population (Fig.  5A). Accounting for 
vaccination status, 7 bacteria were found to be differen-
tially prevalent among the test groups (Fig. 5C). Interest-
ingly, Finegoldia was again associated with unvaccinated 
uninfected (UU) individuals confirming its significant 

correlation with non-infection in the study population 
with regards to SARS-CoV-2. It is worth noting that 
Fusobacterium, another butyrate producer, was identi-
fied as a discriminating microbe, increasing in vaccinated 
uninfected (VU) persons pre-vaccine and, in positive 
persons before vaccines were available (Fig. 5A, 5C).

Discussion
This study is the first to compare the microbial diversity 
of an African population in relation to infection with 
SARS-CoV-2 since the pandemic. This study was con-
ducted to address the missing information on how the 
African microbiome correlated with significant variables 
that characterised the course of the disease. Two sam-
ple sets were obtained in a cross-sectional study design, 
allowing assessment of the microbial community of the 
study population at two significant milestones of the 
COVID-19 pandemic. ie. the peak of the pandemic and 
after vaccination against SARS-CoV-2 was introduced 
into the study country. Ghana first received the Oxford-
AstraZeneca vaccine, which was primarily rolled-out 
during the vaccination campaign after which others, 
including Pfizer BioNTech, Johnson & Johnson and Mod-
erna also became available by June 2022 when the second 
sample collection was done. While comparing the naso-
oropharyngeal microbiome of infected and uninfected 
within each sample set, we also compared between the 
two sample sets to conceptualize microbiome changes in 
the population given the timelines presented. Based on 
infection status alone, we describe the study population 
as homogenous with dysbiosis and individual-individual 
microbial differences evident only when vaccination sta-
tus is accounted for. While Atopobium was significantly 

Fig. 4 Heatmaps of bacterial genera with average relative abundance > 0.01 in disease groups pre‑vaccine availability (A) and vaccination*infection 
status in the post‑vaccine (B) population. Each coloured rectangular block represents the relative abundance of a genus in a sample
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associated with SARS-CoV-2 infection, several mem-
bers of two major butyrate-producing taxa, Bacillota and 
Bacteroidota, dominated the naso-oropharyngeal micro-
biome in both infected and uninfected groups, whether 
vaccinated or not. Overall, our results are suggestive of a 
population with protective immunity that may be linked 
to high abundance of butyrate-producers.

Studies correlating naso-oropharyngeal or oral micro-
biome with COVI-19 have been conducted in developed 
countries on other continents including Asia, Europe and 
North America [14, 15, 37–39]. Their results generally 
showed significant differential diversity among infected 
persons and microbial dysbiosis between infected and 
uninfected groups. While some reported increased diver-
sity [15], others showed a reduction in infected individu-
als [14, 37]. Contrary to these results, the current study 
population reports no differences in ⍺-diversity between 
infected and uninfected persons. These results are 

indicative of differential microbial responses to infection 
within and between geographically distant populations.

Human microbiomes differ across continents and, 
between significantly distant settings within the same 
geographical location (e.g. country) [40, 41]. It is becom-
ing increasingly evident how the extent of this diversity 
has been largely underestimated [42, 43]. Among sev-
eral confounding factors that explain these differences, 
the ones usually studied in association with microbi-
omes are ethnicity, age, diet and disease [42, 44–47]. 
This current study used samples received or collected at 
a COVID-19 testing centre in Accra, the capital city of 
Ghana which has the largest population of any region in 
the country. Information on ethnicity was not collected 
because it was not relevant for testing suspected cases of 
COVID-19, and because the samples were not purposely 
collected for microbiome analyses. However, all study 
participants were resident in Accra (data collected from 

Fig. 5 Linear discriminant analysis (LDA) plots for the identification of significant differential microbes between sample groups. The 
SARS‑CoV‑2‑infected and uninfected persons are compared among pre‑vaccine (A) and post‑vaccine (B) populations. Individuals are also compared 
grouped according to their vaccination*infection status (C)
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questionnaire) and only 4 were foreign nationals. Accra 
is the most cosmopolitan city in Ghana, and the study 
participants evident from their names (data not shown) 
originated from various ethnic groups within the coun-
try. Their residency in Accra creates the avenue for sev-
eral common urbanised lifestyles that can potentially 
promote homogeneity in their microbiomes.

During the pandemic, it became apparent that COVID-
19 severity was linked to the age structure of the popu-
lation, particularly that of confirmed cases [48–50]. The 
association of elderly population with COVID-19 sever-
ity has also been linked to differences in microbiome 
structure between old and young [15]. Africa is consid-
ered to have the youngest population in the world, hav-
ing a median age of 19 [51]. More than 70% of Ghana’s 
population is 35 years and below [52]. The age structure 
of our study population had a median age of 35 (range 
18–68) and 37 years as the median age of confirmed 
cases (Table S1), which is much younger than reported in 
oral microbiome studies conducted in Asia and Europe 
[14, 39]. Only one participant in the post-vaccination 
group was above 60. Although age data was missing for 
the pre-vaccination sample set, a previous study con-
ducted in Ghana pre-vaccination demonstrated that 60% 
of confirmed cases are reported to be in the 20–39 age 
bracket [53].

Following COVID-19 vaccination, the SARS-CoV-2 
spike protein is detectable in plasma and triggers inflam-
mation in epithelial and mucosal sites like the gut [54, 
55], and its association with immunity and the gut dys-
biosis has been described [55, 56]. Vaccination against 
COVID-19 has been shown to decrease gut microbial 
diversity and correlate with stronger immune responses 
[56]. Similarly, we found our post-vaccination population 
to have reduced diversity in the naso-oropharynx com-
pared to the study population prior, indicative of positive 
responses and increased immunity resulting from the 
vaccines. Given the physical connection and chemical 
communication between the oral-gut axis [57], we can 
imply that the dysbiosis observed at both sites are linked, 
but whether the same microbes are regulated at both 
sites will have to be confirmed with matched analyses of 
stool and naso-oropharyngeal swabs.

Comparable to other reports of gut and oral micro-
biome association with COVID-19, we found several 
opportunistic periodontitis species correlating with 
infection. Among these Prevotella [14, 38], Atopobium 
[14], Actinomyces [58], Porphyromonas [15] Lachno-
spiraceae, and Leptotrichia [39] significantly increased 
in infected persons. Although these bacteria were not 
identified to the species level in the current study, their 
general lactic acid-producing characteristics and the 
formation of biofilms [59] support their links with the 

naso-oropharynx in COVID-19 infections. Particularly, 
Atopobium was found significantly associated with 
SARS-CoV-2 positivity in both pre- and post-vaccine 
groups, and even in vaccinated-infected persons. Based 
on these results, Atopobium appears to be a striking 
microbial marker for detecting SARS-CoV-2 infection 
in this population, but further studies are required to 
confirm their predictive efficiency. Prevotella is known 
to be the most abundant genus of the oral microbiome 
[60] and a notably abundant characteristic microbe in 
the gut composition of African populations [40, 43] 
due to high plant and fibre diets [43, 61]. They are also 
known to be linked to epithelial cytokines and neu-
trophil recruitment in acute respiratory and chronic 
diseases [62–64], which would explain their increased 
abundance in infected persons, primarily in the pre-
vaccine population which was presumably novel to the 
virus. Prevotella, Alloprevotella and Leptotrichia, also 
have liposaccharide (LPS)-producing properties which 
are recognised for their involvement in immunoinhibi-
tory pathways [65, 66] but can also be an important 
host immune stimulant depending on the associated 
microbial species (reviewed in [67]).

About 61% of all differentially abundant bacteria 
observed belonged to phyla Bacillota (particularly, 
class Clostridia) and Bacteroidota, two major butyrate-
producing taxa [68–71]. While we find some of these 
butyrate-producing taxa in uninfected persons, the rich-
ness of these microbes was further increased in the pres-
ence of the viral infection. Although vaccination reduced 
species diversity, the bacteria that were differentially 
abundant in those vaccinated comprised of two Bacillota; 
Solobacterium and Lachnoanaerobaculum. Butyrate is a 
short-chain fatty acid that is significant in pathophysi-
ological processes in humans related to inflammatory 
diseases. They are involved in reducing mucosal inflam-
mation, influencing the fortification of epithelial bar-
riers and promoting the relief of oxidative stress [72]. 
Butyrate-producing microbes form an essential part of 
the human gut and oral cavity, are acquired in infancy 
[73] and are maintained in the adult gut through an 
increase in fibrous diets [74]. In SARS-CoV-2 infection, 
butyrate has been shown to be effective in regulating 
the expression of ACE2, proinflammatory cytokines and 
other genes linked to the progression and disease out-
comes of COVID-19 [75] and are predicted to be low in 
severe COVID-19 [76]. A recent study has directly linked 
butyrate to reduced cell apoptosis and upregulation of 
immunity against SARS-CoV-2 infection in experimen-
tal mice [77]. Higher abundance of these bacteria in the 
current study population therefore could be linked to low 
disease severity and high prevalence of asymptomatic 
infections [78, 79].
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Conclusion
Our study is limited by the small number of partici-
pants, particularly in each group. There is also demo-
graphic information about the participants we did not 
have access to such as their disease progression, num-
ber of times they have had the infection, and the time 
lapse between when they were vaccinated and when 
they were enrolled into the study. These important con-
founding factors could have helped explain our results 
better. However, no similar study has collected all of 
these in their microbiome-related research, reiterating 
the importance of standardizing methods for micro-
biome studies. Despite these the data presented here 
has shown results that can be used as the basis for fur-
ther investigating the significance of high abundance of 
butyrate-producers to disease outcomes, particularly in 
African populations. The use of other high-throughput 
techniques such shotgun metagenomics can provide 
comprehensive functional information of the bacteria 
associated with infection and vaccination.
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