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Summary
Background Tuberculosis (TB) remains a persistent threat to global public health and traditional treatment 
monitoring approaches are limited by their potential for contamination and need for timely evaluation. Therefore, 
new biomarkers are urgently required for monitoring the treatment efficacy of TB.

Methods This study aimed to elucidate the levels of CXCL10 and CXCL9 in pulmonary TB patients who underwent 
anti-TB treatment. The data was acquired from five databases, including PubMed, Ovid, Web of Science, Embase, and 
the Cochrane Library. A meta-analysis of CXCL10 data from all time points was conducted. Furthermore, a trend meta-
analysis of temporal data of CXCL10 and CXCL9 from multiple time points was also performed.

Results It was revealed that patients who responded poorly to anti-TB treatment had higher serum levels relative to 
those who responded well (SMD: 1.23, 95% CI: -0.37–2.84) at the end of intensive treatment (2 months). Furthermore, 
heterogeneity was observed in these results, which might be because patients with a prior history of TB and different 
treatment monitoring methods than those selected in this study were also included. The analysis of alterations in 
CXCL10 and CXCL9 levels since the last collection time points indicated that their levels reduced with time.

Conclusion In summary, the study revealed that reductions in CXCL10 levels during the first two months of anti-TB 
treatment are correlated with treatment responses. Furthermore, decreasing levels of CXCL9 during the treatment 
suggest that it may also serve as a biomarker with a similar value to CXCL10. Future in-depth studies are thus 
warranted to further probe the relevance of CXCL10 and CXCL9 in monitoring the treatment efficacy of TB.
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Introduction
Tuberculosis (TB) is a mycobacterial infection caused by 
Mycobacterium tuberculosis. It is the second most preva-
lent cause of chronic respiratory disease in the world. The 
2023 TB report published by the World Health Organi-
zation (WHO) [1] indicated that the global effects of the 
COVID-19 pandemic had adversely impacted TB patient 
diagnosis and treatment efforts in 2022, with treatment 
success rates of 88% and 63% for patients with drug-sus-
ceptible TB and multidrug-resistant/rifampicin-resistant 
TB, respectively. Techniques that can efficiently and early 
diagnose TB as well as monitor the treatment effect in 
patients are essential for ensuring efficacious treatment 
outcomes and preventing the emergence of resistant 
disease. However, currently, the monitoring of patients 
undergoing anti-TB treatment is a clinical challenge.

The WHO endorses sputum microscopy and culture 
as the primary approaches for monitoring TB patient 
treatment responses [2]. During the treatment, smears 
and cultures are routinely evaluated every month to 
assess patient responses to current treatment. Patients 
who exhibit persistent microbiological positivity at 2 
months post-treatment evaluation are classified as slow 
responders, indicating a poor response to anti-TB ther-
apy. Conversely, patients who achieve microbiological 
conversion within 2 months of treatment are classified 
as fast responders. However, these microbiology-based 
methods have some significant limitations, such as they 
markedly rely on the sputum sample collection, which is 
associated with a substantial risk of contamination from 
the oral cavity and upper respiratory tract. Furthermore, 
in some patients, the sputum collection process can 
be challenging such as in children. Moreover, the time-
related restrictions and increased analytical timelines 
of sputum microscopy and culture methods also render 
them suboptimal for the rapid evaluation of patient treat-
ment responses, thereby slowing the clinical decision-
making for appropriate treatment regimens. Recently, 
several new promising biomarkers have been identified 
with high specificity and sensitivity for the monitor-
ing of TB patient treatment outcomes, including RISK6 
(mRNA signature 6-Marker), TB22 (mRNA signature 
22-Marker), Lipoarabinomannan (LAM), etc [3–7].

There are certain inherent limitations to the use of 
monitoring methods that are reliant on particular omics 
approaches. While genomic markers can be extremely 
powerful, they are also very costly such that their wide-
spread adoption in primary diagnostic and monitoring 
of a disease is infeasible, particularly in developing coun-
tries. The monitoring of the treatment outcomes in TB 
patients using transcriptomic data derived from different 
sequencing platforms or technologies can yield incon-
sistent data; therefore, larger sample sizes are necessary 
to establish universal standards. Thus, cost-effective and 

practical biomarkers for the time-sensitive monitoring of 
TB patient’s treatment efficacy are urgently required.

CXCL10 and CXCL9 are the members of the CXC 
chemokine family that are crucial regulators of cellular 
migration and inflammatory responses [8]. CXCL10 and 
CXCL9 exert their biological effects via CXCR3 signal-
ing and trigger downstream immune activity [9, 10]. In 
pulmonary TB, CXCL9 and CXCL10 play crucial roles in 
recruiting chemotactic activated/effector cells to the site 
of TB infection, facilitating the formation of TB granu-
lomas [11]. Their secretion is regulated by IFN-γ, which 
plays a key role in the immune response to TB. During 
effective anti-TB treatment, the pathogen load reduces, 
the inflammatory response in the body gradually weak-
ens, and the level of IFN-γ decreases accordingly, which 
in turn reduces the levels of CXCL9 and CXCL10 [12, 
13]. During TB progression, the patient’s serum CXCL9 
and CXCL10 levels increase more than the healthy con-
trol individuals or those diagnosed with other pulmonary 
diseases [14–16]. Both CXCL10 and CXCL9 have been 
explored as auxiliary biomarkers to distinguish between 
patients with active and latent TB infection [12, 17, 18]. 
Although studies have indicated that the levels of CXCL9 
and CXCL10 may guide clinical decision-making when 
monitoring patient treatment responses [19–21], there 
are only a few quantitative analyses on the relationship 
between CXCL9 and CXCL10 levels and anti-TB treat-
ment response monitoring.

This systematic review and meta-analysis compre-
hensively analyzed CXCL9 and CXCL10 as a monitor-
ing tool for anti-TB treatment outcomes. Furthermore, 
this study examines the relationship between CXCL9 
and CXCL10 levels and treatment response in patients 
undergoing anti-TB therapy. The primary endpoint of the 
study was the microbiological and clinical outcome at 2 
months post-treatment, while the secondary endpoint 
included longitudinal trends of CXCL9 and CXCL10 
levels at various time points during treatment. Overall, 
this study aimed to address: (1) The correlation between 
CXCL9 and CXCL10 levels and the treatment response 
and (2) The longitudinal changes in CXCL9 and CXCL10 
levels in in pulmonary TB patients throughout anti-TB 
treatment.

Methods
This study conducted a systematic review and meta-anal-
ysis of serum CXCL9 (MIG) and CXCL10 (IP-10) levels 
in pulmonary TB patients undergoing standard anti-TB 
treatment. The study selection criteria were based on the 
PRISMA checklist [22] (Table S1), and the PROSPERO 
(CRD42023480875) protocol was employed.
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Search strategy
Studies were retrieved from the PubMed, Embase, Web 
of Science, Ovid, and Cochrane Library databases using 
the following search terms: (Tuberculosis or TB or Mul-
tidrug-Resistant Tuberculosis or tuberculosis Infection 
or XDR-TB OR LTBI) AND (Treatment Outcome or Effi-
cacy or Treatment Effectiveness or Treatment response 
or monitor) AND (Chemokine CXCL9 or ‘Monokine 
Induced by gamma Interferon Chemokine’ or MIG or 
Small Inducible Cytokine B9 SCYB9 Chemokine) AND 
(Chemokine CXCL10 or CXCL10 or Cytokine IP-10 Pro-
tein or IP-10 OR ‘interferon-gamma-Inducible Protein of 
10 kDa’).

Eligibility criteria
All studies published in English from January 1, 2005, to 
May 31, 2023, were eligible for inclusion in this meta-
analysis. Inclusion criteria included (i) cross-sectional, 
cohort, and case-control as well as randomized con-
trolled trials (RCTs), (ii) studies focused on changes in 
the levels of particular biomarkers during anti-TB treat-
ment, (iii) studies on diagnosed TB patients, confirmed 
through bacteriological analysis, and (iv) studies with 
no age restrictions for patients but with a minimum of 
two-time points follow-up data during treatment. Exclu-
sion criteria included: (i) studies on latent M. tuberculosis 
infections and non-tuberculous mycobacteria associated 
with other respiratory diseases, (ii) epidemiological stud-
ies, (iii) studies with patients who were only tested after 
initiating treatment, (iv) studies only focused on non-
serum samples (such as pulmonary biopsy samples), (v) 
studies which analyzed stimulated CXCL10 levels, (vi) 
narrative or systematic reviews, meta-analyses, com-
ments, conference abstracts, case reports, animal studies, 
editorials, or full-text articles that were not published in 
English, and vi) studies which employed non-standard 
therapeutic test references or acceptable reference stan-
dards including the culture of M. tuberculosis, Xpert 
MTB/RIF, smear microscopy, and clinical manifestations.

The patient’s recruitment was not restricted to any par-
ticular geographic region or type of healthcare system.

Study selection and risk of bias measurement
EndNote (version X9) was used to manage and evalu-
ate all the selected studies, which were independently 
reviewed by two investigators (Z.Y. and J.Y.) who read 
the full text of potentially relevant articles and extracted 
the data. Of 267 studies, 251 were removed as duplicates 
after abstract/title and full-text review, while 16 were 
included for data extraction from full text. Two investi-
gators (Z.Y. and J.Y.) independently scored all 16 articles 
using the QUADAS-2 tool [23] to assess their meth-
odological quality. In case of any discrepancy, a third 

investigator (M.F.) resolved the issue after discussion and 
mutual consensus.

Data extraction
Before data extraction, two investigators (Z.W. and Y.C.) 
performed a thorough feasibility analysis of the estab-
lished data extraction forms by randomly selecting the 
included studies. A third investigator (F.M.) was con-
sulted in cases of disagreements between these authors. 
The data extraction form included: (i) basic information 
such as the origin country of the study, number of par-
ticipants, baseline patient information, follow-up time 
points, and (ii) cytokine levels (average/median), as well 
as difference measurements (standard deviation, inter-
val range) during each follow-up period. These data 
were independently extracted from the full text of the 
16 included studies by two authors. In case no quan-
titative data were provided and could not be obtained 
after contacting the original authors, a third author 
(ZW) extracted graphical data from these studies. This 
approach was accepted only for extracting data from 
corresponding graphs [24, 25]. Extraction feasibility 
was assessed based on both article design reliability and 
graph extraction feasibility. When data were extracted 
from these figures, they were independently extracted by 
two investigators (Z.W. and Y.C.), and the average values 
were retained for analysis.

Data analysis
Following the data extraction and the assessments of 
central tendency and spread of these data at different 
follow-up time points, the extracted data were combined 
to produce standardized sample mean and standard 
deviation values and to assess corresponding trends. This 
study estimated normalized sample means and standard 
deviations using a data processing tool and employing the 
formulas provided by Wan et al. [26]. This approach inte-
grates sample size with median, minimum, maximum, 
and/or interquartile range values to yield more accurate 
estimates. Since the follow-up times were varied in the 
studies, fold-change values for the analyzed biomarkers 
were measured relative to the previous collection time 
point, consistent with the report of Zimmer et al. [27].

To comprehensively analyze the changes in CXCL9/
CXCL10 levels during treatment, this study employed 
two different analytical approaches. The first comprised a 
meta-analysis of all time points for CXCL9/CXCL10 lev-
els, which was conducted using a random-effects model 
with a standardized mean difference (SMD) as the effect 
size. Patients who remained bacteriologically positive two 
months after anti-TB treatment (slow responders) were 
selected as the experimental groups. The control group 
comprised patients who were bacteriologically negative 
two months after initiating treatment (fast responders). 
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The second approach of the study included a trend meta-
analysis of CXCL9/CXCL10 levels during the treatment, 
which was conducted using a random intercept model. 
The estimated fold-change in CXCL9/CXCL10 levels was 
calculated with corresponding 95% confidence intervals 
(CIs). Covariance matrices and log-fold changes were cal-
culated for each study through multivariate normal dis-
tribution simulations. Data were integrated using block 
diagonal matrix methods, and random intercept models 
were employed to analyze potential random effects. Fur-
thermore, treatment responses for TB patients newly 
diagnosed using positive sputum smear test at the start 
of treatment were determined based on smear results 
before entrance into the treatment consolidation phase. 
Whereas, treatment responses for TB patients newly 
diagnosed using negative microscopic sputum smear test 
at the start of treatment were primarily based on risk fac-
tor scores or symptom scores.

The I2 statistic was employed to assess heterogeneity, 
and the outlier studies were identified using Galbraith 
plot analyses when assessing bias in research publica-
tions using the trim-and-fill method [28, 29]. A sensitiv-
ity analysis was also performed via an impact analysis by 
excluding or not excluding the study published by Annal-
isa et al. [30]. The heterogeneity in the literature was 
addressed through sensitivity analysis exclusion. For the 

meta-analysis of all time points, covariates such as patient 
age, history of tuberculosis, cytokine detection methods, 
and HIV history were introduced. Furthermore, a Meta-
regression approach was employed to analyze sources of 
heterogeneity [31]. Significant differences were identified 
based on a two-sided p < 0.05. STATA 14.0 and R v4.2.2 
were used for all statistical analyses [32].

Results
Study selection
Of 601 studies identified using the initial search strategy, 
334 were duplicates and excluded from further examina-
tion. After a full-text review of the remaining 228 studies, 
212 were excluded, while 16 were retained for analysis 
(Fig. 1) [30, 33–47]. Of the 212 excluded studies, 93 were 
excluded as they were not focused on treatment monitor-
ing or other cytokines analysis, 42 were focused on non-
TB mycobacteria or other respiratory diseases, and 29 
were diagnostic tests or in vitro assays. Epidemiological 
analyses were also excluded from this study (n = 7). The 
remaining 16 studies were included in the quantitative 
synthesis and meta-analysis. Only 2 of these studies pro-
vided quantitative data on CXCL9 levels.

Fig. 1 PRISMA flow chart for the study selection process
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Study characteristics
Of the 16 studies included in this meta-analysis, 14 were 
prospective analyses [38, 46]. The demographic char-
acteristics of the patients from these 16 studies are pre-
sented in Table S2. These 14 studies were conducted in 8 
different countries/regions, of which 14 were performed 
in a single country, while 2 were multicenter (bicentric) 
studies [44, 46]. Furthermore, 10 studies were performed 
in countries with moderate to high TB prevalence. Only 
one study included children [47]. Age ranges varied sub-
stantially among studies. Moreover, 5 studies did not 
report data related to HIV status, while ~ 50% of patients 
in one study were HIV-positive [44]. In 68% of the stud-
ies, the patient’s TB history was not documented. ELISAs 
were used to measure CXCL9/CXCL10 levels in 10 stud-
ies, while the remaining studies employed commercial 
Luminex kits or cell counting bead arrays (CBA). In addi-
tion, 7 studies classified patients as slow or fast respond-
ers when evaluating their reactions to conventional 
anti-TB treatment.

Quality and risk of bias assessment
The QUADAS-2 tool was employed to assess the poten-
tial risk of bias and quality of the included studies, with 
sources of potential bias classified into four distinct 

categories: “patient selection”, “index testing”, “reference 
standard” and “flow and timing” [23]. The majority of the 
included studies were prospective cohort studies, with 
4 exhibiting a low risk of bias (Figure S2). Those stud-
ies in which healthy controls were included as a control 
group indicated a higher risk of patient selection bias 
and a generally higher overall risk of bias (N = 2) or a risk 
of bias classified as “unclear” (Figure S1). The generally 
higher overall risk of the two studies was primarily due 
to unclear referencing standards, procedural ambiguities, 
and timing issues. Most studies failed to directly observe 
or document patient’s compliance-related support mea-
sures. Just one study employed a double-blind approach 
when referencing criteria to interpret index results. Fur-
thermore, 2 studies indicated a high degree of “flow and 
timing” risk, while the other studies revealed a generally 
low risk of bias (Fig. 2). As these were prospective cohort 
studies, all patients were subjected to the same criteria, 
and sample collection and processing were performed 
promptly.

Comparisons between slow responders and fast 
responders
Since the design of most included studies varied, quanti-
tative data on CXCL10 levels in slow and fast responders 

Fig. 2 QUADAS-2 risk of bias assessment results
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were only reported by 5 studies. Furthermore, CXCL9 
data of slow and fast responders was only reported by 2 
studies and therefore, was insufficient for any meta-anal-
ysis (Table S2). Comprehensive details of these 5 studies’ 
results are presented in Fig.  3. Elevated baseline (0  M) 
levels of CXCL10 were associated with a higher chance of 
a poor TB treatment response, with a pooled Standard-
ized Mean Difference value of 0.45 (95% CI: 0.17–0.72). 
No significant differences were observed between the 
2- and 6-month (2 M and 6 M) patient subgroups, which 
might be because of the high heterogeneity levels at these 
time points (2M: I2= 96.3%, p-value < 0.001; 6M: I2= 
99.3%, p-value < 0.001).

A sensitivity analysis was conducted to explain the 
observed heterogeneity, which excluded the study by 
Annalisa (2005) as it had a significantly skewed effect 
size relative to other studies (Figure S2). Meta-regression 
results indicated that TB history was a source of hetero-
geneity (p = 0.016), whereas age, testing approach, and 
HIV were not the sources of significant heterogeneity 
(Figure S3). After excluding the study of Annalisa (2005), 

the overall heterogeneity decreased markedly (Figure S4). 
In the 2  M subgroup, high CXCL10 levels were linked 
to a greater chance of an unfavorable TB treatment 
response, with a pooled Standardized Mean Difference of 
0.55 (95% CI: 0.02–1.08; I2 = 49.0%, p > 0.05). However, 
at 6 months, no significant differences were observed in 
CXCL10 levels between the slow and fast responders, 
with a pooled Standardized Mean Difference of 0 (95% 
CI: -0.52–0.51; I2 = 0.0%, p-value = 0.605).

CXCL9 and CXCL10 trend meta-analysis
The levels of CXCL9 and CXCL10 during the treatment 
were also evaluated through a trend meta-analysis, which 
compared these levels to previous time points. A meta-
analysis of these results indicated that the fold-change 
values of CXCL9 and CXCL10 levels declined relative to 
previously recorded values (Table  1). Overall, this anal-
ysis included 11 and 4 studies focused on CXCL10 and 
CXCL9, with the fold change of -20.2 (95% CI: -56.4 to 
-16.6) and − 28.3 (95% CI: -40.1 to -16.7), respectively. 
The maximal fold-change values for CXCL10 and CXCL9 

Fig. 3 Forest plots for SMD values comparing the levels of CXCL10 between slow and fast responders at 0, 2, and 6 months of treatment
CXCL10: IFN-gamma-Inducible Protein, 10 kDa; TB: tuberculosis; SMD: standardized mean difference
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were − 69.5% and − 64.9%, respectively (Figure S5-6) 
and both the biomarkers indicated narrow confidence 
intervals.

Discussion
The objective of this study was to evaluate the levels of 
CXCL9 and CXCL10 as a standardized monitoring tool 
for anti-TB treatment responses. CXCL10 is a serologi-
cal marker and has been investigated in studies focused 
on the diagnosis, clinical evaluation, and therapeutic 
monitoring of TB patients [15, 17, 48–52]. There have 
been several reports demonstrating the diagnostic per-
formance of CXCL9 and CXCL10. For example, Sam-
path et al. [53] analyzed latent TB, drug-resistant TB 
(DR-TB), and drug-sensitive TB (DS-TB) patients and 
compared the differences in CXCL10 and CXCL9 lev-
els between drug-resistant and drug-sensitive patients. 
DR-TB patients (CXCL9, median: 205.99; CXCL10, 
median: 1205.75) exhibited significantly increased 
levels of CXCL9 and CXCL10 compared to DS-TB 
patients (CXCL9, median: 134.48; CXCL10, median: 
650.50). CXCL9 (AUC = 0.82, p < 0.0001) and CXCL10 
(AUC = 0.84, p < 0.0001) effectively discriminate DR-TB 
from DS-TB. The results indicated that these chemokines 
may differentiate between disease stages. CXCL9 and 
CXCL10 are both CXC family chemokines that synergis-
tically regulate host immune responses; however, there 
are only a few studies that have quantitatively assessed 
their role in therapeutic monitoring [54]. Therefore, 
this study analyzed these chemokines as biomarkers, 
and although the results are promising, further com-
prehensive biomarker-focused studies are required to 
improve timely and effective treatment monitoring for 
TB patients.

Quantitative meta-analysis results indicated that the 
levels of CXCL9 and CXCL10, as measured based on the 
mean fold-change in chemokine levels, decreased over 
the course of anti-TB treatment relative to baseline levels. 
Furthermore, CXCL10 levels were significantly higher 
in slow responders as compared to fast responders at 2 
months of treatment (SMD: 0.55, 95% CI: 0.02–1.08). 
These results suggest that the level of CXCL10 could 
serve as an indicator to detect whether microbiological 

reversal occurs in patients. Analyses of mean fold-change 
relative to baseline confirmed that both CXCL9 and 
CXCL10 serum concentrations reduced during inten-
sive treatment phases, with mean fold-changes of -20.2 
(95% CI: -56.4 to -16.6) and − 28.3 (95% CI: -40.1 to 
-16.7), respectively, compared to prior analytical time 
points. Our analysis indicates that CXCL10 levels were 
not significantly different between slow responders and 
fast responders at 6 months of treatment. Additionally, 
there were no discernible differences in microbiological 
or clinical evaluations between fast and slow responders 
at 6 months of treatment. This observation is consistent 
across the included studies and supports the notion that 
CXCL10 levels, as reported in our study, are concordant 
with the microbiological examination results. Changes 
in the levels of CXCL10 and CXCL9 over the course of 
treatment in individual studies are presented in Figure S5 
and Figure S6. CXCL10 demonstrating downward trends 
with time as compared to baseline, whereas CXCL9 lev-
els tend to increase over time. However, these results are 
controversial. For example, Chung et al. [37] observed 
inconsistent increases or decreases in serum CXCL9 lev-
els in slow and fast responders after the treatment, com-
plicating the interpretation of CXCL9’s clinical relevance 
in TB treatment monitoring.

Here, the patient’s serum, blood, and/or plasma levels 
of CXCL9 and CXCL10 were analyzed, which indicates 
that easy analysis with minimal attendant risk of biohaz-
ard exposure or contamination from sample processing. 
This is a clear advantage over more traditional TB ther-
apeutic monitoring strategies, which often entail spu-
tum culture evaluation [55]. However, the magnitude of 
change in CXCL9 levels over the course of treatment was 
limited in this analysis, and substantial heterogeneity was 
detected among studies, hampering adequate analysis of 
CXCL9’s role in the detection and monitoring of TB.

To date, several studies have indicated novel 
approaches to monitor TB treatment, including serum-
based transcriptomic analyses, metabolomics strategies, 
and the use of new imaging technologies to evaluate 
clinical signs and symptoms [56–65]. These approaches 
hold great promise as do not require sputum sample pro-
cessing, specifically in a research field [66]. Sigal et al., for 

Table 1 Combined sensitivity analysis (ρ) of weekly fold-change meta-regression and pooled fold-change data pertaining to the 
serum levels of CXCL9 and CXCL10 during anti-TB treatment

Data from the time point recorded Correlation coefficient (ρ)
(95% CI)

Cytokine Studies No. of
participants

Avg fold change
(% [95% CI])

0 0.25 0.5 0.75

CXCL10 11 585 -28.3
(-40.1 to -16.7)

-28.9
(-40.6 to -17.3)

-28.8
(-40.5 to -17.2)

-28.1
(-39.9 to -16.4)

-27.5
(-39.3 to -15.7)

CXCL9 4 479 -20.2
(-56.4 to -16.6)

-21.9
(-58.3 to -14.4)

-20.4
(-56.9 to -16.1)

-19.3
(-55.3 to -16.8)

-18.5
(-55.0 to -17.9)

CXCL10: Chemokine (C-X-C Motif) Ligand 10 Protein; CXCL9: Chemokine (C-X-C Motif) Ligand 9 Protein; ρ: correlation coefficient; CI: confidence interval
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example, screened 70 infection, metabolism, and inflam-
mation-related markers in serum samples collected from 
319 pulmonary TB patients [67]. They revealed that 
the levels of SAA1, PCT, IL-1β, IL-6, CRP, PTX-3, and 
MMP-8 were strongly correlated with disease sever-
ity and early treatment response. However, the data 
obtained from patients is highly heterogeneous, which 
interferes with the implementation of similar testing in 
centralized laboratories and limits effective disease treat-
ment via these approaches [68]. The sputum samples may 
be not required when CXCL9 and CXCL10 are used as 
therapeutic biomarkers in anti-TB treatment. However, 
the evidence is currently insufficient to confirm their 
ability to detect microbiological reversals in patients. 
The existing literature exhibits substantial variability in 
research methodologies and designs, complicating result 
comparisons and integration, and presenting challenges 
in explaining heterogeneity. Establishing standardized 
study designs is crucial for future investigations to com-
prehensively analyze the biomarker properties of CXCL9 
and CXCL10. Currently, only one metabolomics analysis 
on 48 TB patients, 20 TB-DM patients, and 48 non-HIV-
infected healthy controls has proposed that analyzing 
the shifts in metabolic activity during anti-TB treatment 
has been proposed as a viable treatment monitoring 
approach [69]. Based on the observed decrease in metab-
olite levels during the treatment, the authors developed 
a model (AUC = 0.91–0.97) capable of readily differenti-
ating between these three treatment groups of patients. 
In this study, slow and fast responders were used for the 
indirect assessment of treatment response, since most 
clinical efficacy endpoints in the analyzed studies did not 
include disease recurrence. Currently, a significant con-
cern is the standardization of clinical efficacy.

There are several limitations in this analysis. First, 
effective meta-analyses of longitudinal data markedly 
depend on the study’s experimental design, potentially 
contributing to varying levels of bias and possible gaps 
in the data. To minimize time-related variability, meta-
analyses of all time points and trends were included in 
this study, focusing on fold-change values for CXCL9 
and CXCL10 levels in treated TB patients. However, as 
observed by Zimmer et al. [27], these analytical outcomes 
depend on the data derived from the included studies, 
introducing a high risk of bias. Secondly, in this quanti-
tative meta-analysis, data extraction was limited by the 
lack of data in the form of charts or numerical values in 
the analyzed studies. The extraction of data from graphs 
can introduce bias, although prior studies suggest that 
the overall magnitude of such bias is minor. Although 
efforts were made to minimize this source of bias, some 
subjectivity in result interpretation may persist. Third, 
relatively few relevant articles on CXCL9 were included 
in this study; therefore, CXCL10 was included in both 

meta-analyses, while CXCL9 was only included in the 
trend meta-analysis. Lastly, although limited efforts were 
made to assess the potential sources of heterogeneity, a 
wide range of complex factors can contribute to the inci-
dence of heterogeneity. Furthermore, the overall quality 
of patient screening data in the included studies was not 
uniform, which might be another major source of poten-
tial bias.

Prompt assessment of the patient’s treatment response 
facilitates the formulation of a tailored treatment regi-
men based on individual circumstances. Fast responders 
may benefit from regimen adjustments such as shortened 
treatment duration and reduced drug dosage, which can 
mitigate the risk of drug-induced hepatotoxicity and seri-
ous adverse effects. Whereas, slow responders may indi-
cate inadequate response to anti-TB therapy, indicating 
an increased risk of drug-resistant TB. Clinicians can 
rapidly evaluate patient drug resistance, enabling them 
to review and adjust treatment plans effectively. This 
includes optimizing drug combinations and dosages in 
current treatments. Clinicians should consider incorpo-
rating second-line drugs such as bedaquiline and fluoro-
quinolones. If drug resistance is confirmed, they should 
transition to a regimen recommended for MDR-TB or 
XDR-TB. Although this study offers new insight that may 
help guide clinical treatment planning for TB patients, 
only CXCL9 and CXCL10 were assessed, and the poten-
tial performance of other biomarkers warrants further 
research.

In conclusion, based on the current research in this 
field, further studies are required to assess the effi-
cacy of utilizing specific chemokines as biomarkers to 
monitor TB patient treatment responses as there are no 
established clinical guidelines on their use. This system-
atic review and meta-analysis explored the potential of 
CXCL10 and CXCL9 levels as biomarkers for monitor-
ing the treatment response in TB patients and provided 
a foundation to guide further research efforts in this field.
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