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Abstract 

Background and objective  To diagnose tuberculosis infection (TBI), whole blood is incubated with M.tuberculosis 
(Mtb)-specific peptides and the release of interferon-γ (IFN-γ) is measured in IFN-γ-release assays (IGRAs). Hypergly‑
caemia and fluctuations in blood glucose may modulate IFN-γ-release. Here, we investigated if glucose intake affects 
IFN-γ-release or IGRA results in IGRAs taken during an oral glucose tolerance test (OGTT).

Methods  Persons with TB disease (TB) or TBI underwent a standard 75-g OGTT at the start and end of treatment 
for TB or TBI. Blood for the IGRA QuantiFERON-TB Gold Plus (QFT) containing Mtb-specific tubes (TB1 and TB2), a non-
specific mitogen tube (MIT) and an empty control tube (NIL) was drawn at sample-timepoints -15 (baseline), 60, 
90, 120 and 240 min during the OGTT. Blood glucose was measured in parallel at all timepoints. IFN-γ-release (after 
subtraction of NIL) at each timepoint was compared with baseline using linear-mixed-model analysis.

Results  Twenty-four OGTTs from 14 participants were included in the final analysis. Compared to baseline, IFN-γ-
release was increased at sample-timepoint 240 min for TB1; geometric mean (95% confidence interval) 3.0 (1.5–6.2) 
vs 2.5 (1.4–4.4) IU/mL (p = 0.047), and MIT; 182.6 (103.3–322.9) vs 146.0 (84.0–254.1) IU/mL (p = 0.002). Plasma glucose 
levels were not associated with IFN-γ-release and the QFT test results were unaffected by the OGTT.

Conclusion  Ingestion of glucose after a 10-h fast was associated with increased IFN-γ-release after 240 min 
in the MIT tube. However, there was no association between plasma glucose levels at the QFT sampling timepoint 
and IFN-γ-release. Furthermore, the QFT test results were not affected by glucose intake. The overall effect of an OGTT 
and prevailing plasma glucose levels on IFN-γ-release in IGRAs seem limited.

Trial registration  Trial registration ID: NCT04830462 (https://​clini​caltr​ials.​gov/​study/​NCT04​830462). Registration date: 
05-Apr-2021.
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Introduction
Tuberculosis disease (TB), caused by bacteria from the 
Mycobacterium tuberculosis complex, is a global health 
problem with 10.6 million new cases every year and 1.3 
million deaths in 2022 [1].

An estimated quarter of the world’s population has 
a tuberculosis infection (TBI) which refers to a state of 
persistent immune response to stimulation by Mycobac-
terium tuberculosis (Mtb) antigens without evidence of 
clinical TB [1]. The bacteria can remain dormant for dec-
ades but in some cases, if the immune system is impaired, 
the infection can progress to TB resulting in subsequent 
spread of the bacteria and new cases of TB and TBI.

The number of persons living with diabetes mellitus 
(DM) is estimated to increase from 537 million in 2021 
to 783 million in 2045, and the majority with DM live 
in low- and middle-income countries [2]. Many of these 
countries are also burdened with TB which is worry-
ing as DM increases the risk of infections and impairs 
the immune system [1–3]. Accordingly, data from meta 
analyses show that persons with DM are at least 1.5 
times more likely to present with TB or TBI and in 2000, 
14.8% of all TB cases in India could be attributed to DM 
[4–6]. It has even been suggested that the impact of DM 
on TB rates could rival or surpass that of human immu-
nodeficiency virus (HIV) [7]. DM is not only associ-
ated with increased risk of TB but also with TB severity, 
treatment failure, drug resistance, and smear positivity 
which all together lead to higher morbidity, mortality 
and increased spread of TB [3–5]. The cause of this asso-
ciation between TB and DM remains elusive but reduced 
immunity due to impaired cytokine signalling, compro-
mised barrier function, dysfunctional macrophages, neu-
trophils, and leukocytes have all been implied as possible 
mechanisms [3].

Screening and prophylactic treatment are key ele-
ments to reduce the burden of TB and in many parts of 
the world, interferon-γ (IFN-γ)-release assays (IGRAs) 
such as the QuantiFERON-TB Gold Plus (QFT) are used 
for TBI screening. The principle behind the test is that 
T lymphocytes (T-cells) from Mtb sensitised persons 
express IFN-γ when stimulated with Mtb-specific anti-
gens. The test requires a functional immune response 
as reflected by the compromised test performance in 
persons with severe immune deficiency due to HIV [8] 
or immunosuppressive treatment [9, 10]. The effect 
of DM on IGRAs as a test for TBI is not settled. Some 
studies find that DM and pre-DM are associated with an 
increased number of inconclusive and false negative QFT 
results [11, 12] while others report no effect on the test 
performance [13–15].

The impact of DM on quantitative IFN-γ-release is also 
debated with studies showing increased, decreased and 

unaffected IFN-γ-release in response to Mtb-specific 
and non-specific antigen stimuli [11, 12, 14, 16–21]. Dif-
ferences in study populations and ethnicities have been 
suggested as reasons for the diverging results but these 
are unlikely the sole explanations [22]. Many of the stud-
ies measured fasting blood glucose in order to assess DM 
status but it was not reported if the QFT was taken in a 
fasted or fed state [11, 12, 14, 16–20]. This might be of 
importance as acute changes in blood glucose can alter 
the levels of cytokines [23, 24]. IGRAs such as the QFT 
could therefore be affected by glucose fluctuations and 
the diverging results may be driven by systematic differ-
ences in the participants’ prandial status. We hypothesise 
that IFN-γ-release is affected by glucose intake which 
could affect QFT test performance. The aim for this study 
was to investigate if an oral glucose load affects quantita-
tive IFN-γ-release or the test result of the QFT.

Methods
Study design and participants
This is a sub-study to one observational study on TB and 
one study on TBI treatment (https://​clini​caltr​ials.​gov/​
study/​NCT04​830462). Both studies addressed the effect 
of TB and TBI treatments on glucose metabolism using 
oral glucose tolerance tests (OGTTs) conducted at the 
start and end of treatment. For the purpose of this sub-
study, QFT samples were obtained together with the 
glucose samples at five timepoints during the OGTTs. 
Participants were included from the TB outpatient clinic 
at Herlev and Gentofte Hospital, Denmark from April 
2021 to September 2022. Inclusion criteria were: planned 
treatment for TB or TBI, age above 18 years and signed 
informed consent. Exclusion criteria were: known immu-
nosuppression (e.g. HIV, steroid treatment within 14 days 
before inclusion, ongoing chemotherapy, ongoing immu-
nomodulating treatment, and splenectomy), contrain-
dication to the antibiotics rifampicin and isoniazid (e.g. 
allergy), active liver disease, severe inflammatory or rheu-
matological diseases with immune activation and need 
for prolonged systemic treatment, active cancer, preg-
nancy, type 1 DM, recent antibiotic treatment (> 2 days), 
or severe infection within 14 days before enrolment (TBI 
only).

Tuberculosis diagnosis and treatment
TB and TBI treatment and diagnosis were performed 
at the TB outpatient clinic by the attending physician 
according to global and local guidelines [25]. TBI cases 
were defined by a positive QFT at the TB clinic without 
any clinical or radiological signs of TB. TB cases were 
defined by either positive Mtb culture, positive Mtb DNA 
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polymerase chain reaction or clinical and radiological 
signs of TB with significant improvement after treatment.

Study procedures
Participants were asked to avoid exercise, coffee and 
alcohol 24 h before the OGTT and met after a 10-h over-
night fast. Participants with DM were asked to pause 
their daily DM treatment two days before the OGTT 
and weekly DM treatment one week before the OGTT. 
Seventy-five grams of glucose was dissolved in 300 mL of 
water and ingested within five minutes at timepoint zero 
minutes. QFT and glucose samples were taken at minute 
-15 (baseline), 60, 90, 120 and 240 after glucose intake. 
The procedure was performed before and after treatment 
of TB or TBI.

Data collection and sample handling
Clinical information (e.g. Charlson comorbidity scoring, 
country of origin, alcohol and tobacco use) was obtained 
at inclusion and/or by review of the electronic patient 
record [26]. Blood was collected directly into the QFT 
tubes (QIAGEN, Germantown, MD, USA) which con-
sist of a negative control (NIL) tube, two tubes (TB1 and 
TB2) with Mtb-specific peptides and a mitogen (MIT) 
tube with the nonspecific stimulant phytohaemagglu-
tinin-P [27]. Handling was performed according to the 
manufacturer’s instructions [27]. Briefly described, the 
tubes were inverted and rotated 10 times before place-
ment in an incubator (INCU-Line® IL 10, Avantor, Rad-
nor, PA, USA) within 5 min from blood draw. After 23 
h incubation, samples were centrifuged for 15 min (2000 
g, 4 °C) and plasma was stored at -80 °C until analysis. 
IFN-γ release was measured using enzyme-linked immu-
nosorbent assays (ELISA) that were handled and analysed 
using the automated DYNEX DS2® (Dynex, Chantilly, 
Virginia, USA) according to the manufacturer’s instruc-
tions. Samples collected during the same OGTT were 
analysed on the same ELISA plate. Samples intended for 
plasma  glucose analysis were drawn with a syringe and 
dispensed immediately into a microvette tube containing 
heparin and fluoride (Sarstedt, Nümbrecht, Germany). 
The samples were centrifuged and analysed directly using 
the glucose oxidase method (model 2900 STAT Plus ana-
lyser; YSI, Yellow Springs, Ohio, USA).

Interpretation of QFT test results and dilution 
for quantitative analysis
Analysis of the QFT test results was performed accord-
ing to the manufacturer’s instructions with the addition 
that samples where NIL was larger than TB1 or TB2 were 
excluded from the final analysis due to suspected sam-
ple error [27]. If all 5/5 QFT samples from an OGTT 
were negative, the participant was deemed not infected 

or seroreverted and samples from that OGTT were 
not included in the analysis. IFN-γ levels above 10 IU/
ml were not quantifiable with our method and samples 
above 10 IU/ml were therefore diluted before quantita-
tive analysis.

Statistical analysis
NIL was subtracted from TB1, TB2 and MIT for all anal-
ysis apart from NIL analysis. Statistical analysis on the 
effect of the timepoint (60, 90, 120, 240  min) after oral 
glucose ingestion vs baseline (-15 min) on IFN-γ-release 
was performed with linear mixed-effect model analysis 
where timepoint and OGTT-session (before/after treat-
ment) were treated as a fixed effects and participant ID 
as a random effect. Statistical analysis of the effect of 
plasma glucose levels on IFN-γ-release was performed 
with linear mixed-effect model analysis where plasma 
glucose, timepoint and OGTT-session were treated as 
fixed effects and participant ID as a random effect. P 
values were adjusted for multiple comparisons using the 
Bonferroni method. Adjusted p values below 0.05 were 
considered significant. Data are presented as geometrical 
means with 95% confidence intervals (CI). The statistical 
analysis was performed in R version 4.1.0.

Results
A total of 14 participants were included in the final 
OGTT analysis. Ten participants contributed with two 
OGTTs and four contributed with one OGTT adding up 
to a total of 24 OGTTs (Supplementary Figure S1). Clini-
cal characteristics of the participants are presented in 
Table 1.

As visualised in Fig.  1 and summarised in Table  2, 
plasma glucose peaked at timepoint 60 min with a geo-
metric mean of 10.1 (CI 8.5–11.9) mmol/L and returned 
to baseline values at timepoint 240  min. IFN-γ-release 
was increased at timepoint 240 min vs baseline for TB1 
(3.0 (CI 1.5–6.2) vs 2.5 (CI 1.4–4.4) IU/mL, (p = 0.047)) 
and MIT (182.6 (CI 103.3–322.9) vs 146.0 (CI 84.0–
254.1) IU/mL (p = 0.002)). TB2 was not affected by glu-
cose intake.

Plasma glucose levels were not associated with IFN-
γ-release for TB1 (β = 0.3, 95% CI -0.1 to 0.7, p = 0.999), 
TB2 (β = -0.1, 95% CI -0.4 to 0.3, p = 0.999) or MIT 
(β = 3.5, 95% CI -4.7 to 11.7, p = 0.999).

There was no systematic trend in the QFT test results 
during the OGTTs and at any timepoint 78–90% of the 
QFT tests were positive (Supplementary Table  S1). In 
6/24 (25%) OGTTs, one or more test results diverged 
from the baseline result. An overview of results from the 
OGTTs with diverging QFT test results is presented in 
Supplementary Table S2.
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Discussion
The main purpose of the present study was to investi-
gate if an oral glucose load altered stimulated IFN-γ-
release or QFT results in persons with TB or TBI. We 
did not observe an association between the prevailing 
plasma glucose levels at the QFT sampling timepoint and 
IFN-γ-release and glucose intake did not appear to affect 
the test results of the QFT. We did observe a borderline 
significant increase in IFN-γ-release at the end of the 
OGTT in the TB1 tube and a significant increase in the 
MIT tube, while the TB2 and NIL tubes were unaffected 
at all timepoints.

Only two studies have previously explored the impact 
of glucose on IFN-γ-release and report both a negative 
and positive association between the two [12, 21]. How-
ever, these studies differ significantly from ours as they 
utilised fasting plasma glucose measurements rather than 
repeated IGRAs during an OGTT. Additionally, fast-
ing plasma glucose in these studies was primarily used 
to evaluate DM status rather than IFN-γ-release, and it 
remains unclear whether the QFT samples were collected 
together with the glucose measurements. It is therefore 
difficult to compare these studies to ours.

In the present study, the overall proportion of posi-
tive, negative and indeterminate QFT test results were 
stable during the OGTT (Supplementary Table  S1). 

While studies on the impact of DM on IGRA test results 
are contradictive [11–15] our data support the reports 
which show no effect of DM on IGRA test performance 
[13–15]. We observed a variation of the QFT test results 
in 6/24 (25%) of the OGTTs, but these were seemingly at 
random and among participants with results around the 
cut-off points (Supplementary Table S2). Taken together, 
it is unlikely that glucose intake affects the QFT as a diag-
nostic test for TBI.

Stimulated IFN-γ-release increased after 240 min in 
the MIT tube, and to some extent in the TB1 tube, but 
was unaffected at all other timepoints. The small sample 
size in this study should be considered when assessing 
these results, especially regarding the TB1 tube where 
the statistical signal was less convincing. The more robust 
increase in the MIT tube does however suggest that there 
is a link between glucose intake and IFN-γ-release even 
though this does not appear to be mediated by the pre-
vailing glucose levels. The underlying mechanism to this 
finding is unclear and we can only speculate on potential 
reasons. One explanation could be that the 10-h fast prior 
to the OGTT diminished T-cell reactivity which took at 
least 240 min to restore. A second possibility is that our 
results were affected by fluctuations in peripheral white 
blood cells (WBCs) which have been shown to decrease 
during 120 min long OGTTs [28, 29]. This means that 
our baseline QFTs might have contained more WBCs 
than QFTs taken later in the OGTT. It is not known 
when the number of WBCs return to baseline values 
after a glucose load and it is possible that the increased 
IFN-γ-release measured at minute 240 represents the 
return of T-cells to the circulation. A third explanation 
could be that we have captured the natural daytime vari-
ation of the immune system. The 240-min samples in the 
present study were taken just after noon but WBCs peak 
at midnight and reach their nadir at noon [30]. The effect 
of daytime variation should therefore, if anything, have 
a negative effect on IFN-γ-release at minute 240 in our 
study. A fourth explanation is that the results were caused 
by systematic errors in sample handling or analysis. But 
the tubes were handled identically and it is unlikely that a 
systematic error only affected two out of four tubes.

Limitations of this study include the small hetero-
geneous sample size with few TB patients, the low 
number of persons with DM and subsequently the low 
glucose levels during the OGTT. We are therefore una-
ble to draw any firm conclusions regarding the effect of 
a glucose load on QFTs in persons with DM. The small 
sample size also prevents us from any meaningful anal-
ysis of potential differences between participants with 
TB and TBI. The lack of a placebo group is another lim-
itation of this study which makes it difficult to ascer-
tain if the results were caused by glucose intake or 

Table 1  Baseline characteristics of the participants

Baseline characteristics of persons with tuberculosis disease or tuberculosis 
infection who participated in the study. Data are presented as n (%) or mean 
(standard deviation)

Participants
(n = 14)

Baseline characteristics
  Male sex, n (%) 7 (50%)

  Age (years) 50.3 (15.2)

  Tuberculosis infection, n (%) 11 (79%)

  Tuberculosis disease, culture positive, n (%) 2 (17%)

  Tuberculosis disease, clinical diagnosis, n (%) 1 (7%)

  Diabetes, n (%) 2 (17%)

  Body mass index (kg/m2) 25.5 (3.8)

  Alcohol use (units/week) 2.8 (4.4)

  Current smokers, n (%) 1 (7%)

  Former smokers, n (%) 5 (36%)

  Charlson comorbidity score 1.3 (1.6)

  Leukocyte count (109/L) 5.5 (1.1)

  C-reactive protein (mg/L) 9.0 (16.5)

  Glycosylated haemoglobin (mmol/mol) 39.8 (8.1)

  Country of origin – Europe, n (%) 4 (29%)

  Country of origin – Asia, n (%) 6 (43%)

  Country of origin – South America, n (%) 1 (7%)

  Country of origin – Africa, n (%) 3 (21%)
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Fig. 1  Plasma glucose levels and interferon-γ-release in samples taken at -15, 60, 90,120 and 240 min post a glucose load. Data are from 24 OGTTs 
from 14 participants presented as geometric means with 95% confidence intervals as error bars. Results from minute 60, 90, 120, and 240 were 
analysed vs. baseline (-15 min) using linear mixed-effect model analysis. The shown p values were adjusted using the Bonferroni method. NIL, 
negative control; MIT, mitogen; TB1, TB antigen tube 1; TB2, TB antigen tube 2. * p < 0.05, ** p < 0.005, *** p < 0.001
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other factors. We also lack data on the number of cir-
culating T-cells or WBCs at each sampling time point 
which would have given information on cell reactivity. 
However, strengths of the study are that we induced 
increased glucose levels in  vivo (not in  vitro) and that 
the sample handling, dilution and QFT analysis were 
performed by the same individual.

Conclusion
Ingestion of an oral glucose load after a 10-h fast 
increased IFN-γ-release in the MIT tube of the QFT 
after 240  min. Plasma glucose levels at the QFT sam-
pling timepoint were however not associated with 
IFN-γ-release and the test result of the QFT did not 
seem to be affected by glucose intake. Taken together, 
the overall effect of glucose intake on IGRAs is prob-
ably limited. Still, the role of glucose fluctuations in the 
interplay between DM and Mtb infections needs to be 
further elucidated in larger studies with a higher pro-
portion of DM participants.
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