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Abstract
Introduction The COVID-19 pandemic has caused an unprecedented health threat globally, necessitating innovative 
and efficient diagnostic approaches for timely identification of infected individuals. Despite few emerging reports, the 
clinical utility of circulating microRNAs (miRNAs) in early and accurate diagnosis of COVID-19 is not well-evidenced. 
Hence, this meta-analysis aimed to explore the diagnostic potential of circulating miRNAs for COVID-19. The protocol 
for this study was officially recorded on PROSPERO under registration number CRD42023494959.

Methods Electronic databases including Embase, PubMed, Scopus, and other sources were exhaustively searched 
to recover studies published until 16th January, 2024. Pooled specificity, sensitivity, positive likelihood ratio (PLR), 
negative likelihood ratio (NLR), diagnostic ratio (DOR), positive predictive value (PPV), negative predictive value (NPV), 
and area under the curve (AUC) were computed from the metadata using Stata 14.0 software. Risk of bias appraisal 
of included articles was carried out using Review Manager (Rev-Man) 5.3 package through the modified QUADAS-2 
tool. Subgroup, heterogeneity, meta-regression and sensitivity analyses were undertaken. Publication bias and clinical 
applicability were also evaluated via Deeks’ funnel plot and Fagan nomogram (scattergram), respectively.

Result A total of 43 studies from 13 eligible articles, involving 5175 participants (3281 COVID-19 patients and 1894 
healthy controls), were analyzed. Our results depicted that miRNAs exhibit enhanced pooled specificity 0.91 (95% CI: 
0.88–0.94), sensitivity 0.94 (95% CI: 0.91–0.96), DOR of 159 (95% CI: 87–288), and AUC values of 0.97 (95% CI: 0.95–0.98) 
with high pooled PPV 96% (95% CI: 94–97%) and NPV 88% (95% CI: 86–90%) values. Additionally, highest diagnostic 
capacity was observed in studies involving larger sample size (greater than 100) and those involving the African 
population, demonstrating consistent diagnostic effectiveness across various specimen types. Notably, a total of 12 
distinct miRNAs were identified as suitable for both exclusion and confirmation of COVID-19 cases, denoting their 
potential clinical applicability.

Conclusion Our study depicted that miRNAs show significantly high diagnostic accuracy in differentiating COVID-
19 patients from healthy counterparts, suggesting their possible use as viable biomarkers. Nonetheless, thorough 
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Introduction
The virus known as Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARS-CoV-2) causes Coronavirus Dis-
ease 2019 (COVID-19) and leads to a variety of clinical 
presentations, ranging from mild respiratory symptoms 
to pneumonia, and in severe cases, multiple organ failure 
[1]. The involvement of multiple body systems in COVID-
19 may be attributed to an imbalanced immune response, 
contributing to the disease’s progression [2]. As of Febru-
ary 2024, COVID-19 has affected over 774,469,939 indi-
viduals globally and resulted in over 7,026,465 deaths [3]. 
Treatment options for COVID-19 are not specific, and 
disease management relies on empirical methods [4].

Diagnosing COVID-19 involves detecting SARS-CoV-2 
ribonucleic acids (RNA) from upper respiratory tract 
specimens using polymerase chain reaction (PCR) [5, 
6]. However, PCR has faced criticism due to its invasive-
ness and increased risk of cross-infection [7]. Moreover, 
it requires high purity samples, expensive equipment, 
specialist training, and long reaction times [8]. RT-PCR, 
though pivotal in detecting active COVID-19 infec-
tions [9], has several limitations, including variable sen-
sitivity [10], resource-intensive processes, and delays in 
results [9]. Its invasive nature also makes it unsuitable 
for screening asymptomatic individuals [11]. Addition-
ally, RT-PCR is prone to diagnostic challenges, such as 
difficulty distinguishing new infections from reinfec-
tions, issues with detecting viral mutations, and cases of 
false positives [12–14] and false negatives [15, 16], rais-
ing questions about its status as the “gold-standard” diag-
nostic method [17, 18]. Other molecular methods like 
clustered regularly interspaced short palindromic repeats 
(CRISPR) and gene sequencing share similar drawbacks 
[19]. Chest computed tomography (CT) is also com-
monly used for diagnosis, but it cannot identify specific 
viruses and is unavailable in many settings [20, 21]. Addi-
tionally, serological diagnostic tests identify specific anti-
bodies against SARS-CoV-2 (IgG or IgM) but have low 
sensitivity early in the disease, high false-negative rates, 
and limited validation [22]. Consequently, finding effec-
tive diagnostic biomarkers and severity predictors is cru-
cial for accurate and targeted therapy [23].

Numerous biomarkers, aside from cytokines, exhibit 
alterations in COVID-19 and are linked to diagnosis, 
disease outcomes, and prognosis [24]. Certain biomark-
ers offer straightforward predictions of disease sever-
ity, intensive care unit (ICU) admission, hospitalization, 
and mortality. However, other modalities, such as pro-
teomic and metabolomic analyses, remain primarily 

investigational and pose challenges in translation to 
clinical application despite their prognostic capacity [25, 
26]. Due to the scarcity of accessible data on biomarkers, 
there is still an imperative to discover novel non-invasive 
biomarkers capable of diagnosing COVID-19 and distin-
guishing between various disease stages. Achieving this 
necessitates a deeper comprehension of the interplay 
among the virus, host cells, viral pathogenesis, and cel-
lular injury [27].

MicroRNAs (miRNAs), small non-coding RNAs com-
prising 17 to 22 nucleotides, regulate post-transcriptional 
gene expression by inhibiting translation [28]. These 
molecules play significant roles in various biological 
processes, including inflammation, apoptosis, cell prolif-
eration, and the immune response to viral infections [29, 
30]. Since their discovery, miRNAs have been proposed 
as biomarkers for disease severity, treatment response, 
and predictors of disease outcomes [31]. Their potential 
as disease indicators, especially for identifying viral infec-
tions, is attributed to their high sensitivity and specific-
ity [32]. In COVID-19, dysregulated miRNAs have been 
linked to virus replication, cell proliferation, immune 
response, and inflammation [33, 34]. In the landscape 
of COVID-19 biomarkers, circulating miRNAs present 
distinct advantages and complementarity compared to 
other biomarkers. While several biomarkers, including 
viral RNA, antibodies, cytokines, and traditional clinical 
parameters like C-reactive protein (CRP) and D-dimer, 
have been extensively studied for COVID-19 diagno-
sis and prognosis, miRNAs offer unique characteristics 
that enhance their utility in clinical practice [35]. These 
unique advantages include early indication of diseases, 
stability, non-invasive sampling, and potential use in per-
sonalized medicine [36–38]. Moreover, miRNAs are best 
candidates for diagnostic applications mainly attribut-
able to their regulatory roles in gene expression, post-
transcriptional gene silencing, modulation of diverse 
biological processes, resistance to enzymatic degrada-
tion, and their stability in diverse body fluids such as 
serum, plasma, urine, and saliva [39–41]. Studies have 
also compared miRNA expression between COVID-
19 patients and healthy individuals to identify potential 
diagnostic biomarkers [42–45]. Furthermore, analyzing 
miRNA expression in COVID-19 patients with varying 
severities aids in diagnosis and prediction [46]. However, 
the expression patterns of miRNAs in individuals with 
COVID-19 have yielded inconsistent findings. Given 
this variability in insights, conducting an all-inclusive 
analysis becomes essential to judge the suitability of such 

and wide-ranging longitudinal researches are necessary to confirm the clinical applicability of miRNAs in diagnosing 
COVID-19.
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biomarkers as diagnostic aids for COVID-19. Hence, this 
systematic review and meta-analysis were undertaken to 
evaluate the diagnostic capacity of miRNAs in COVID-
19 diagnosis.

Methods
Study design and protocol
This study is carried out and reported in compliance 
with the recommendations delineated in the Preferred 
Reporting Items for Systematic Reviews and Meta-anal-
ysis (PRISMA) standard [47] as shown in Supplementary 
file 1. Furthermore, the protocol of this study was for-
mally recorded in the International Prospective Register 
of Systematic Reviews (PROSPERO) under a documenta-
tion ID: CRD42023494959.

Article search and study selection
As delineated in Supplementary file 2, electronic bib-
liographic databases, including PubMed, Scopus, and 
Embase, were systematically searched for relevant arti-
cles until January 16, 2024. Additionally, a manual search 
was conducted on Google, and the bibliography items of 
identified articles were scrutinized to discover pertinent 
studies inadvertently overlooked in the initial search. The 
list of Medical Subject Heading (MeSH) items and key 
words applied in the overall search included “microR-
NAs”, “miRNAs”, “miRNA”, “microRNA”, “miR”, “diagnos*”, 
“COVID-19”, “coronavirus”, “novel coronavirus 2019”, 
“SARS-CoV-2”, “2019-nCoV”, and “2019 nCoV”. Besides, 
Boolean operators (“AND” and “OR”) were strategically 
employed in the advanced search.

After the article search, retrieved articles were brought 
into Endnote 20.0 software (Clarivate analysis, Phila-
delphia) and underwent screening to identify eligible 
studies. After duplicate removal, two reviewers (MAB 
and EA) carried out an initial screening based on titles 
and abstracts, to identify eligible studies. Full texts of 
included studies were independently reviewed accord-
ing to the pre-stated inclusion and exclusion standards. 
Any inconsistencies were assessed by a third researcher 
(DTA), and consensus resolved any differences.

Inclusion and exclusion criteria
In this study, we took in observational studies (cohort, 
cross-sectional, case-control studies) involving human, 
exploring the value of miRNAs as diagnostic mark-
ers for distinguishing COVID-19 patients from healthy 
individuals. Eligible studies were necessarily stipulated 
to report essential data, including sample sizes for both 
groups (COVID-19 patients and healthy controls), spec-
ificity, and sensitivity, facilitating calculation of core 
diagnostic measurements (TP, TN, FP, FN). Exclusions 
encompassed various article types (reviews, editori-
als, conference proceedings, case reports, and author 

replies), non-peer-reviewed articles, and those missing 
critical inputs for computing TP, TN, FP, and FN.

Metadata extraction
Two reviewers (MAB and EA) meticulously extracted 
important information from included studies into an 
Excel worksheet, with discrepancies being unravelled 
through in-depth dialogues and the intruding of a third 
researcher (NM). In addition to computed values such as 
sensitivity, area under the curve (AUC) and specificity, 
the extracted data encompassed details including author, 
country, year of publication, type of miRNA or miRNA 
panel, miRNA regulation mode, reference controls, type 
of specimen, number of COVID-19 patient and healthy 
participants, cut-off points, and detection techniques.

Quality appraisal
The Quality Assessment of Diagnostic Accuracy Stud-
ies-2 (QUADAS-2) tool, encompassing criteria for selec-
tion of patients, efficiency of detection techniques, test 
flow, and adequacy of reference standard, was deployed 
to evaluate the risk of bias pertained by the included arti-
cles using Review Manager (RevMan) 5.3 software [48]. 
Accordingly, the appraisal outputs characterized the risk 
of bias and applicability concerns as unclear, low, or high.

Data analysis and synthesis
Extracted metadata were statistically analyzed using Stata 
software version 14.0 (Stata Corp LP, TX, USA). In the 
diagnostic accuracy meta-analysis, we employed speci-
ficity, sensitivity, negative likelihood ratios (NLR), posi-
tive likelihood ratios (PLR), and diagnostic odds ratios 
(DOR), along with their accompanying 95% confidence 
intervals to assess the diagnostic efficacy of miRNAs. 
Furthermore, pooled positive predictive value (PPV) and 
negative predictive value (NPV) were computed to sum-
marize the diagnostic accuracy of miRNAs across stud-
ies, enhancing the generalizability, precision, and clinical 
relevance of the findings. Quantitative evaluation of diag-
nostic accuracy involved determining the area under the 
curve (AUC) computed from summary receiver operat-
ing characteristic curve (SROC). Additionally, the Hier-
archical Summary Receiver Operating Characteristic 
(HSROC) model was used to account for study variability 
and differing thresholds, offering a summary of test per-
formance. The model produces a summary curve com-
bining sensitivity and specificity for an overall assessment 
of diagnostic accuracy, and interpreted using key param-
eters including the β estimate, indicating trends in accu-
racy (a negative value suggests reduced performance), 
and the lambda estimate, which reflects variability in 
diagnostic odds ratios across studies [49]. Heterogeneity 
tests utilized the Q test and I2 statistics through applica-
tion of a random-effects model, with an I2 value above 
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50% and a p-value less than 0.05 indicating statistically 
substantial heterogeneity among the eligible studies. 
Evaluation of heterogeneity resulted from the threshold 
effect employed the ROC plane and Spearman correla-
tion coefficient, with bivariate boxplots and Galbraith 
Star charts estimating the level of heterogeneity. Addi-
tionally, subgroup analysis, meta-regression, and sensitiv-
ity analysis were performed to evaluate and understand 
sources of heterogeneity and ensure result stability. 
Potential publication bias was appraised through the use 
of Deeks’ funnel plot, in which a p-value > 0.1 suggests no 
publication bias. Likelihood ratio scattergram and Fagan’s 
nomogram were utilized to judge the clinical value of 
miRNAs as a diagnostic biomarker of COVID-19.

Results
Search results and selection of studies
The initial literature search process yielded a total of 
848 records (PubMed = 301, Embase = 187, Scopus = 344, 
and other sources = 16), of which 294 duplicates were 
removed. Subsequently, the remaining 554 articles 
underwent evaluations of their title and abstract, and 
503 were excluded. Finally, full text of 51 articles were 
assessed based on the eligibility criteria, and 13 studies 
[50–62] were identified and included in the quantitative 
analysis (Fig. 1).

Study characteristics
A total of 43 individual studies from the eligible 13 
articles, involving 5175 participants (3281 COVID-19 

Fig. 1 PRISMA flow chart of article selection process for the systematic review and meta-analysis
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patients and 1894 healthy controls), were thoroughly ana-
lyzed. All the included studies were published between 
2021 and 2023. The location of studies spans three con-
tinents, with the majority of the studies conducted in 
Africa (6 studies from Egypt), followed by Asia (4 stud-
ies from Lebanon, Iran, China and Iraq), and Europe (3 
studies from Italy, Spain and Romania). Quantitative 
real-time PCR (qRT-PCR) was the commonly employed 
technique for assessing miRNA expression. Differ-
ent specimen types were utilized, encompassing serum 
samples in seven studies, plasma samples in five stud-
ies, and peripheral blood mononuclear cells (PBMCs) in 
one study. Only 7 studies deployed U6 as internal refer-
ence, while 2 studies used cel-miR-39-3p. From all eligi-
ble studies, a total of 41 distinct miRNAs were analyzed, 
demonstrating that the majority of these miRNAs exhib-
ited upregulation in COVID-19 patients. In-depth fea-
tures of the eligible studies are tabulated in Table 1.

Quality appraisal of eligible studies
Based on the QUADAS-2 tool quality assessment find-
ings, overall validated and enhanced methodological 
standards were pertained by the eligible studies, demon-
strating low risk of bias and applicability concerns in the 
majority of the quality appraisal criteria (Fig. 2).

Diagnostic accuracy of miRNAs as biomarkers of COVID-19 
diagnosis
According to our meta-analysis utilizing the random 
effect model, the pooled sensitivity, specificity, PLR, NLR, 
and DOR of miRNAs in distinguishing between COVID-
19 patients and healthy controls were found to be 0.94 
(95% CI: 0.91–0.96), 0.91 (95% CI: 0.88–0.94), 10.96 (95% 
CI: 8.02–14.98), 0.07 (95% CI: 0.05–0.10), and 159 (95% 
CI: 87–288), respectively (Fig. 3, Supplementary file 3 A). 
The pooled PPV of the miRNA based diagnostic test 
across the included studies was 96% (95% CI: 94–97%) 
whereas the pooled NPV was found to be 88% (95% CI: 
86–90%). This indicates that out of all patients who tested 
positive, 96% were correctly diagnosed with the condi-
tion, while only 4% were false positives (Supplementary 
file 3B) Additionally, SROC curve analysis depicted an 
impressive AUC value of 0.97 (95% CI: 0.95–0.98), sig-
nifying a high level of diagnostic accuracy of miRNAs as 
potential diagnostic biomarkers for COVID-19 (Fig. 4A). 
These SROC curve analysis findings were further con-
firmed through the application of the Hierarchical SROC 
(HSROC) tool, depicting a β estimate of -0.33 (95% CI: 
-0.81 − 0.14, P = 0.176) and lambda estimate of 3.19 (95% 
CI: 2.72–3.67) (Fig. 4B).

Heterogeneity and threshold effect
The significant contribution of both threshold and 
non-threshold effects to the observed heterogeneity 

in diagnostic tests is noteworthy. Our study revealed 
substantial heterogeneity in the combined sensitivity, 
specificity, PLR, NLR and DOR with values (I2 = 81.81%, 
P < 0.001), (I2 = 71.22%, P < 0.001), (I2 = 70.58%, P < 0.001), 
(I2 = 78.36%, P < 0.001), and (I2 = 100.00%, P < 0.001), 
respectively. An I2 value of > 50% indicated non-thresh-
old effect heterogeneity among the eligible studies. In 
both the Galbraith star chart and the bivariate box plot, 
13 out of 43 studies and 12 out of 43 studies, respectively, 
situated out of the lower and upper limits of the 95% CI 
(see Supplementary file 4 A and 4B).

Furthermore, an evaluation was carried out to assess 
the impact of the threshold effect on observed hetero-
geneity, employing the ROC plane along with Spearman 
correlation coefficient. The existence of a robust negative 
correlation (p < 0.05) and a distinct shoulder-arm appear-
ance on the ROC plane serves as an indication of the 
threshold effect. In our study, the Spearman correlation 
coefficient was 0.361 with a p-value of 0.067 (p > 0.05), 
and an atypical shoulder-arm structure was noticed in 
the ROC plane, signifying an absence of heterogene-
ity attributed to the threshold effect (Supplementary file 
4 C).

Subgroup analyses and meta-regression
In the subgroup analysis, the pooled diagnostic accu-
racy of miRNA was slightly higher in studies involving 
the African population (AUC 0.99, 95% CI: 0.97 − 0.99) 
in contrast to those conducted in European (AUC 0.95, 
95% CI: 0.93 − 0.97) and Asian populations (AUC 0.94, 
95% CI: 0.91 − 0.95). Furthermore, when examining vari-
ous specimen types, it was found that miRNAs showed 
comparable diagnostic accuracy in diagnosing COVID-
19, with an AUC of 0.98 (95% CI: 0.96 − 0.99) in studies 
utilizing PBMCs samples and an AUC of 0.97 (95% CI: 
0.95 − 0.98) in studies using serum and plasma samples. 
Similarly, in the subgroup analysis based on regulation 
mode, analogous diagnostic accuracy with AUC of 0.97 
(95% CI: 0.95 − 0.98) was observed for both upregulated 
and downregulated miRNAs.

In terms of internal reference control, it was noted 
that studies utilizing U6 as the internal reference control 
showcased enhanced diagnostic ability for miRNAs in 
differentiating COVID-19 patients from healthy counter-
parts (AUC 0.99, 95% CI: 0.97 − 0.99), in comparison to 
those using other reference controls. Furthermore, miR-
NAs showcased peak diagnostic accuracy when the sam-
ple size of the included studies was above 100, with an 
AUC of 0.98 (95% CI: 0.96 − 0.99) contrasting with studies 
involving participant numbers ≤ 100 (AUC 0.92, 95% CI: 
0.89 − 0.94) (Table 2).

As illustrated in Fig. 5, the findings of meta-regression 
analysis showed that covariates including specimen type, 
country, expression mode, sample size, and cut-off point 



Page 6 of 16Belete et al. BMC Infectious Diseases         (2024) 24:1011 

A
ut

ho
rs

Ye
ar

Co
un

tr
y

Sp
ec

im
en

M
et

ho
d

Re
fe

re
nc

e
Pa

rt
ic

ip
an

ts
m

iR
N

A
Ex

pr
es

si
on

Cu
t-

off
Se

n 
(%

)
Sp

ec
 (%

)
AU

C
CP

H
C

Ka
za

n 
et

 a
l.

20
21

Le
ba

no
n

Pl
as

m
a

qR
T-

PC
R

M
iR

-5
02

-5
p

33
10

m
iR

-1
9a

-3
p

U
p

0.
83

4
88

.0
85

.0
0.

81
5

Ka
za

n 
et

 a
l.

20
21

Le
ba

no
n

Pl
as

m
a

qR
T-

PC
R

M
iR

-5
02

-5
p

33
10

m
iR

-1
9b

-3
p

U
p

0.
23

7
89

.0
86

.0
0.

87
5

Ka
za

n 
et

 a
l.

20
21

Le
ba

no
n

Pl
as

m
a

qR
T-

PC
R

M
iR

-5
02

-5
p

33
10

m
iR

-9
2a

-3
p

U
p

0.
47

90
.0

87
.0

0.
85

0
Ka

za
n 

et
 a

l.
20

21
Le

ba
no

n
Pl

as
m

a
qR

T-
PC

R
M

iR
-5

02
-5

p
33

10
m

iR
-1

9a
-3

p,
m

iR
-1

9b
-3

p,
m

iR
-9

2a
-3

p

U
p

0.
52

92
.0

89
.0

0.
91

7

Ag
w

a 
et

 a
l.

20
21

Eg
yp

t
Se

ru
m

qR
T-

PC
R

U
6

10
0

10
0

IL
11

RA
 m

RN
A

U
p

1.
15

10
0.

0
83

.0
0.

98
5

Ag
w

a 
et

 a
l.

20
21

Eg
yp

t
Se

ru
m

qR
T-

PC
R

U
6

10
0

10
0

H
SA

-M
IR

-4
25

7
D

ow
n

2.
07

88
.0

81
.0

0.
91

1
D

on
ya

vi
 e

t a
l.

20
21

Ira
n

PB
M

Cs
qR

T-
PC

R
SN

O
RD

47
 R

N
A

18
15

m
iR

-1
55

-5
p

U
p

N
R

83
.3

10
0.

0
0.

90
0

D
on

ya
vi

 e
t a

l.
20

21
Ira

n
PB

M
Cs

qR
T-

PC
R

SN
O

RD
47

 R
N

A
18

15
m

iR
-le

t-
7b

-3
p

U
p

N
R

83
.3

93
.3

0.
93

0
D

on
ya

vi
 e

t a
l.

20
21

Ira
n

PB
M

Cs
qR

T-
PC

R
SN

O
RD

47
 R

N
A

18
15

m
iR

-2
9a

-3
p

U
p

N
R

83
.3

10
0.

0
1.

00
D

on
ya

vi
 e

t a
l.

20
21

Ira
n

PB
M

Cs
qR

T-
PC

R
SN

O
RD

47
 R

N
A

18
15

m
iR

-1
46

a-
3p

U
p

N
R

10
0.

0
93

.3
0.

98
0

Li
 e

t a
l.

20
22

Ch
in

a
Se

ru
m

qR
T-

PC
R

U
6

16
16

m
iR

-1
25

b-
5p

U
p

N
R

10
0.

0
93

.7
1.

00
Li

 e
t a

l.
20

22
Ch

in
a

Se
ru

m
qR

T-
PC

R
U

6
16

16
m

iR
-1

55
-5

p
U

p
N

R
10

0.
0

93
.7

1.
00

G
ia

nn
el

la
 e

t a
l.

20
22

Ita
ly

Se
ru

m
N

G
S

G
RC

h3
8

89
45

m
iR

-3
20

b
U

p
50

9.
3

94
.4

95
.6

0.
97

0
G

ia
nn

el
la

 e
t a

l.
20

22
Ita

ly
Se

ru
m

N
G

S
G

RC
h3

8
89

45
m

iR
-3

20
c

U
p

11
54

89
.9

95
.6

0.
97

0
G

ia
nn

el
la

 e
t a

l.
20

22
Ita

ly
Se

ru
m

N
G

S
G

RC
h3

8
89

45
m

iR
-3

20
d

U
p

39
8.

5
91

.1
92

.1
0.

97
0

G
ia

nn
el

la
 e

t a
l.

20
22

Ita
ly

Se
ru

m
N

G
S

G
RC

h3
8

89
45

m
iR

-4
83

-5
p

U
p

13
17

91
.0

91
.1

0.
94

0
G

ia
nn

el
la

 e
t a

l.
20

22
Ita

ly
Se

ru
m

N
G

S
G

RC
h3

8
89

45
m

iR
-3

20
a-

3p
U

p
11

64
80

.9
88

.9
0.

91
0

G
ia

nn
el

la
 e

t a
l.

20
22

Ita
ly

Se
ru

m
N

G
S

G
RC

h3
8

89
45

m
iR

-3
0d

-5
p

D
ow

n
68

22
94

.4
91

.1
0.

98
0

G
ia

nn
el

la
 e

t a
l.

20
22

Ita
ly

Se
ru

m
N

G
S

G
RC

h3
8

89
45

m
iR

-2
5-

3p
D

ow
n

51
60

96
.6

91
.1

0.
98

0
G

ia
nn

el
la

 e
t a

l.
20

22
Ita

ly
Se

ru
m

N
G

S
G

RC
h3

8
89

45
m

iR
-9

3-
5p

D
ow

n
55

23
94

.4
93

.3
0.

97
0

G
ia

nn
el

la
 e

t a
l.

20
22

Ita
ly

Se
ru

m
N

G
S

G
RC

h3
8

89
45

m
iR

-1
6-

5p
D

ow
n

14
05

92
.1

95
.6

0.
97

0
G

ia
nn

el
la

 e
t a

l.
20

22
Ita

ly
Se

ru
m

N
G

S
G

RC
h3

8
89

45
m

iR
-1

01
-3

p
D

ow
n

35
72

88
.8

86
.7

0.
96

0
G

ia
nn

el
la

 e
t a

l.
20

22
Ita

ly
Se

ru
m

N
G

S
G

RC
h3

8
89

45
m

iR
-1

85
-5

p
D

ow
n

10
94

86
.8

88
.9

0.
94

0
G

ia
nn

el
la

 e
t a

l.
20

22
Ita

ly
Se

ru
m

N
G

S
G

RC
h3

8
89

45
m

iR
-4

25
-5

p
D

ow
n

26
09

83
.2

95
.6

0.
92

0
H

ar
ou

n 
et

 a
l.

20
22

Eg
yp

t
Pl

as
m

a
qR

T-
PC

R
U

6
15

0
50

m
iR

-1
55

U
p

1.
81

90
.0

10
0.

0
0.

98
6

D
om

in
gu

ez
 e

t a
l.

20
22

Sp
ai

n
Se

ru
m

qR
T-

PC
R

ce
l-m

iR
-3

9-
3p

17
16

hs
a-

m
iR

-9
8-

3p
U

p
N

R
72

.7
63

.6
0.

82
6

D
om

in
gu

ez
 e

t a
l.

20
22

Sp
ai

n
Se

ru
m

qR
T-

PC
R

ce
l-m

iR
-3

9-
3p

17
16

hs
a-

m
iR

-4
23

-3
p

U
p

N
R

75
.0

73
.3

0.
78

7
D

om
in

gu
ez

 e
t a

l.
20

22
Sp

ai
n

Se
ru

m
qR

T-
PC

R
ce

l-m
iR

-3
9-

3p
17

16
hs

a-
m

iR
-1

24
6

U
p

N
R

82
.4

87
.5

0.
87

5
D

om
in

gu
ez

 e
t a

l.
20

22
Sp

ai
n

Se
ru

m
qR

T-
PC

R
ce

l-m
iR

-3
9-

3p
17

16
hs

a-
m

iR
-9

8-
3p

, h
sa

-m
iR

-4
23

-3
p,

hs
a-

m
iR

-1
24

6
U

p
N

R
63

.6
69

.1
0.

66
3

Sh
ak

er
 e

t a
l.

20
23

Eg
yp

t
Se

ru
m

qR
T-

PC
R

SN
O

RD
 6

8
98

30
m

iR
-2

00
c-

3p
U

p
5.

59
94

.9
99

.0
N

R
Ay

el
de

en
 e

t a
l.

20
23

Eg
yp

t
Se

ru
m

qR
T-

PC
R

U
6

20
0

80
m

iR
N

A-
20

0
U

p
6.

97
10

0
89

.2
N

R
M

oa
ta

r e
t a

l.
20

23
Ro

m
an

ia
Pl

as
m

a
qR

T-
PC

R
ce

l-m
iR

-3
9-

3p
89

89
m

iR
-1

95
D

ow
n

N
R

85
.2

96
.5

0.
92

2
H

as
sa

n 
et

 a
l.

20
23

Eg
yp

t
Pl

as
m

a
qR

T-
PC

R
U

6
70

10
m

iR
N

A-
61

8
U

p
1

75
.0

44
.0

0.
62

5
H

as
sa

n 
et

 a
l.

20
23

Eg
yp

t
Pl

as
m

a
qR

T-
PC

R
U

6
70

10
m

iR
N

A-
16

–2
-3

p
U

p
3.

5
84

.0
61

.0
0.

74
3

Ab
ed

 e
t a

l.
20

23
Ira

q
Pl

as
m

a
qR

T-
PC

R
U

6
14

5
14

5
m

iR
N

A-
20

a
D

ow
n

14
.5

5
10

0.
0

95
.0

1.
00

Ta
bl

e 
1 

O
ve

ra
ll 

ch
ar

ac
te

ris
tic

s o
f s

tu
di

es
 in

cl
ud

ed
 in

 th
e 

m
et

a-
an

al
ys

is



Page 7 of 16Belete et al. BMC Infectious Diseases         (2024) 24:1011 

were delineated as significant contributors to the hetero-
geneity in both specificity and sensitivity.

Applicability of miRNAs in clinical use for diagnosing 
COVID-19
According to the Fagan’s nomogram, our finding indi-
cated that a positive diagnostic test result would elevate 
the post-test probability of an individual having COVID-
19 to approximately 73%, given a pre-test probability of 
20%. This means that if a patient is tested positive for 
COVID-19 using miRNA biomarkers, the likelihood that 
they truly have the disease increases to 73%. Conversely, 
a negative test result would lower the post-test probabil-
ity to around 2%, suggesting that a negative miRNA test 
effectively rules out the disease with high certainty. This 
implies that miRNAs exhibit potential as indicator for the 
diagnosis of COVID-19 (see Fig. 6A).

In Fig.  6B, we present a scattergram to illustrate the 
diagnostic performance of miRNAs across various stud-
ies. The scattergram plots the PLR against the NLR for 
individual studies. Studies positioned in the left upper 
quadrant (PLR > 10 and NLR < 0.1) indicate strong diag-
nostic markers for both confirming and excluding 
COVID-19. Specifically, five studies from Giannella et al., 
two from Abed et al., two from Soltane et al., and indi-
vidual studies from Donyavi et al., Li et al., and Shaker 
et al. positioned in the left upper quadrant (PLR > 10 and 
NLR < 0.1), signifying the robustness of the biomarkers in 
both confirming and ruling out COVID-19. This result is 
further supported by a summary (overall) effect situated 
in the left upper quadrant signifying the overall applica-
bility of miRNAs for both exclusion and confirmation of 
COVID-19. This summary effect consolidates the find-
ings from all included studies, providing a comprehensive 
overview of the diagnostic efficacy of miRNAs. Notably, 
our analysis identified a total of 12 distinct miRNAs, 
including miR-146a-3p, miR-155-5p, miR-320b, miR-
30d-5p, miR-25-3p, miR-93-5p, miR-16-5p, miR-200c-3p, 
miRNA-20a, miRNA-320, MiR-146a, MiR-146b as being 
particularly effective for both confirming and excluding 
COVID-19. These miRNAs exhibit consistent diagnostic 
performance across various studies and specimen types, 
denoting their potential clinical applicability in diagnos-
ing COVID-19 (Fig. 6B).

Sensitivity analysis
The trustworthiness and robustness of this meta-analysis 
model was relatively affirmed through bivariate normal-
ity and goodness-of-fit analysis, as showcased in Fig. 7a 
and b. Furthermore, the outlier detection segment of the 
sensitivity analysis pinpointed three studies as potential 
sources of heterogeneity (Fig.  7d). However, even after 
excluding these outlier studies, no substantial alterations 
were detected in the pooled sensitivity (0.94 vs. 0.93), A
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specificity (0.91 vs. 0.92), PLR (10.98 vs. 11.4), NLR (0.07 
vs. 0.08), and AUC (0.97 vs. 0.97), indicating an overall 
low sensitivity among the included studies.

Publication bias
The Deek’s funnel plot revealed apparently asymmetrical 
distribution of studies along both sides of the regression 
line, with a p-value of < 0.001 illustrating the presence of 
significant publication bias in the metadata (Fig. 8).

Discussion
This study, comprising primary data of 41 distinct miR-
NAs and two miRNA panels across 13 studies, revealed 
that miRNAs demonstrated strong diagnostic accu-
racy and proved their possible use as biomarkers in 

COVID-19 diagnosis, with a higher combined sensitiv-
ity 0.94 (95% CI: 0.91–0.96) and specificity 0.91 (95% CI: 
0.88–0.94), along with PLR, NLR, DOR, and AUC values 
of 10.96 (95% CI: 8.02–14.98), 0.07 (95% CI: 0.05–0.10), 
159.0 (95% CI: 87–288), and 0.97 (95% CI: 0.95–0.98), 
respectively. Such illustrated high levels of sensitivity and 
specificity underscore the accuracy of miRNAs to effi-
ciently distinguishing COVID-19 patients from healthy 
individuals. This finding is also supported by systematic 
review reports illustrating the possible use of miRNAs as 
potential biomarkers of COVID-19 [31] and other infec-
tious diseases including tuberculosis, sepsis, and viral 
hepatitis [37]. Similar findings depicting the potential 
of miRNAs as diagnostic biomarkers were also reported 
beyond COVID-19, including other pathologies such as, 

Fig. 2 Quality appraisal (risk of bias and applicability concern assessment) of eligible studies using QUADAS-2
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cervical cancer [63], hepatocellular carcinoma [64], and 
oncogenic viral infections such as Human T-lympho-
tropic virus, Human papilloma virus, Merkel cell poly-
oma virus, Human herpes virus-8, and Epstein–Barr 
virus-associated cancers [65, 66].

The integration of microRNA-based diagnostics with 
existing tests such as RT-PCR, imaging, and immuno-
logical assays used to monitor COVID-19 offers com-
plementary diagnostic information beyond pathogen 
detection, including early detection of asymptomatic 
cases, differentiating between new infection and rein-
fections, enhances multimodal monitoring strategies 
through holistic surveillance of viral dynamics, host 
immune responses and treatment responses, and enables 
point-of-care applications [67]. By leveraging the syner-
gies between microRNA profiling and conventional diag-
nostics, healthcare providers can enhance the accuracy, 
timeliness, and comprehensiveness of COVID-19 surveil-
lance and management through facilitating early detec-
tion of disease recurrence, emergence of vaccine escape 
variants, and complications associated with long COVID, 
ultimately improving patient outcomes [68].

Despite such tremendous significance and compel-
ling features to be used as efficient biomarkers, the 

implication of miRNAs is not adequately explored for 
COVID-19 diagnosis [31, 69]. Apart from few systematic 
review reports [31, 67, 68, 70–72], till date, there are no 
all-inclusive quantitative studies providing thorough sta-
tistical summary of the diagnostic potential of miRNAs 
in COVID-19. Hence, this study is the first meta-analysis 
to assess the diagnostic potential of miRNAs in diagnos-
ing COVID-19.

The high PLR and low NLR further affirm the diag-
nostic prowess of miRNAs [73, 74]. Notably, the PLR 
value of 10.96 in our study shows approximately 11 times 
higher probability of detecting positive miRNA results 
in COVID-19 patients in contract with healthy controls. 
On the other hand, the NLR value of 0.07 infers there is 
only a 7% probability of developing COVID-19 among 
those tested negative. Additionally, a DOR > 1 and AUC 
approaching 1 are indicative of best distinguishing capa-
bility and overall efficacy of a test [75–77], and evidently, 
we obtained a DOR of 159 and AUC value of 0.97 which 
affirm the extraordinary ability of miRNA markers to 
effectively differentiate COVID-19 patients from healthy 
individuals. These findings collectively prove the poten-
tial of miRNAs as reliable and accurate diagnostic mark-
ers for COVID-19, offering a promising avenue for the 

Fig. 3 Forest plot showing overall specificity and sensitivity of miRNAs in the diagnosis of COVID-19
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Table 2 Subgroup analysis of the diagnostic accuracy of miRNA in COVID-19
Subgroup No of studies Sen (95% CI) Spe (95% CI) PLR (95% CI) NLR (95% CI) DOR (95% CI) AUC (95% CI)
Country
Europe 17 0.88 (0.84 − 0.91) 0.91 (0.87 − 0.93) 9.4 (6.5 − 13.7) 0.13 (0.10 − 0.18) 72 (39 − 136) 0.95 (0.93 − 0.97)
Africa 14 0.97 (0.92 − 0.99) 0.93 (0.83 − 0.97) 13.6 (5.4 − 34.5) 0.03 (0.01 − 0.09) 457 (87 − 2398) 0.99 (0.97 − 0.99)
Asia 12 0.96 (0.89 − 0.99) 0.93 (0.89 − 0.96) 14.2 (8.6 − 23.5) 0.04 (0.01 − 0.12) 359 (101 − 1279) 0.94 (0.91 − 0.95)
Specimen
Serum 29 0.94 (0.91 − 0.96) 0.91 (0.88 − 0.94) 10.6 (7.6 − 14.7) 0.06 (0.04 − 0.10) 166 (82 − 335) 0.97 (0.95 − 0.98)
Plasma 10 0.93 (0.84 − 0.97) 0.90 (0.78 − 0.96) 9.2 (4.0 − 21.0) 0.08 (0.03 − 0.18) 119 (28 − 504) 0.97 (0.95 − 0.98)
PMBCs 4 0.88 (0.77 − 0.94) 0.97 (0.87 − 0.99) 27.1 (6.1 − 120.6) 0.13 (0.07 − 0.25) 213 (38 − 1197) 0.98 (0.96 − 0.99)
Regulation mode
Upregulated 33 0.94 (0.90 − 0.97) 0.91 (0.87 − 0.94) 10.9 (7.2 − 16.5) 0.06 (0.04 − 0.11) 170 (77 − 372) 0.97 (0.95 − 0.98)
Downregulated 10 0.93 (0.88 − 0.96) 0.92 (0.88 − 0.95) 11.7 (7.8 − 17.6) 0.08 (0.05 − 0.14) 145 (67 − 314) 0.97 (0.95 − 0.98)
Reference
U6 17 0.99 (0.95 − 1.00) 0.92 (0.85 − 0.96) 11.9 (6.4 − 22.2) 0.01 (0.00 − 0.06) 1041 (156 − 6967) 0.99 (0.97 − 0.99)
GRCh38 12 0.91 (0.88 − 0.93) 0.92 (0.89 − 0.94) 11.4 (8.5 − 15.4) 0.10 (0.08 − 0.13) 114 (72 − 181) 0.95 (0.93 − 0.96)
cel-miR-39-3p 5 0.77 (0.66 − 0.85) 0.83 (0.65 − 0.93) 4.6 (1.9 − 11.0) 0.28 (0.17 − 0.46) 16 (4 − 62) 0.84 (0.80 − 0.87)
SNORD47 RNA 4 0.88 (0.77 − 0.94) 0.97 (0.87 − 0.99) 27.1 (6.1 − 120.6) 0.13 (0.07 − 0.25) 213 (38 − 1197) 0.98 (0.96 − 0.99)
MiR-502-5p 4 0.89 (0.83 − 0.94) 0.87 (0.73 − 0.95) 7.2 (3.1 − 16.3) 0.12 (0.07 − 0.20) 59 (20 − 175) 0.95 (0.92 − 0.96)
Sample size
> 100 27 0.96 (0.93 − 0.98) 0.93 (0.90 − 0.95) 13.8 (10.0 − 19.2) 0.04 (0.03 − 0.08) 310 (156 − 617) 0.98 (0.96 − 0.99)
≤ 100 16 0.87 (0.81 − 0.90) 0.87 (0.77 − 0.92) 6.4 (3.6 − 11.5) 0.15 (0.11 − 0.23) 41 (17 − 100) 0.92 (0.89 − 0.94)
Cut-off value
Given 25 0.93 (0.90 − 0.96) 0.91 (0.87 − 0.93) 10.0 (7.2 − 13.8) 0.07 (0.05 − 0.11) 139 (74 − 260) 0.97 (0.95 − 0.98)
Not given 18 0.94 (0.88 − 0.97) 0.93 (0.87 − 0.96) 13.4 (7.1 − 25.2) 0.06 (0.03 − 0.14) 213 (63 − 716) 0.98 (0.96 − 0.99)
Note AUC: area under curve; DOR: diagnostic odds ratio; NLR: negative likelihood ratio; PLR: positive likelihood ratio; Sen: sensitivity; Spec: specificity

Fig. 4 SROC curve analysis of miRNAs for diagnosing COVID-19; (A) the SROC curve with the 95% confidence contour and 95% prediction contour and 
(B) the HSROC model with the 95% confidence region and 95% confidence prediction region
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Fig. 6 Assessment of the clinical applicability of miRNAs in diagnosing COVID-19, including (A) Fagan’s nomogram revealing post-test probabilities under 
a pre-test probability set at 20% and (B) Likelihood ratio scattergram depicting the likelihood ratios as indicators of clinical applicability

 

Fig. 5 Meta-regression analysis to assess sources of heterogeneity in sensitivity and specificity of miRNAs
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development of sensitive and specific diagnostic tools in 
the ongoing battle against the pandemic.

According to our finding, the application of the 
HSROC model revealed a β estimate of -0.33 (95% CI: 
-0.81 − 0.14), indicating a trend in the reduction of diag-
nostic accuracy. However, the corresponding P value 

of 0.176 suggests that this reduction is not statistically 
significant, emphasizing the need for cautious inter-
pretation. The lambda estimate, a crucial parameter in 
the HSROC model, was determined to be 3.19 (95% CI: 
2.72–3.67), reflecting the variability in the diagnostic 
odds ratio among the studies, with a higher lambda value 
indicative of increased heterogeneity [78]. The observed 
lambda estimate of 3.19 underscores a notable degree of 
variability in the diagnostic performance of the microR-
NAs across the included studies.

In the subgroup analysis, a slightly elevated diag-
nostic accuracy was observed in studies involving the 
African population (AUC 0.99, 95% CI: 0.97 − 0.99) in 
contrast with those conducted in European (AUC 0.95, 
95% CI 0.93 − 0.97) and Asian population (AUC 0.94, 
95% CI: 0.91 − 0.95) highlighting the potential influence 
of population-specific factors on miRNA efficacy as 
COVID-19 diagnostic biomarkers. These observed dif-
ferences underscore the need to consider demographic 
and geographical variations in future investigations and 
the development of diagnostic strategies, enhancing the 
accuracy and applicability of miRNA-based diagnostics 
for diverse populations affected by the pandemic.

Fig. 8 Deek’s funnel plot asymmetry test for evaluating publication bias 
in the included studies

 

Fig. 7 Sensitivity analysis of included studies evaluating the reliability and validity of the meta-analysis results and outlier detection
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Our subgroup analysis results also illustrate no signifi-
cant difference in diagnostic accuracy when considering 
different specimen types, including serum, plasma and 
PMBCs with a consistent AUC of 0.97, 0.97, and 0.98, 
respectively. This consistent diagnostic performance 
across diverse specimen types indicates the robustness 
of miRNA-based diagnostics for COVID-19, offering 
flexibility in specimen selection for clinical applicability 
without compromising accuracy. Additionally, this study 
depicted heightened diagnostic capacity with AUC value 
of 0.98 (95% CI: 0.96–0.99) in studies comprising > 100 
sample size compared to studies with ≤ 100 study par-
ticipants (AUC: 0.92, 95% CI: 0.89–0.94). Such variation 
might be attributable to sample size induced bias and sta-
tistical power [79].

According to the Fagan’s nomogram analysis [80, 81] 
depicting an overall PLR of 0.73 and NLR of 0.02, the 
positive test results for miRNAs are indicative of about 
73% likelihood of acquiring COVID-19. On the other 
hand, the likelihood declines to about 2% in cases where 
samples yielded negative results for miRNAs. Such find-
ings proved the promising diagnostic ability of miRNAs 
in differentiating individuals with SARS-CoV-2 from 
healthy counterparts, with strong evidence of possible 
use for exclusion and confirmation of COVID-19. This 
diagnostic ability of miRNAs is paramount and hope-
ful in overcoming the rising concerns of the currently 
available diagnostic methods for the frequently mutated 
SARS-CoV-2 pandemic to enable early and accurate 
detection.

This meta-analysis is the first of its kind to comprehen-
sively investigate the potential of miRNAs in effectively 
diagnosing COVID-19. Despite it is a strength to analyze 
a more comprehensive list of miRNAs from included 
studies pertaining to high methodological quality, this 
study faces some limitations. Initially, the metadata were 
quite limited attributable to the diverse cutoff values of 
the miRNAs, potentially causing significant heteroge-
neity among the eligible studies. Secondly, the scarcity 
of similar miRNAs hindered the subgroup analysis, and 
we were not able to identify a single miRNA or a panel 
of miRNA biomarker with best diagnostic performance. 
Thirdly, the study may be influenced by reduced statis-
tical power due to the small number of sample sizes in 
majority of the eligible articles. Fourthly, the absence of 
similarity in the use of internal references resulted in 
varying outcomes in miRNA quantitative analysis, and 
could impact the reliability and reproducibility of miRNA 
expression profiles, potentially confounding the inter-
pretation of diagnostic performance metrics. Fifthly, 
variations in the techniques used for quantifications of 
miRNAs, such as qRT-PCR and NGS, may lead to poten-
tial inconsistencies in the reported miRNA levels, impact 
the comparability of miRNA measurements, and could 

contribute to variability in the reported diagnostic accu-
racy of circulating miRNAs for COVID-19. Sixthly, the 
HSROC model may be less sensitive to subtle differences 
in diagnostic accuracy between individual studies, and 
the model assumes homogeneity in study populations, 
which may not fully capture the complexity of diverse 
clinical settings. Finally, the limited number of available 
studies restricted our ability to gather sufficient data on 
the role of miRNAs as indicators of disease severity or 
predictors of COVID-19. Although the abovementioned 
limitations may have influenced the results, we believe 
that it will lay a solid groundwork for future research 
endeavors. As such, it is essential to approach and infer 
our findings with caution. We strongly urge upcoming 
scholars to corroborate and substantiate our conclusions 
by conducting wide-ranging studies pertaining consis-
tent research methodologies and larger sample sizes. 
Future studies should also consider alternative models or 
combine HSROC with other methods, such as bivariate 
models, to provide a more nuanced analysis of diagnostic 
accuracy.

In conclusion, this study underscores the high diag-
nostic accuracy of miRNAs in distinguishing COVID-
19 patients from healthy counterparts, suggesting their 
promise as valuable biomarkers for detecting SARS-
CoV-2. Remarkably, miRNAs among studies with sub-
stantial sample sizes and those focusing on the African 
population exhibit heightened diagnostic capacity, indi-
cating consistent diagnostic effectiveness across different 
specimen types. Nonetheless, thorough and wide-rang-
ing researches with superb methodological qualities 
involving both individual miRNA and miRNA panel 
assessments need to be conducted to confirm the clinical 
applicability of miRNAs in diagnosing COVID-19.

Policymakers could consider supporting the integration 
of miRNA-based diagnostics into public health strategies, 
particularly for early detection and monitoring of viral 
outbreaks. In clinical practice, miRNAs could comple-
ment existing diagnostic methods like RT-PCR, offering a 
non-invasive, rapid, and accurate alternative, particularly 
in resource-limited settings. Future research should aim 
to standardize miRNA detection techniques and validate 
these findings across diverse populations and settings. 
Additionally, the development of point-of-care miRNA 
diagnostic tools could revolutionize pandemic prepared-
ness and response.
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