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Abstract
Background  The Covid-19 pandemic has been characterized by the emergence of novel SARS-CoV-2 variants, each 
with distinct properties influencing transmission dynamics, immune escape, and virulence, which, in turn, influence 
their impact on local populations. Swift analysis of the properties of newly emerged variants is essential in the initial 
days and weeks to enhance readiness and facilitate the scaling of clinical and public health system responses.

Methods  This paper introduces a two-variant metapopulation compartmental model of disease transmission to 
simulate the dynamics of disease transmission during a period of transition to a newly dominant strain. Leveraging 
novel S-gene dropout analysis data and genomic sequencing data, combined with confirmed Covid-19 case data, we 
estimate the epidemiological characteristics of the Omicron variant, which replaced the Delta variant in late 2021 in 
Philadelphia, PA. We utilized a grid-search method to identify plausible combinations of model parameters, followed 
by an ensemble adjustment Kalman filter for parameter inference.

Results  The model successfully estimated key epidemiological parameters; we estimated the ascertainment rate of 
0.22 (95% credible interval 0.15–0.29) and transmission rate of 5.0 (95% CI 2.4–6.6) for the Omicron variant.

Conclusions  The study demonstrates the potential for this model-inference framework to provide real-time insights 
during the emergence of novel variants, aiding in timely public health responses.
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Background
The Covid-19 pandemic has been marked by numer-
ous waves, many of which were driven by new variants 
of SARS-CoV-2. The specific characteristics of these 
new variants determine levels of immune escape, trans-
missibility, and virulence, which, in turn, influence their 
impact on local populations [1–3]. The B.1.617.2 (Delta) 
variant, for example, was characterized by increased 
transmissibility and virulence, and decreased vaccine effi-
cacy against symptomatic infection compared to previ-
ously circulating strains. This led to resurgences in cases, 
hospitalizations, and deaths worldwide [4–7].

The largest wave of Covid-19 cases to date was driven 
by the emergence of the B.1.1.529 (Omicron) variant, 
which was first identified in the United States on Decem-
ber 1, 2021 [8]. This variant featured multiple mutations 
on the spike protein, leading to a high rate of immune 
escape [9–11]. The Omicron variant was found to have 
a higher secondary attack rate than Delta even among 
unvaccinated cases and contacts, suggesting that the 
Omicron variant could have additional intrinsic proper-
ties leading to higher transmissibility compared to the 
Delta variant [12], which supported its rapid spread. The 
impact of Omicron was mitigated by its decreased sever-
ity compared to Delta [13, 14].

Rapid characterization of new variant properties is 
needed in the days and weeks immediately following 
emergence in order to better prepare and scale clinical 
and public health system response [15]. Infectious dis-
ease models, if properly integrated to real-time data and 
inference methods, provide one such means for estimat-
ing epidemiological characteristics such as transmissibil-
ity, immune escape, and incubation period in real time. 
Such systems have been developed to infer the character-
istics of novel variants using case and mortality data [16].

Here, we present newly collected variant type data 
derived from sequencing and S-gene dropout analysis, 
used in conjunction with classical epidemiological sur-
veillance data to produce an estimated time-series of 
Covid-19 cases by variant type. We develop and demon-
strate the use of a two-strain model of disease transmis-
sion driven by these data to estimate the characteristics 
of Omicron as it replaced the Delta variant in late 2021 
to early 2022 in the city of Philadelphia, PA. In the future, 
this model-inference framework could be deployed in 
real-time to provide insight during the emergence of 
other novel variants.

Methods.
Data.
Weekly confirmed cases of Covid-19 by ZIP code from 

October 4, 2020 through April 3, 2022 were obtained 
from the Philadelphia Department of Public Health. 
We grouped Philadelphia ZIP codes into 5 geographic 
regions, first by grouping according to the 18 planning 

analysis sections, then by merging adjacent sections 
into larger geographical units. The resulting regions are 
shown in Fig.  1. The timing and population-adjusted 
magnitude of case rates were very similar between loca-
tions. Approximately 8% of case data were missing ZIP 
code information; we distributed these to the 5 geo-
graphic regions proportionally to the data for which geo-
graphic information was available under the assumption 
that data with missing information were evenly distrib-
uted across the city.

The relative incidence of the two principal circulating 
variants during Dec 2021 through Jan 2022, Delta and 
Omicron, was determined using weekly data from S-gene 
target drop out and genomic sequencing analyses of 1157 
SARS-CoV-2 samples collected from residents of Phila-
delphia by the Children’s Hospital of Philadelphia and 
the Philadelphia Department of Public Health as part of 
a variant-surveillance project. S-gene drop out analyses 
was successfully applied to 1007 samples, and of these, 
174 samples underwent whole-genome sequencing as 
well. An additional 122 samples were whole-genome 
sequenced, without S-gene drop out analysis. These data 
have been deposited at the National Center for Biotech-
nology Information Sequence Read Archive (NCBI SRA).

Viral RNA from specimens were extracted using the 
ThermoFisher MagMAX™ Viral/Pathogen Nucleic Acid 
Isolation Kit on the ThermoFisher KingFisher extrac-
tion system following the assay standard protocol. S-gene 
dropout monitoring was performed using the Ther-
moFisher TaqPath™ COVID-19 Combo Kit (Cat No: 
A47814) on a QuantStudio 6 Plus. Amplification of the 
S-gene was monitored with the reporter dye ABY. A con-
firmed S-drop was determined from the noted amplifica-
tion of ORF1ab (FAM) and N-gene (VIC) and absence of 
S-gene (ABY) amplification. Data were analyzed using 
ThermoFisher Design & Analysis software (version 2.6.0) 
with automated thresholding for Ct value determination.

Whole-genome sequencing was conducted at the 
Genomics Core Facility at Drexel University using the 
Paragon Genomics CleanPlex SARS-CoV-2 Research 
and Surveillance NGS Panel. Library preparation con-
sisted of measuring concentration with the Qubit dsDNA 
High-Sensitivity Assay Kit, quality assessment using the 
Agilent High Sensitivity DNA Kit and 2100 Bioanalyzer 
instrument, and standardization to 8 nM. The libraries 
were again quantified, then diluted to a final concentra-
tion of 4 nM, and loaded onto the MiSeq system at 10 
pM. Paired-end and dual-indexed 2 × 150-bp sequenc-
ing was performed using MiSeq Reagent Kits. Sequences 
were demultiplexed, and base calls were transformed 
into FASTQ format using bcl2fastq2, version 2.20. The 
FASTQ reads were subsequently processed to generate 
a consensus sequence, and variants were identified using 
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the ncov2019-artic-nf pipeline (https://github.com/con-
nor-lab/ncov2019-artic-nf ) [17].

The number of Covid-19 cases for each of the two vari-
ant types was estimated by multiplying the number of 
confirmed cases by the proportion of each variant in the 
genotyped samples for each corresponding week (Fig. 1; 
Supplemental Table 1). These time-series were interpo-
lated to daily values using shape-preserving piecewise 
cubic interpolation, which then served as the observa-
tional input to the two-strain disease transmission model.

The average rate of daytime movement of individuals 
from their home geographic region to each of the other 
geographic regions was estimated using data on visits to 
geo-referenced points of interests from SafeGraph [18]. 
We aggregated these visits to the 5 geographic regions 
and then normalized the number of visits to estimate the 
number of individuals travelling to other parts of the city 
during the day.

Model description.
The time period for this analysis begins on November 

12, 2021, several weeks prior to the first reported cases 
of the Omicron variant in December 2021. We mod-
eled disease transmission using a two-strain metapopu-
lation compartmental structure in order to explicitly 
represent transmission dynamics during this critical 
period of a newly emerging variant Each strain was mod-
eled separately using the adapted form of a single-strain 

metapopulation model previously employed to model 
Covid-19 and influenza transmission for a range of loca-
tions and spatial scales [19–22]. The population of Phila-
delphia was divided into subpopulations based on region 
of daytime location (e.g. work) and region of residence. 
Movement between the subpopulations (e.g. people liv-
ing in region i and working in region j) was imposed 
based on the estimates derived from SafeGraph data.

We modeled the transmission dynamics of COVID-19 
separately for day and night periods, reflecting the move-
ment of individuals to daytime destination regions, the 
return home for the night, and mixing with the wider 
populations at both locations. Transmission was rep-
resented as a discrete Markov process with Susceptible 
(S), Exposed (E), Reported Infected (Ir), Unreported 
Infected (Iu), and Recovered (R) compartments. Here, we 
added a second Covid-19 variant to the model (Fig.  2). 
We assumed that all individuals susceptible to the origi-
nal variant were also susceptible to the new variant, and 
that some additional individuals immune to the original 
variant are susceptible to the new variant due to immune 
escape. We assumed that infection by one strain over 
the course of the simulation confers full immunity to 
both strains. This immunity wanes over time; however, 
we assumed a long duration of immunity such that over 
the timescale of the simulation, the effect of reinfection 
is negligible. Model parameters are listed in Table 1. Full 

Fig. 1  The left image shows the ZIP codes of Philadelphia, outlined in white, divided into the 5 regions used in this analysis. The bar graphs on the right 
show the number of confirmed Covid-19 cases in each of the 5 regions. The colors indicate the estimated number of cases of each of the two variants
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model equations and additional details are provided in 
the Supplementary Material.

At the start date of the analysis November 12, 2021, 
the predominant variant in circulation across the 
United States was SARS-CoV-2 B.1.617.2 (Delta), which 
accounted for an estimated 99.9% of transmission [8]. 
The Delta variant in our model was initialized using esti-
mates of population susceptibility, infection rate, and 
parameter values for Philadelphia County as of Novem-
ber 12, 2021 from an operational county-resolved model 
of Covid-19 transmission throughout the US; these initial 

values are listed in Table 1 [23]. Initialization of the Omi-
cron variant is described below.

Parameterization using grid search method.
We employed two methods to infer unknown model 

parameters α h  and β h ; (1) a grid search approach, 
and (2) a data assimilation approach. The grid search 
approach was a relatively simple analysis intended to 
narrow model uncertainty by identifying plausible com-
binations of parameters and state variables that produce 
outbreaks with comparable magnitude and speed of 
progression as observed. While this approach could be 
employed as a stand-alone method, in this study, we used 
it to provide initial conditions to our more sophisticated 
data assimilation method.

We limited parameter estimation to the ascertainment 
rate αh and transmission rate βh parameters of the emerg-
ing Omicron variant, as well as the model state variables 
for each strain and location. We focused on these two 
parameters as they are difficult to measure directly using 
traditional epidemiological approaches such as contact 
tracing. The remaining parameters were assigned and 
remained fixed over time; values are shown in Table 1.

We first used a grid search approach to explore the 
parameter space and identify optimal combinations of 
parameters and initial susceptibility by assessing the fit 
between model output and observations. We ran a set 
of 100 stochastic simulations for each of 1008 combina-
tions of transmission rate (β), ascertainment rate (α), and 
initial susceptibility (S0). Initial susceptibility to the Omi-
cron variant was assigned values between 20 and 100% of 
the population in increments of 10%. The case reporting 
rate for the Omicron variant was assigned values from 
5 to 40%, in increments of 5%. The transmission rate for 
Omicron was assigned values from 0.5 to 7 in increments 

Table 1  List and description of model parameters and initial conditions, including values used for Grid Search analysis and initial 
conditions for inference system. Superscript m indicates parameters relating to the Delta strain and superscript h indicates parameters 
relating to the emerging omicron strain
Model parameters Description Value Reference

α m Ascertainment rate 0.24 [23]

β m Transmission rate 2.2 [23]

Sm
0 Initial susceptibility to original strain 0.20–0.25 [23]

Zm Incubation period 3.6 days [22]

Dm Duration of infectiousness 3.5 days [22]

Lm Duration of immunity 5 years n/a

α h Ascertainment rate 0.05–0.4 estimated

β h Transmission rate 0.5–7 estimated

Sh
0

Initial susceptibility to emerging strain 0.20-1.00 estimated

Zh Incubation period 3 days [24–27]

Dh Duration of infectiousness 3.5 days n/a

Lh Duration of immunity 5 years n/a

µ Relative infectiousness of asymptomatic infection 0.61 [22]

θ Mobility factor 0.15 [22]

Fig. 2  Model schematic. The solid lines indicate individuals moving be-
tween through the Susceptible (S), Exposed (E), Reported Infected (Ir), 
Unreported Infected (Iu) and Recovered (R) compartments due to an in-
fection of strains m (top) and h (bottom), respectively. The dashed lines 
indicate cross-immunity conferred by infection by the other strain (i.e. 
movement from Sm to Rm due to infection by strain h and vice-versa)
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of 0.5. The corresponding basic reproductive number R0 
ranged from 1.1 to 18.8.

For each combination of parameters and initial condi-
tions, we assessed the fit of the simulated reported cases 
to observations using the continuous rank probability 
score (CRPS). This measure considers the full cumulative 
distribution function (CDF) of the modeled probabili-
ties and calculates the average discrepancy between this 
modeled CDF and the CDF of the observed variable.

Model fitting with Ensemble Adjustment Kalman Filter 
(EAKF).

We used the results of the grid search analysis to 
inform a Bayesian inference approach, the ensemble 
adjustment Kalman filter (EAKF), coupled with the 
transmission model to infer epidemiological parameters 
and state variables. This more sophisticated method pro-
vides more precise probabilistic estimates compared to 
the grid search analysis. The EAKF is a data assimilation 
method originally developed for weather forecasting [24], 
which has been successfully applied for parameter infer-
ence to infectious disease systems, including COVID-19 
[19], influenza [25], and RSV [26]. We use an ensemble of 
250 simulations in which parameters and state variables 
are initialized and optimized using the EAKF in a predic-
tion-update cycle following each data input of reported 
Covid-19 cases. In the prediction step, the transmission 
model advances the state variables forward in time. This 
is followed by an update step in which the EAKF algo-
rithm adjusts ensemble members to better match case 
observations. These adjustments are also applied to 
unobserved variables and parameters based on the prior 
ensemble covariance between the observed variable and 
the unobserved variables and parameters. The update 
step ensures that the posterior ensemble mean and vari-
ance match the predicted mean and variance according 
to Bayes theorem, assuming a Gaussian distribution. 
As with the grid search method, we limited our estima-
tion to the ascertainment rate α and transmission rate 
β parameters of the emerging Omicron variant, and the 
state variables for each strain and location.

Synthetic testing of model-inference system.
We validated the ability of the EAKF model-inference 

system to infer epidemiological parameters and state 
variables by first conducting synthetic testing. We ran the 
model in free simulation with randomly drawn param-
eters and initial conditions to simulate daily observations 
in the 5 neighborhoods for each of the two circulating 
Covid-19 variants. We then added random noise to the 
model-generated daily Covid-19 case counts, represent-
ing observational noise. We repeated this process 20 
times to generate a range of plausible outbreak trajec-
tories. Subsequently, we employed the model-inference 
system using these synthetic observations as inputs 
to estimate the α and β parameters for the emerging 

Omicron variant, as well as state variables for both vari-
ants over time. For this synthetic testing step, we did not 
use results from the grid-search analysis; rather, initial 
conditions were drawn from the wider parameter space 
listed in Table  1. We repeated this process 5 times for 
each outbreak trajectory, then pooled the results from 
the 5 realizations to obtain overall estimates.

We also repeated this synthetic validation procedure 
using the model to estimate α, β, and the latent period Z 
for the Omicron variant to test whether the system could 
simultaneously estimate all three parameters. However, 
the model was not able to reliably estimate Z. We there-
fore fixed a value of 3 days for Z, consistent with findings 
from investigations of outbreak clusters and transmission 
pairs [27–30].

Inference using observed data.
Following validation of the EAKF model-inference 

system, we used the same system with the location- and 
strain-specific observations, described above, to simu-
late Covid-19 transmission dynamics in Philadelphia 
during the period when the Omicron variant emerged 
and replaced Delta as the dominant strain. Our primary 
interest was to estimate the ascertainment rate (α) and 
transmission rate (β) parameters. We first selected initial 
conditions for the Omicron variant that were drawn from 
the plausible parameter space identified in the grid search 
analysis. We used an ensemble of 250 members and 
repeated the inference 25 times. We pooled the results 
from the 25 realizations to obtain overall estimates.

While the grid search analysis was useful for inform-
ing initial conditions of the model-inference system, it 
had the disadvantage of relying on observational data 
that would not have been available in the initial weeks of 
variant emergence. We therefore tested the model-infer-
ence system’s ability to produce estimates without the 
narrowed initial conditions provided by the grid-search 
analysis. We repeated the parameter estimation while 
relaxing the constraint on the initial conditions for α. 
Initial conditions for β, and the initial susceptibility (S0) 
for the Omicron variant were drawn from combinations 
of values identified in the grid search analysis while ini-
tial conditions for α were drawn randomly from a larger 
parameter space.

Finally, we repeated the inference using initial condi-
tions for α, β, and S0 for the Omicron variant, randomly 
drawn from a larger parameter space that would have 
been considered plausible in the early days of its arrival. 
These initial conditions are listed in Table 1.

Results
Parameterization using grid search method.

The continuous rank probability score (CRPS) for each 
combination of transmission rate, case reporting rate, 
and initial population susceptibility to Omicron is shown 
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in Fig. 3; low CRPS corresponds with the closest match to 
the observed outbreak trajectory. We found a clear rela-
tionship between combinations of the three parameters 
and variables and the fit between the resulting trajecto-
ries and observed Covid-19 cases. A tradeoff between S0 
and β exists; outbreaks resembling observations could be 
produced by simulations with high β and low initial sus-
ceptibility, or low β and high S0. This result is not surpris-
ing, as disease transmission in a compartmental model is 
largely driven by the effective reproductive number, Reff, 
which is proportional to the product of β times S0.

We found that the lowest CRPS scores were achieved 
for values of β x S0 between 1.2 and 1.8. (Fig. 4). Higher 
values of α generally resulted in higher CRPS (Figs. 3 and 
4).

We arbitrarily set an upper limit of CRPS = 100 to nar-
row the parameter space to the best fitting combinations. 
Of the 1008 combinations of α, β, and S0 tested, 166 com-
binations had CRPS below this threshold.

Synthetic testing of model-inference system.
Our second estimation method used the dynami-

cal disease transmission model coupled with the EAKF. 

Before applying this estimation method to observed 
data, we first validated the model-inference system’s abil-
ity to ascertain parameters and state variables from a set 
of 20 plausible synthetic truths. These results are shown 
in Fig. 5. The ‘true’ value of α and β used to generate the 
outbreaks are shown in yellow, and the green areas show 
the density of the estimates. The model-inference system 
was generally able to infer parameters.

Inference using observed data.
Initial conditions for α, β, and S0 for the Omicron 

variant were drawn from the combinations of values 
identified in the grid search analysis. The median value 
for S0 was 40%, corresponding to an additional 15–20% 
susceptibility with respect to immunity derived from 
infection from previous variants and vaccines. The 
model-inference system was able to produce a good fit 
of observed case data for all 5 neighborhoods (Fig.  6, 
Supplemental Figs.  1 and 2). We estimated the aver-
age values of the α and β parameters over the duration 
of the Omicron wave, from November 24, 2021 through 
February 11, 2022. The model estimated value for α dur-
ing this period was 0.22 (95% CI 0.15–0.29); the estimate 

Fig. 3  Continuous rank probability score (CRPS) of modeled output with each combination of α, β and S0. The color scale shows CRPS
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for β was 5.0 (95% CI 2.4–6.6). The corresponding value 
of the time varying reproductive number Rt, a stan-
dard measure of disease transmission computed here as 
Rt = β D[α + µ (1 − α )], was 12.3 (95% CI 5.9–16.7) 
(Table 2).

We repeated the inference with the initial conditions 
for β, and S0 for the Omicron variant drawn from com-
binations of values identified in the grid search analysis 
while initial conditions for α were drawn randomly from 
a larger parameter space. This relaxation of initial condi-
tions led to similar outcomes and produced a good fit to 
observed case data (Supplemental Fig. 3, Table 2).

Finally, we repeated the inference with initial condi-
tions for α, β, and S0 for the Omicron variant were all 
drawn randomly from a wide range of plausible values. 
We found that this less constrained model-inference 
system was also able to produce a good fit to observed 
case data (Supplemental Fig. 4, Table 2). The estimate for 
β was 3.9 (95% CI 2.6–5.4). The corresponding value of 
the time varying reproductive number Rt was 9.5 (95% CI 
6.3–13.3) These values are generally consistent with those 
estimated under with constrained initial conditions.

Discussion and Conclusion.
This study presents a framework for simultaneously 

modeling two variants of an infectious disease and esti-
mating the parameters of the emerging variant using a 
combination of weekly confirmed positive cases, and 
newly collected S-drop PCR tests that distinguish Delta 
and Omicron, and genome sequencing analyses. We 
developed a two-strain model of disease transmission, 
and using a grid-search approach, identified combina-
tions of parameters that would produce outbreaks similar 

to what was observed in the weeks and months follow-
ing the emergence of the Omicron variant in the city 
of Philadelphia. However, the disadvantage of the grid 
search method as applied here is that it required the ben-
efit of hindsight and a relatively long time series of obser-
vations, and therefore could not be used in real-time to 
estimate the properties of a newly emerging variant.

Results from the grid search analysis were used to ini-
tialize a model-inference system that could better infer 
the underlying epidemiological parameters of the emerg-
ing Omicron variant as it replaced Delta. We found that 
both immune escape, as quantified by the additional sus-
ceptibility to Omicron compared Delta at the start of the 
Omicron wave, and enhanced transmissibility, as esti-
mated by the difference in β between the two variants, 
contributed to the transmission advantage of Omicron. 
The values of the basic reproductive number for the Omi-
cron variant estimated here are consistent with estimates 
compiled in a recent review of published estimates [31].

Finally, we showed that the model-inference system 
could be used to estimate parameters even without the 
constraints derived from the grid search analysis, indi-
cating it could be applied before a larger record of the 
emerging outbreak is documented. While this study was 
conducted retrospectively, given the timely availabil-
ity of case observations and serotype data, the methods 
illustrated here could be applied in real-time to estimate 
important epidemiological characteristics of an emerg-
ing variant. However, we note that these data are not 
always readily available in real-time. In practice, the case 
data collected by the Philadelphia Department of Pub-
lic Health were subject to revisions over time as results 

Fig. 4  CRPS for each combination of parameters. The product of So × β  is on the x-axis and CRPS is on the y-axis. The colors indicate the value of α
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Fig. 5  Violin plots of estimated α (top panel) and β (bottom panel) parameters values for the Omicron variant for each of the 20 synthetic outbreaks. The 
‘true’ value is shown in yellow, and the green areas show the density of the estimates. The x-axis enumerates 20 independent synthetic runs
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were processed and recorded; this is regularly observed 
in health systems throughout the country and world-
wide, and is a known challenge to real-time applications 
[32, 33]. While correcting for data availability is beyond 
the scope of this analysis, there are several nowcasting 
approaches that have been developed to address missing 
data that could be applied in real-time (e.g. [32–36]).

Another limitation for the real-time application of the 
methods presented here is the model’s reliance on inde-
pendently published estimates of the incubation period 
Z for the emerging variant. The published estimates we 
used here were from investigations of individual out-
breaks and were available from mid-December 2021 
through January 2022 [27, 28, 30, 37]. In the absence of 
such information, we would have repeated the analysis 
for a range of plausible values of Z, and obtained esti-
mates of the remaining parameters conditional on Z.

In this application, the Omicron variant spread rapidly 
throughout the city of Philadelphia, resulting in minimal 
spatial variability in cases. We expect that the utility of 
such a spatially resolved model would be more appar-
ent for a less transmissible variant, for which the model-
inference system could capture and shed light on spatial 
dynamics. Additionally, spatial variability would likely 
improve the performance of the model-inference system 
as the case observations from different locations would 
provide more independent data streams with which to fit 
the model.

Here, we used a combination of S-gene dropout and 
whole genome sequencing data. The S-gene dropout 
condition was a major advantage in identifying the Omi-
cron variant as it provided a convenient and low-cost 
method to distinguish between variant types. If this type 
of rapid testing was not available, we would rely more on 

Table 2  Estimated parameter values for the Omicron variant
Initialization α β Rt
α, β, and S0 from grid search 0.22 (0.15–0.29) 5.0 (2.4–6.6) 12.3 (5.9–16.7)
β, and S0 from grid search, α random 0.21 (0.14–0.27) 4.6 (1.9–6.4) 11.2 (4.4–16.0)
α, β, and S0 random (no grid search) 0.20 (0.14–0.27) 3.9 (2.6–5.4) 9.5 (6.3–13.3)

Fig. 6  Model posterior fit for Delta (purple) and Omicron (green) variants for each neighborhood, compared to reconstructed observed data (red and 
black for Delta and Omicron, respectively). These model posteriors show one of 25 model iterations; the process was repeated 25 times and the posteriors 
were pooled to compute overall parameter estimates. The model posteriors for the two variants individually are shown in Supplemental Figs. 1 and 2
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sequence data, which would incur greater cost and longer 
lag times between sample collection and reported results.

Historically over the course of the SARS-CoV-2 pan-
demic, we have seen repeated instances in which a novel 
variant replaces the dominant circulating variant in cir-
cumstances similar to those observed in this study. The 
two-variant model framework presented here could be 
adapted to retrospectively represent the takeover dynam-
ics of Alpha over the ancestral variant, and Alpha over 
Delta. In the case that the replacement dynamics are less 
straightforward, as has been observed in the years follow-
ing the emergence of Omicron, we could expand and fit 
the model to allow for interactions between variants and 
thus co-circulation and competition of multiple strains. 
We believe this framework would be of particular inter-
est for a novel variant with immune escape and high 
virulence.

Abbreviations
CRPS	� Continuous rank probability score
CDF	� Cumulative distribution function
S	� Susceptible
E	� Exposed
Ir	� Reported Infected
Iu	� Unreported Infected
R	� Recovered
EAKF	� Ensemble adjustment Kalman filter
Reff	� Effective reproductive number
Rt	� Time-varying basic reproductive number

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12879-024-09823-x.

Supplementary Material 1

Acknowledgements
We thank Claire Newbern, Shara Epstein, Champagnae R Smith and 
Bernadette Matthis of the Philadelphia Department of Public Health for their 
work with the epidemiological case data used in this analysis, and for helpful 
discussions in the planning stages of the project.

Author contributions
TY, JCM, PP and JS: conception; design of the work; the acquisition, analysis; 
interpretation of data; the creation of new software used in the work; drafted 
the work or substantively revised itSR: conception; acquisition, analysis; 
interpretation of data; DH: conception; design of the work; the acquisition, 
analysis; interpretation of data; drafted the work or substantively revised itAM 
and SP: the creation of new software used in the workAF: the acquisition, 
analysis; interpretation of data; the creation of new software used in the 
work; CB, RH, AC and AA: the acquisition, analysis; interpretation of data; SC: 
conception; design of the work; drafted the work or substantively revised itAll 
authors reviewed the manuscript.

Funding
Funding was provided by a contract award from the Centers for Disease 
Control and Prevention (CDC 75D30121C11102/000HCVL1-2021-55232).

Data availability
Sequence data presented is being uploaded to the National Center for 
Biotechnology Information Sequence Read Archive (NCBI SRA) with 
BioProject ID: PRJNA1072733Philadelphia COVID-19 case data are available 
on the OpenDataPhilly portal https://opendataphilly.org/datasets/
covid-tests-and-cases/.

Declarations

Ethics approval and consent to participate
All experimental protocols were approved by the Children’s Hospital of 
Pennsylvania IRB (IRB 21-018726). The study did not require direct interaction 
with human subjects and only involved review of medical records, with 
appropriate protections for storage and destruction of data. The IRB 
concluded that the study was minimal risk and was performed on specimens 
solely collected for non-research purposes that would have been discarded. 
Therefore, the CHOP IRB granted a waiver of consent. All data transmitted to 
outside institutions was completely deidentified and approved by the CHOP 
IRB.

Consent for publication
n/a.

Competing interests
JLS and Columbia University disclose partial ownership of SK Analytics. JLS 
discloses consulting for BNI. The other authors declare no competing interests.

Received: 25 January 2024 / Accepted: 28 August 2024

References
1.	 Thakur V, Bhola S, Thakur P, Patel SKS, Kulshrestha S, Ratho RK, Kumar P. Waves 

and variants of SARS-CoV-2: understanding the causes and effect of the 
COVID-19 catastrophe. Infection 2021:1–16.

2.	 Marques AD, Sherrill-Mix S, Everett JK, Reddy S, Hokama P, Roche AM, Hwang 
Y, Glascock A, Whiteside SA, Graham-Wooten J. SARS-CoV-2 variants associ-
ated with vaccine breakthrough in the Delaware Valley through summer 
2021. MBio. 2022;13(1):e03788–03721.

3.	 SeyedAlinaghi S, Mirzapour P, Dadras O, Pashaei Z, Karimi A, MohsseniPour 
M, Soleymanzadeh M, Barzegary A, Afsahi AM, Vahedi F. Characterization of 
SARS-CoV-2 different variants and related morbidity and mortality: a system-
atic review. Eur J Med Res. 2021;26(1):1–20.

4.	 Eyre DW, Taylor D, Purver M, Chapman D, Fowler T, Pouwels KB, Walker AS, 
Peto TE. Effect of Covid-19 vaccination on transmission of alpha and delta 
variants. N Engl J Med. 2022;386(8):744–56.

5.	 Shiehzadegan S, Alaghemand N, Fox M, Venketaraman V. Analysis of the delta 
variant B. 1.617. 2 COVID-19. Clin Pract. 2021;11(4):778–84.

6.	 Mlcochova P, Kemp SA, Dhar MS, Papa G, Meng B, Ferreira IA, Datir R, Collier 
DA, Albecka A, Singh S. SARS-CoV-2 B. 1.617. 2 Delta variant replication and 
immune evasion. Nature. 2021;599(7883):114–9.

7.	 Hoffmann M, Hofmann-Winkler H, Krüger N, Kempf A, Nehlmeier I, Graichen 
L, Arora P, Sidarovich A, Moldenhauer A-S, Winkler MS. SARS-CoV-2 variant 
B. 1.617 is resistant to bamlanivimab and evades antibodies induced by infec-
tion and vaccination. Cell Rep 2021, 36(3).

8.	 Covid C, Team R. Sars-cov-2 b. 1.1. 529 (omicron) variant—United States, 
December 1–8, 2021. Morb Mortal Wkly Rep. 2021;70(50):1731.

9.	 Saxena SK, Kumar S, Ansari S, Paweska JT, Maurya VK, Tripathi AK, Abdel-
Moneim AS. Characterization of the novel SARS‐CoV‐2 omicron (B. 1.1. 529) 
variant of concern and its global perspective. J Med Virol. 2022;94(4):1738–44.

10.	 Dejnirattisai W, Huo J, Zhou D, Zahradník J, Supasa P, Liu C, Duyvesteyn 
HM, Ginn HM, Mentzer AJ, Tuekprakhon A. SARS-CoV-2 Omicron-B. 1.1. 529 
leads to widespread escape from neutralizing antibody responses. Cell. 
2022;185(3):467–84. e415.

11.	 Chen J, Wang R, Gilby NB, Wei G-W. Omicron variant (B. 1.1. 529): infectiv-
ity, vaccine breakthrough, and antibody resistance. J Chem Inf Model. 
2022;62(2):412–22.

12.	 Allen H, Tessier E, Turner C, Anderson C, Blomquist P, Simons D, Løchen A, 
Jarvis CI, Groves N, Capelastegui F. Comparative transmission of SARS-CoV-2 
Omicron (B. 1.1. 529) and Delta (B. 1.617. 2) variants and the impact of vac-
cination: national cohort study, England. Epidemiol Infect. 2023;151:e58.

13.	 Wolter N, Jassat W, Walaza S, Welch R, Moultrie H, Groome M, Amoako 
DG, Everatt J, Bhiman JN, Scheepers C. Early assessment of the clinical 
severity of the SARS-CoV-2 Omicron variant in South Africa. MedRxiv. 
2021;2021(2012):2021–21268116.

14.	 Sigal A, Milo R, Jassat W. Estimating disease severity of Omicron and Delta 
SARS-CoV-2 infections. Nat Rev Immunol. 2022;22(5):267–9.

https://doi.org/10.1186/s12879-024-09823-x
https://doi.org/10.1186/s12879-024-09823-x


Page 11 of 11Yamana et al. BMC Infectious Diseases          (2024) 24:938 

15.	 Gao SJ, Guo H, Luo G. Omicron variant (B. 1.1. 529) of SARS-CoV‐2, a global 
urgent public health alert! J Med Virol. 2022;94(4):1255.

16.	 Yang W, Shaman JL. COVID-19 pandemic dynamics in South Africa and 
epidemiological characteristics of three variants of concern (Beta, Delta, and 
Omicron). eLife. 2022;11:e78933.

17.	 Moustafa AM, Bianco C, Denu L, Ahmed A, Coffin SE, Neide B, Everett J, Reddy 
S, Rabut E, Deseignora J. Comparative analysis of emerging B. 1.1. 7 + E484K 
SARS-CoV-2 isolates. Open Forum Infectious diseases: 2021. Oxford University 
Press US; 2021. p. ofab300.

18.	 [https://safegraph.com].
19.	 Pei S, Yamana TK, Kandula S, Galanti M, Shaman J. Burden and char-

acteristics of COVID-19 in the United States during 2020. Nature. 
2021;598(7880):338–41.

20.	 Pei S, Kandula S, Yang W, Shaman J. Forecasting the spatial transmission of 
influenza in the United States. Proceedings of the National Academy of Sciences 
2018, 115(11):2752–2757.

21.	 Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, Shaman J. Substantial undocu-
mented infection facilitates the rapid dissemination of novel coronavirus 
(SARS-CoV-2). Science. 2020;368(6490):489–93.

22.	 Pei S, Shaman J. Initial simulation of SARS-CoV2 spread and intervention 
effects in the continental US. MedRxiv 2020:2020-03.

23.	 COVID-19Projection. [https://github.com/shaman-lab/COVID-19Projection]
24.	 Anderson JL. An ensemble adjustment Kalman filter for data assimilation. 

Mon Weather Rev. 2001;129(12):2884–903.
25.	 Yang W, Lipsitch M, Shaman J. Inference of seasonal and pandemic influenza 

transmission dynamics. Proc Natl Acad Sci. 2015;112(9):2723–8.
26.	 Reis J, Shaman J. Retrospective parameter estimation and forecast 

of respiratory syncytial virus in the United States. PLoS Comput Biol. 
2016;12(10):e1005133.

27.	 Jansen L, Tegomoh B, Lange K, Showalter K, Figliomeni J, Abdalhamid B, 
Iwen PC, Fauver J, Buss B, Donahue M. Investigation of a SARS-CoV-2 B. 1.1. 
529 (omicron) variant cluster—Nebraska, November–December 2021. Morb 
Mortal Wkly Rep. 2021;70(51–52):1782.

28.	 Tanaka H, Ogata T, Shibata T, Nagai H, Takahashi Y, Kinoshita M, Matsub-
ayashi K, Hattori S, Taniguchi C. Shorter incubation period among COVID-19 
cases with the BA. 1 Omicron variant. Int J Environ Res Public Health. 
2022;19(10):6330.

29.	 Backer JA, Eggink D, Andeweg SP, Veldhuijzen IK, van Maarseveen N, Vermaas 
K, Vlaemynck B, Schepers R, van den Hof S, Reusken CB. Shorter serial 
intervals in SARS-CoV-2 cases with Omicron BA. 1 variant compared with 
Delta variant, the Netherlands, 13 to 26 December 2021. Eurosurveillance. 
2022;27(6):2200042.

30.	 Brandal LT, MacDonald E, Veneti L, Ravlo T, Lange H, Naseer U, Feruglio S, 
Bragstad K, Hungnes O, Ødeskaug LE. Outbreak caused by the SARS-CoV-2 
Omicron variant in Norway, November to December 2021. Eurosurveillance. 
2021;26(50):2101147.

31.	 Liu Y, Rocklöv J. The effective reproductive number of the Omicron variant of 
SARS-CoV-2 is several times relative to Delta. J Travel Med. 2022;29(3):taac037.

32.	 De Nicola G, Schneble M, Kauermann G, Berger U. Regional now-and 
forecasting for data reported with delay: toward surveillance of COVID-19 
infections. AStA Adv Stat Anal. 2022;106(3):407–26.

33.	 Harris JE. Timely epidemic monitoring in the presence of reporting delays: 
anticipating the COVID-19 surge in New York City, September 2020. BMC 
Public Health. 2022;22(1):871.

34.	 Kandula S, Hsu D, Shaman J. Subregional nowcasts of seasonal influenza 
using search trends. J Med Internet Res. 2017;19(11):e370.

35.	 Beesley LJ, Osthus D, Del Valle SY. Addressing delayed case reporting in infec-
tious disease forecast modeling. PLoS Comput Biol. 2022;18(6):e1010115.

36.	 Greene SK, McGough SF, Culp GM, Graf LE, Lipsitch M, Menzies NA, Kahn R. 
Nowcasting for real-time COVID-19 tracking in New York City: an evaluation 
using reportable disease data from early in the pandemic. JMIR Public Health 
Surveillance. 2021;7(1):e25538.

37.	 Backer JA, Eggink D, Andeweg SP, Veldhuijzen IK, van Maarseveen N, Vermaas 
K, Vlaemynck B, Schepers R, van den Hof S, Reusken CBEM et al. Shorter 
serial intervals in SARS-CoV-2 cases with Omicron BA.1 variant compared 
to Delta variant in the Netherlands, 13–26 December 2021. medRxiv 
2022:2022.2001.2018.22269217.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://github.com/shaman-lab/COVID-19Projection

	﻿A two-variant model of SARS-COV-2 transmission: estimating the characteristics of a newly emerging strain
	﻿Abstract
	﻿Background
	﻿Results
	﻿References


