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Background
Influenza is a major global public health problem. In 
early 2019, a publication from the Global Burden of Dis-
ease Study (GBD) estimated a range of 99,000 to 200,000 
annual deaths from lower respiratory tract infections 
directly attributable to influenza [1–3]. Although the 
public health and social measures (PHSM) taken to curb 
the spread of coronavirus disease 2019 (COVID-19) 
after its outbreak led to a sharp decline in the number 
of global influenza cases from 2020 to 2021, the level of 
influenza activity has rebounded significantly since then, 
and the number of reported influenza cases in southern 
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Abstract
Objective At different times, public health faces various challenges and the degree of intervention measures varies. 
The research on the impact and prediction of meteorology factors on influenza is increasing gradually, however, there 
is currently no evidence on whether its research results are affected by different periods. This study aims to provide 
limited evidence to reveal this issue.

Methods Daily data on influencing factors and influenza in Xiamen were divided into three parts: overall period 
(phase AB), non-COVID-19 epidemic period (phase A), and COVID-19 epidemic period (phase B). The association 
between influencing factors and influenza was analysed using generalized additive models (GAMs). The excess risk 
(ER) was used to represent the percentage change in influenza as the interquartile interval (IQR) of meteorology 
factors increases. The 7-day average daily influenza cases were predicted using the combination of bi-directional long 
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provinces of China increased abnormally in the summer 
of 2022, and the intensity of influenza activity in China in 
spring and winter of 2023 was also higher than that in the 
natural epidemic years before the COVID-19 pandemic. 
[4–8].

Meteorology is recognized as an important influencing 
factor of influenza. Earlier studies have confirmed that 
meteorology factors are associated with influenza activ-
ity [3, 9–12]. However, different research results had both 
consistency and conflict. Park et al. ‘s study showed that 
low temperature would increase the prevalence of influ-
enza [13], while Wang et al. reported that high tempera-
ture would also increase the risk of influenza [14]. Studies 
have shown that influenza A (H3N2) transmissibility was 
observed to be positively correlated with absolute humid-
ity when absolute humidity was greater than 19g/m3 [15], 
but Zhu et al. ‘s study showed that both high humidity 
and low humidity would increase the risk of influenza 
[3]. Gomez Barroso et al. reported a positive correla-
tion between precipitation and influenza [10], however, 
Soebiyanto et al. reported that the association between 
influenza and precipitation was location dependent [16]. 
The differences in research reports may be due to cli-
mate heterogeneity [17] or the use of different data types 
(e.g., daily data, weekly data) and analysis model schemes 
[17]. However, there is currently no evidence to suggest 
whether research on the impact of influencing factors 
on influenza and prediction is influenced by different 
periods.

The 2023 Report of the Lancet Countdown on Health 
and Climate Change points out that the correlation 
between climate action and health still needs to be 
improved, and suggests the establishment of a health 
oriented meteorological risk early warning system [18]. 
Thus, the in-depth study of the relationship between 

meteorology and infectious diseases is becoming increas-
ingly important and urgent.

The powerful and effective PHSM had led to a sharp 
decline in the global influenza cases during the COVID-
19 epidemic, leading to an influenza epidemic that did 
not conform to the natural law. Although there may be 
some extreme weather during this period, it often only 
presents a phased pattern [19, 20]. Hence, the analysis 
of the mode of action of meteorology on influenza dur-
ing this period may have been distorted, however, there 
is currently no evidence of the degree of impact. There-
fore, this study aims to provide limited evidence, using 
excess risk (ER) and predictive evaluation indicators to 
reveal the degree of this impact based on the same city 
and method, in order to select the research object period 
more appropriately. This is also an important issue that 
scholars will face in collecting data when studying the 
relationship between influencing factors and respiratory 
infectious diseases and prediction in the future.

Influenza is not only affected by meteorology, but also 
related to other potential environmental and demo-
graphic factors. Hoogeveen et al.‘s study showed that 
there was a highly significant inverse correlation between 
pollen and flu-like incidence [21]. Day light is understood 
to regulate melatonin levels, and subsequently circadian 
immunity [22, 23]. The influence transmission rates of 
respiratory viruses might through the frequency and type 
of social contacts (e.g. holidays, school periods, inter-
national traveling, etc) [22, 24]. Annual influenza vacci-
nation is an effective way to prevent influenza and can 
reduce the risk of influenza [25]. Therefore, we have ana-
lyzed the influencing factors including seasonal pollen 
allergens, day light, population mobility, and vaccination 
in this study, in order to have a more complete correla-
tion analysis and more accurate prediction.

short memory (Bi-LSTM) and random forest (RF) through multi-step rolling input of the daily multifactor values of the 
previous 7-day.

Results In periods A and AB, air temperature below 22 °C was a risk factor for influenza. However, in phase B, 
temperature showed a U-shaped effect on it. Relative humidity had a more significant cumulative effect on influenza 
in phase AB than in phase A (peak: accumulate 14d, AB: ER = 281.54, 95% CI = 245.47 ~ 321.37; A: ER = 120.48, 
95% CI = 100.37 ~ 142.60). Compared to other age groups, children aged 4–12 were more affected by pressure, 
precipitation, sunshine, and day light, while those aged ≥ 13 were more affected by the accumulation of humidity 
over multiple days. The accuracy of predicting influenza was highest in phase A and lowest in phase B.

Conclusions The varying degrees of intervention measures adopted during different phases led to significant 
differences in the impact of meteorology factors on influenza and in the influenza prediction. In association studies of 
respiratory infectious diseases, especially influenza, and environmental factors, it is advisable to exclude periods with 
more external interventions to reduce interference with environmental factors and influenza related research, or to 
refine the model to accommodate the alterations brought about by intervention measures. In addition, the RF-Bi-
LSTM model has good predictive performance for influenza.

Keywords COVID-19, Influenza, Meteorological, Bi-LSTM, Random forest (RF)
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Random forest is a widely used method for data predic-
tion and classification calculation, which can effectively 
predict the onset of influenza. LSTM is an artificial intel-
ligence deep learning algorithm that is suitable for time 
series data analysis [3]. To overcome the limitations of 
LSTM cell which is able to work on previous content but 
cannot use the future one, Schuster and Paliwal proposed 
bidirectional recurrent neural networks [26], which is 
better than LSTM in predicting COVID-19 [27]. This 
study aims to integrate the advantages of RF pre-process-
ing and Bi-LSTM for accurate prediction to construct an 
influenza prediction model, namely RF-Bi-LSTM, which 
has not been reported yet.

Xiamen, located in southeast China, has a land area of 
only 1,698.78 square kilometres [28] (Fig.  1). Therefore, 
monitoring by meteorological stations reflect the real 
situation of the city more accurately and comprehen-
sively. Xiamen is an island with a high urbanization rate 
(90.10%) [28], confounding factors are reduced and the 
study of the impact of meteorology factors on influenza 
is facilitated.

Materials and methods
Data sources
The influenza data and resident demographic data of 
Xiamen from January 1, 2010, to March 31, 2022, were 
from the China Disease Prevention and Control Infor-
mation System. The population of influenza was strati-
fied by sex (male and female) and age (0 ~ 3 years, 4 ~ 12 
years, and ≥ 13 years old), of which the age-stratified was 
divided according to the epidemiological characteristics 

of influenza in Xiamen. Due to the high urbanization rate 
(90.10%) of Xiamen, the population of influenza had not 
been stratified into urban and rural by areas in this study. 
The annual influenza vaccination data was downloaded 
from the Fujian Provincial Immunization Planning Infor-
mation Management System.

The data of meteorology factor, seasonal allergens 
pollen (abbreviated as allergen), and day light (h) were 
provided by the Fujian Climate Center. The meteorol-
ogy factors in this study included 8 indicators, of which 
air pressure (hPa), relative humidity (%), air temperature 
(°C), and wind speed (m/s) were the average values of 
24  h a day, abbreviated as pressure, humidity, tempera-
ture, and wind respectively. Precipitation (mm) and sun-
shine duration (abbreviated as sunshine, h) were the daily 
cumulative value, air pressure difference (abbreviated as 
pres-difference, hPa) and daily temperature difference 
(abbreviated as temp-difference, °C) were the difference 
between the maximum and minimum values of daily. 
The allergenic period was calculated based on the annual 
flower season from March to May in Xiamen. Day light 
was calculated based on the duration between sunrise 
and sunset on each day in Xiamen.

Due to the fact that the influenza cases among chil-
dren and adolescents aged 0–12 in Xiamen accounted for 
about 85% of the total population, and other family mem-
bers often travel and gather based on their children’s holi-
days, we used student holidays as a population mobility 
indicator in this study. The holiday time obtained from 
Xiamen Education Bureau (https://edu.xm.gov.cn/jyfw/

Fig. 1 The geographical location of Xiamen city

 

https://edu.xm.gov.cn/jyfw/ndxl/
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ndxl/). Allergen and holiday were dummy variables with 
values of 0 or 1 in this study.

Because the first case of COVID-19 in Fujian Prov-
ince was reported on January 22, 2020, we divided the 
data on influenza and meteorology factors into three 
parts in this study: the overall year (January 1, 2010, to 
December 31, 2021, hereinafter referred to as phase AB), 
the non-COVID-19 epidemic period (January 1, 2010, 
to January 21, 2020, hereinafter referred to as phase A) 
and the COVID-19 epidemic period (January 22, 2020, to 
December 31, 2021, hereinafter referred to as phase B).

Statistical data analysis
The map in Fig. 1 was drawn using ArcGIS software (ver-
sion 10.3, ESRI, Redlands, CA, USA).

R software (version 4.2.2, R Foundation for Statistical 
Computing, Vienna, Austria) was used to statistically 
analyse and visualize data on influenza and influencing 
factors. The effects of influencing factors on influenza 
were analysed using Spearman and generalized additive 
models (GAMs). The differences between subgroups 
of the population, the differences in lagged cumula-
tive effects between groups in three phases, and the dif-
ferences in evaluation indicators for predictive effects 
between groups in three phases were anslysed. When 
the econometric data exhibited a normal distribution 
and homogeneity of variance, the independent sample 
t-test and one-way analysis of variance were employed 
(the statistical measures for measuring the differences 
between samples are t and F values, respectively). In 
instances where the data displayed a skewed distribution 
and failed to demonstrate homogeneity of variance, non-
parametric rank sum tests, such as the Kruskal-Wallis 
test and Mann-Whitney test, were utilized for statistical 
analysis (the statistical measures for measuring the differ-
ences between samples are H and Z values, respectively). 
Differences were considered statistically significant at 
P < 0.05.The GAM is an extension of the generalized lin-
ear model, a free and flexible statistical model, which 
can be used to detect the impact of nonlinear regression 
[29]. The GAM can fit influencing factors and unknown 
confounding factors with parametric and nonparamet-
ric methods, respectively, control for holidays and other 
confounding factors through a smoothing function, and 
estimate the risk degree on the premise of removing con-
founding factors [30]. The GAM formula is as follows 
[31]:

 Log [E (Y i)] = βρi + NS (t, df ) + s(Zj, df ) + Dow + α  (1)

Yi is the actual number of influenza cases on the i-th 
day. E(Yi) is the expected number of influenza cases on 
the i-th day. β is the exposure response coefficient, which 
refers to the increase in influenza cases caused by each 

increase of 1 unit in influencing factors. ρi is the meteo-
rological factor on the i-th day. NS (…) is a natural spline 
function (used to control for seasonal and long-term 
trends, the day of the week effect and other influencing 
factors). t is a date variable. df is the degrees of freedom. s 
is a spline function. Zj is other influencing factors related 
to the influencing factors studied (used to control the 
mixing effect of other influencing factors). Dow is the 
dummy variable for the effect of the day of the week (con-
trolling for the day of the week effect), and α is the inter-
cept term.

According to the akaike information criterion (AIC) 
minimum principle, df was determined to be 3.

The impact of influencing factors on influenza were 
estimated as the relative risk (RR) associated with per 
interquartile range (IQR) increase of influencing factors 
values. The RR formula is as follows:

 RR = eβ×IQR (2)

β is the partial effect.
The ER and its 95% confidence interval (95% CI) of 

influenza associated with per impact of influencing fac-
tors values were indicated as the percentage change of 
influenza and its 95% CI with per IQR increase in influ-
encing factors values. The formula of ER and its 95% CI 
are as follows:

 ER = (RR − 1) × 100% (3)

 95%CI = e(β±1.96×SE)×IQR − 1 (4)

SE is the standard error.
TensorFlow 2.8.0 software (Google Brain Team, Moun-

tain View, CA, USA) and Python 3.8.13 software (Python 
Software Foundation, Delaware, USA) were used to pre-
dict the cases of influenza through RF-Bi-LSTMmodel 
predicted combined with influencing factors.

RF is an algorithm that integrates multiple trees 
through the idea of integrated learning. Its basic unit is 
the decision tree, and its essence is a major branch of 
machine learning [32]. The operation process includes 
five steps. The first step is feature splitting, which is 
used to split data and build supervised learning data. 
Then, random sampling is performed, and N samples are 
obtained by randomly sampling N times from the origi-
nal dataset and placing them back. Third, a decision tree 
is constructed and trained for each sampled sample data-
set. The fourth step is decision-making, in which each 
tree makes its own decisions based on the data. Finally, 
there is decision aggregation, with the average value of 
the tree predicted as the final result [33]. The RF process 
is shown in Fig. 2.

The result of the final decision tree are as follows.

https://edu.xm.gov.cn/jyfw/ndxl/
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 D = {(x1, y1) , (x2, y2) , . . . , (xn, yn )}  (5)

 hi (x) = ζ (D, Dbs) (6)

 
H (x) =

1
T

∑
T
t=1hi (x) (7)

(Note: D: all data; x: feature; y: label; hi(x): the output of 
each base model; ζ : base learning algorithm; Dbs: Sample 
set generated by self-service sampling.)

The core of LSTM concepts are the cell state and “gate” 
structure. The whole process is mainly divided into three 
parts.

The first step is to determine what information to dis-
card from the neuron state through the sigmoid layer of 
the “forgetting gate”. The sigmoid layer outputs a value 
(between − 1 and 1) to determine how much informa-
tion each part can pass (0 means completely discarded, 1 
means completely reserved).

The second step is to determine what new information 
is stored in the neuron state. First, the sigmoid layer of 
the “input gate” determines which value will be updated. 
Second, the tanh layer creates a new candidate value vec-
tor t (between − 1 and 1), adds it to the state and multi-
plies the value of the sigmoid function to update the old 
neuron state. Third, the output determines the informa-
tion to be output.

Finally, the “output gate” determines the output infor-
mation. First, which part of the output neuron state 
passes through the sigmoid layer is determined. Second, 
the neuron state is processed by tanh (between − 1 and 1) 
and multiplied by the output of the sigmoid gate. Third, 
the determined part is output.

The LSTM calculation formulas are as follows:

 ft = σ (Wf [ht−1, xt] + bf ) (8)

 it = σ(Wi · [ht−1, xt] + bi)  (9)

 C̃t = tanh(Wc · [ht−1, xt] + bc  (10)

 Ct = ft · Ct−1 + it · C̃t  (11)

 ot = σ(Wo · [ht−1, xt] + bo) (12)

 ht = ot · tanh (Ct) (13)

(Note: ht−1: the output of the previous neuron state; Xt: 
represents the input of the current neuron state; σ: the 
sigmoid function; Ct−1 is updated to Ct.)

Bi-LSTM is comprised of two distinct LSTM hidden 
layers with similar output in opposite directions [27]. 
With this architecture, previous and future information 
is exploited in output layer [32]. An input sequence X = 
(X1, X2, ., Xn) in Bi-LSTM is calculated in forward direc-
tion as �h = (�h1,�h2, ...,�hn)  and backward directions as 
←
h = (

←
h1,

←
h2, ...,

←
hn) . The final out of this cell yt is formed 

by both �h  and ←
h , the final sequence of out looks like Y 

= (Y1, Y2, . Yt., Yn) [30]. The single cell of LSTM and Bi-
LSTM are displayed in Fig. 3.

(Note: ht−1: the output of the previous neuron state; Xt: 
represents the input of the current neuron state; σ: the 
sigmoid function; Ct−1 is updated to Ct).

RF-Bi-LSTM was used for influenza prediction in this 
study, which can fully utilize the advantages of RF and 
Bi-LSTM models to improve the accuracy and stability of 
time series prediction. The four operational steps were as 
follows:

Data preparation: Time series data, which included 
time, climate data and influenza incidence data, were 

Fig. 2 A brief operation process of the RF in this study
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prepared into a format suitable for model training; that 
is, the data were divided into three input sequences (AB 
phase: January 1, 2010, to December 31, 2021; A phase: 
January 1, 2010, to January 21, 2020; B phase: January 
22, 2020, to December 31, 2021) and three sequential 
target sequences (the three months following the input 
sequence, AB: January 1 to March 31, 2022; A: January 
22 to April 21, 2021; B: January 1 to March 31, 2022). The 
input sequence was the historical time step data used for 
prediction, while the target sequence was the future time 
step data after the input sequence.

RF feature extraction: The RF model was used to 
extract features from the input sequence. Through the 
RF training process, the importance of influencing fac-
tors that affected the number of influenza outbreaks was 
ranked, redundant information was eliminated, and the 
resulting model was subsequently used as a new feature 
combination input model.

Bi-LSTM model training: The Bi-LSTM model was 
trained using input sequences.

Prediction: The influenza cases in the three target 
sequences were predicted using the trained Bi-LSTM 

Fig. 3 The single cell of LSTM and Bi-LSTM
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model. Based on our previous experience, predicting 
the daily average number of cases for the next 7 days 
by inputting multi factor values for 7 days was the best 
method of prediction [34]. Thus, the method involved 
inputting the multifactor value of 7 days to predict the 
daily average cases of influenza in the next 7 days, and the 
prediction was realized through multistep rolling in this 
study.

Figure 4 shows the RF-Bi-LSTM process.
Ten indicators reflecting different characteristics were 

used to comprehensively evaluate the prediction perfor-
mance. The root mean square error (RMSE) is widely 
used to measure the deviation between predicted val-
ues and actual values, while the mean absolute error 
(MAE) is the average of absolute errors, which can bet-
ter reflect the actual situation of prediction errors. The 
mean absolute percentage error (MAPE) has a very intui-
tive explanation for relative error, but it is not suitable for 
prediction models with large expected errors, while the 
symmetric mean absolute percentage error (SMAPE) can 
correct this drawback of MAPE [35]. The RMSE-obser-
vations standard deviation ratio (RSR) reflects the root 
mean square error to observation’s standard deviation 
ratio [36]. The correlation coefficient (CC) is used to eval-
uate the strength and direction of the linear relationship 

between the predicted results of the model and the actual 
observed values, thereby helping to assess the predictive 
performance of the model. The Nash-Sutcliffe efficiency 
(NSE) normalizes the relative magnitude of the residual 
variance between the predicted values and actual values, 
indicating how well a plot of the two data values fits along 
the 1:1 line [37], mainly used to evaluate the overall fit of 
the model. The Kling-Gupta efficiency (KGE) takes into 
account multiple aspects of performance, including the 
mean, standard deviation, and correlation of research 
data, and provides a good reflection of the model’s per-
formance under different data conditions. The Willmott’s 
index of agreement (IA) is a descriptive measure, and it is 
both a relative and bounded measure which can be widely 
applied in order to make cross-comparisons between 
models [38]. A lower bound of zero for MAE, RMSE, and 
MAPE means a perfect fit, but for models with poor per-
formance, the values gradually increase infinitely, as these 
values largely depend on the range of the descriptive vari-
ables, making them incomparable to each other within 
the same metric [35]. RSR also changes from the optimal 
value of zero to positive infinity [37]. However, the Legate 
and McCabe’s Index (LMI) can robustly address the pre-
dictive limitations and it ranges between 0 and 1, where 
1 is an ideal value [39]. Same as it, a model with CC = 1, 

Fig. 4 The RF-Bi-LSTM process
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NSE = 1, KGE = 1, and IA = 1 is a great model [36, 39, 40]. 
In addition, SMAPE values are bounded, with the lower 
bound 0% implying a perfect fit, and the upper bound 
200% reached when all the predictions and the actual tar-
get values are of opposite sign [35]. The calculation for-
mulas of the ten evaluation indicators are as follows:

 
RMSE =

√
1
n

∑
n
i=1(Pi − Xi)

2 (14)

 
MAE =

∑ n
i=1

∣∣∣Xi − X̂i

∣∣∣
n

 (15)

 
MAPE =

100%
n

∑
n
i=1 | Pi − Xi

Pi
|  (16)

 
SMAPE =

100%
n

∑
n
i=1

| Pi − Xi |
| | Pi| +| Xi|

2 |  (17)

 
RSR =

RMSE
σ P

 (18)

 

CC =

∑ n
i=1

(
Pi−

−
P

) (
Xi−

−
X

)

√
∑ n

i=1

(
Pi−

−
P

)2
√

∑ n
i=1

(
Xi−

−
X

)2  (19)

 

NSE = 1 −
∑ n

i=1(Pi − Xi)
2

∑ n
i=1

(
Pi−

−
P

)2 (20)

 KGE = 1 −
√

(r − 1)2 + (α − 1)2 + (β − 1)2  (21)

 

IA = 1 −
∑ n

i=1(Pi − Xi)
2

∑ n
i=1

(∣∣∣∣Xi−
−
P

∣∣∣∣ +
∣∣∣∣Pi−

−
P

∣∣∣∣

)2  (22)

 

LMI = 1 −
∑ n

i=1 |Pi − Xi|
∑ n

i=1

∣∣∣∣Pi−
−
P

∣∣∣∣
 (23)

(Note: Pi: the observed daily incidence of influenza cases 
on day i; Xi: the predicted daily incidence of influenza 
cases on day i, where i = 1…, n; σ P : the standard devia-
tion of the observed values; r: the correlation coefficient; 
α: the ratio of the standard deviations; β: the ratio of the 
means).

Results
Descriptive statistics
The numbers of influenza cases in phases AB, A, and B 
were 21,324, 19,431, and 1893, with an average of 4.87, 
5.45, and 2.67 daily cases and a maximum of 227, 227, 
and 133 cases, respectively. The minimum values of 
humidity (35.00%) and temperature (6.60 °C) in phase B 
were significantly higher than those in phases AB and A 
(23.00% and 3.90 °C), while the maximum values of pres-
difference (10.50  hPa) and precipitation (123.80  mm) 
were significantly lower than those in phases AB and A 
(39.7 hPa and 172.70 mm). Figure 5 shows more descrip-
tive statistics on influenza and meteorology factors.

From 2010 to 2021, Xiamen reported 9 influenza clus-
ter incidents (a total of 721 cases), including 1 (56 cases), 
2 (139 cases), 4 (358 cases), and 2 (168 cases) in 2013, 
2017, 2018, and 2019, respectively. One incident occurred 
in junior high schools, while 8 incidents occurred in pri-
mary schools.

There were significant differences between the sex 
and age groups in the influenza-affected population 
(P < 0.001). The descriptive statistics for the daily-based 
cases of influenza are presented in Table 1.

Influenza fluctuations in phase A had a specific sea-
sonal periodicity. The number of influenza cases reported 
in the first ten days of phase B was high, and the seasonal 
periodicity in other periods was not significant. The fluc-
tuations in influencing factors in both periods A and B 
were cyclical. The detailed trends are presented in Fig. 6.

Correlation analysis
The connecting line on the right side of Fig. 7 shows that 
the holiday and allergen in AB, A, and B phases were not 
significant correlated with influenza (-0.05 < r < 0.05 and 
P < 0.05), while pressure, humidity, temperature, and day 
light were significantly correlated with influenza.

The heatmap on the lower left side of Fig.  7 shows a 
strong negative correlation between pressure and tem-
perature (r=-0.853, P < 0.01), as well as between pre-
cipitation and sunshine (r=-0.564, P < 0.01). There was a 
strong positive correlation between temp-difference and 
sunshine (r = 0.651, P < 0.01), as well as between humidity 
and precipitation (r = 0.592, P < 0.01). Day light was posi-
tively correlated with temperature (r = 0.72, P < 0.01) and 
negatively correlated with pressure (r=-0.78, P < 0.01).

The detailed correlations between influencing factors 
and influenza, as well as between influencing factors, are 
presented in Fig. 7.

Vaccine coverage rates in 2020 (2.39%), 2021 (1.51%) 
and 2019 (0.88%) ranked top three, while influenza inci-
dence rates were one year earlier than those, respectively, 
and in 2019 (2.05‰), 2020 (1.10‰) and 2018 (1.00‰) 
ranked top three. There was no significant correlation 
(r = 0.41, P = 0.18) between the vaccination rate and the 
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Fig. 5 Violin cloud and rain box chart of influenza and meteorology factors (Note: The influenza in this figure include two images, a and b, where a is 
the main image and b is an enlargement of the box diagram. Since the holiday and allergen in this study are dummy variables, this figure is not shown)
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Table 1 Descriptive statistics for the daily-based cases of influenza
Variables Cases Constituent ratio (%) Min P25 M50 P75 Max Mean ± SD t/F p
Sex
AB 24.92 0.00
Male 11,848 55.56 0.00 0.00 0.00 1.00 134.00 2.70 ± 9.86
Female 9476 44.44 0.00 0.00 0.00 1.00 110.00 2.16 ± 8.35
A 23.25 0.00
Male 10,766 55.41 0.00 0.00 0.00 1.00 134.00 2.93 ± 10.51
Female 8665 44.59 0.00 0.00 0.00 1.00 110.00 2.36 ± 8.92
B 10.62 0.00
Male 1082 57.16 0.00 0.00 0.00 1.00 71.00 1.52 ± 5.22
Female 811 42.84 0.00 0.00 0.00 1.00 62.00 1.14 ± 4.18
Ages(years)
AB 25.96 0.00
0 ~ 3 6284 29.47 0.00 0.00 0.00 1.00 83.00 1.43 ± 10.51
4 ~ 12
BBBB

11,477 53.82 0.00
0.000

0.00 0.00 1.00 139.00 2.62 ± 8.92

≥13 3563 16.71 0.00 0.00 0.00 1.00 48.00 0.81 ± 8.92
A 24.14 0.00
0 ~ 3 5735 29.51 0.00 0.00 0.00 1.00 83.00 1.56 ± 5.40
4 ~ 12
BBBB

10,615 54.63 0.00 0.00 0.00 1.00 139.00 2.89 ± 11.64

≥13 3081 15.86 0.00 0.00 0.00 1.00 44.00 0.84 ± 3.12
B 11.93 0.00
0 ~ 3 549 29.00 0.00 0.00 0.00 1.00 43.00 0.77 ± 3.18
4 ~ 12
BBBB

862 45.54 0.00 0.00 0.00 1.00 51.00 1.21 ± 4.12

≥13 482 25.46 0.00 0.00 0.00 1.00 48.00 0.684 ± 2.87
Note: Min stands for minimum value, P25 stands for 25th percentile, P50 stands for 50th percentile and P75 stands for 75th percentile, Max stands for maximum value, 
SD stands for standard deviation

Fig. 6 Time series of influenza and influencing factors (Note: The units of influenza, pressure, pres-difference, humidity, precipitation, temperature, temp-
difference, wind, sunshine and day light are case, hPa, hPa, %, mm, °C, °C, m/s, h and h, respectively. Holiday and allergen are dummy variables in this 
study.)
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incidence rate of annual influenza from 2010 to 2021. 
More information of influenza incidence rate and vacci-
nation rate are presented in Fig. 8.

The association between meteorology factors and 
influenza
In phase AB and phase A, pressure had a U-shaped 
impact on influenza, however, the value ranges were not 
entirely consistent (AB: < 991 hPa, > 1004 hPa; A: < 993 
hPa, > 1006 hPa). Moreover, in phase B, the association 
between pressure and influenza presented a linear trend, 
which was positive when pressure was above 998 hPa.

In phase AB and phase A, the pres-difference was a risk 
factor for influenza when the pres-difference was below 
4 hPa and gradually shifted from a risk effect to a protec-
tive effect as the pres-difference increased. Conversely, in 
phase B, the pres-difference shifted from a protective fac-
tor to a risk factor as it increased.

The relationship between humidity and influenza in the 
three phases increased monotonically, and all presented 
risk factors at high humidity levels (> 72%). However, 
unlike the curves in the AB and A periods, phase B pre-
sented a linear pattern.

The relationship between precipitation and influ-
enza in phase AB and phase A was somewhat similar, 
that is, it decreased with increasing precipitation, but 
in phase A, the precipitation was above 100  mm and 

presented a gentle upward trend. However, phase B dif-
fered greatly from phase AB and phase A, and the rela-
tionship between precipitation and influenza increased 
monotonically.

The relationship between temperature and influenza in 
both phase AB and phase A was arcuate, and when tem-
perature < 22  °C, it was a risk factor for influenza. How-
ever, the relationship between temperature and influenza 
in phase B was U-shaped.

The relationships between influenza and the temp-
difference, wind, and sunshine during the three phases 
were similar. However, the relationship between the 
temp-difference and influenza in phases AB and A pre-
sented an arcuate shape, while the relationship in phase 
B decreased monotonically and linearly. The relationship 
curve between wind and influenza in phase A was not as 
obvious as the U-type curve in phases AB and B.

In phase AB and phase A, day light had a U-shaped 
impact on influenza, however, the value ranges were not 
entirely consistent (AB: < 11.2 h, > 13.3 h; A: < 11.1 h, > 
13.2  h). Moreover, in phase B, the association between 
day light and influenza presented an almost linear trend, 
which was negative when day light was above 11.6 h.

Additional characteristics of the impact of meteorology 
factors on influenza in the three phases are presented in 
Fig. 9.

Fig. 7 Heatmap of Spearman correlation analysis of influenza and influencing factors
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The lag and cumulative effects of the association between 
meteorology factors and influenza
In all three periods, pressure had a multi-day cumula-
tive effect on influenza, and the more accumulated the 
number of days, the greater the excess risk (peak: accu-
mulate 14d, AB: ER = 228.48, 95% CI = 184.82 ~ 278.84; A: 
ER = 219.56, 95% CI = 173.37 ~ 273.56; B: ER = 162.14, 95% 
CI = 84.17 ~ 273.12). For phase AB and phase A, there was 
a correlation between pressure and influenza in each lag 
period (P < 0.05), while for phase B, there was no correla-
tion between them in some lag days (P > 0.05).

In phase AB and phase A, the relationship between 
pres-difference and influenza showed a W-shaped pat-
tern with increasing lag time (low peak: lag 4d, AB: ER 
= -12.56, 95% CI = -16.34~-8.60; A: ER = -6.75, 95% CI = 
-11.29~-1.98), while in phase B, it showed the opposite 
characteristic (M-shaped) and a significant cumulative 
effect (peak: lag 14d, ER = 8.96, 95% CI = -5.73 ~ 25.95; 
accumulate14d, ER = 19.80, 95% CI = -18.17 ~ 75.40). 
There was a statistically significant difference in the 
cumulative lag effect among the three phases (P < 0.05). 
In phase AB, the more cumulative the number of days, 
the lower the excess risk of pres-difference to influenza, 
while in phase A, the opposite was true.

In all three phases, the more lag days there were, the 
lower the excess risk of humidity to influenza (peak: 
lag 0d, AB: ER = 141.08, 95% CI = 123.53 ~ 160.02; A: 
ER = 87.10, 95% CI = 72.87 ~ 102.50; B: ER = 101.61, 
95% CI = 39.93 ~ 190.48). Humidity had a more signifi-
cant cumulative effect on influenza in phase AB than 
in phase A (peak: accumulate 14d, AB: ER = 281.54, 
95% CI = 245.47 ~ 321.37; A: ER = 120.48, 95% 
CI = 100.37 ~ 142.60). There was a significant difference in 

the impact of humidity on influenza between phase AB 
and phase A (P = 0.005).

In phase B, there was no correlation between precipita-
tion and influenza at each lag time (P < 0.05), however, in 
phase AB and phase A, as the lag time increased, the cor-
relation between precipitation and influenza showed an 
inverted U-shaped pattern (peak: lag 11d, AB: ER = 0.28, 
95% CI = 0.07 ~ 0.48; A: ER = 0.55, 95% CI = 0.25 ~ 0.84). In 
phase A, precipitation had a significant cumulative effect 
on influenza (peak: accumulate 14d, ER = 0.86, 95% CI = 
-0.05 ~ 1.80), however, in phase AB, its cumulative effect 
did not increase the risk of influenza.

In phase AB and phase A, for every one IQR unit 
increase in temperature and temp-difference, influenza 
cases showed a continuous downward trend with the 
increase of cumulative days (temperature low peak: accu-
mulate 14d, AB: ER = -73.96, 95% CI = -77.15~-70.32; A: 
ER = -84.29, 95% CI = -86.35~-81.91; temp-difference low 
peak: accumulate 14d, AB: ER = -44.16, 95% CI= -49.16~-
38.68, A: ER = -49.60, 95% CI = -54.66~-43.97). The trend 
in phase B was opposite to that in phase AB and phase A. 
In addition, the cumulative lag effect of temperature on 
influenza showed significant differences among the three 
phases (P < 0.05). The impact of temperature in phase A 
on influenza was significantly higher than that in phase 
AB.

Compared with phase AB and phase A, wind had a 
more significant impact on influenza in phase B. The 
impact of wind on influenza in all three phases had a sig-
nificant multi day cumulative effect. For every increase 
of one IQR unit in wind during each cumulative time, 
the influenza cases would decrease (low peak: AB: accu-
mulate 7d, ER = -42.47, 95% CI = -47.10~-37.43; A: 

Fig. 8 Spearman correlation analysis of annual influenza incidence rate and vaccination rate
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Fig. 9 Correlation between influencing factors and influenza based on GAM analysis
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accumulate 7d, ER = -34.51, 95% CI = -39.68~-28.89; B: 
accumulate 14d, ER = -33.76, 95% CI = -48.58~-14.67).

In phase AB and phase A, the correlation between 
sunshine and influenza showed a W-shaped pattern 
with increasing lag time (low peak: lag 11d, AB: ER = 
-24.15, 95% CI = -29.88~-19.36; A: ER = -25.14, 95% CI 
= -30.55~-19.32), while in phase B, it showed a U-shaped 
pattern (low peak: lag 5d, B: ER= -28.89, 95% CI = 
-43.06~-11.19). The cumulative effect trend of phase B 
was opposite to that of phase AB and phase A.

In phase AB and phase A, for every one IQR unit 
increase in day light, influenza cases showed a continu-
ous downward trend with the increase of cumulative days 
(low peak: accumulate 14d, AB: ER = -75.60, 95% CI = 
-78.51~-72.29; A: ER = -58.51, 95% CI = -64.25~-51.58). 
The trend in phase B was opposite to that in phase AB 
and phase A. In addition, the cumulative lag effect of day 
light on influenza showed significant differences among 
the three phases (P < 0.05). The impact of day light in 
phase A on influenza was significantly higher than that 
in phase AB.

Overall, there were differences in the analysis results 
among these three phases.

Compared to other age groups, children aged 4–12 
were more affected by pressure, precipitation, sunshine, 
and day light, while those aged ≥ 13 were more affected by 
the accumulation of humidity over multiple days.

In addition, three phases within the same age group 
also had different effects. In phase B, for every one IQR 
unit increase in pres-difference, the influenza cases in the 
children aged ≥ 4 increased, while in phase AB and phase 
A, the opposite is true. In all age groups, the impact of 

temperature on influenza in phase B was smaller than 
that in phases AB and phase A.

There was no significant difference in the impact of 
meteorology factors on influenza between genders. How-
ever, in some lag times for females, the influenza cases of 
phase B increased for every increase of one IQR unit in 
temperature, while the opposite was true for males. And 
for every increase of one IQR unit in precipitation, as the 
cumulative number of days increased, influenza cases in 
phases AB and phase A also increased, while in phase B, 
the opposite trend was observed. The remaining detailed 
information is shown in the Tables 2 and 3; Fig. 10.

RF-Bi-LSTM forecasts
Figure 11 shows that the evaluation index values of using 
RF-Bi-LSTM algorithms to predict the AB, A, and B 
phases of influenza through meteorology factors were 
close to the lowest value 0 or to the highest value 1, indi-
cating high prediction accuracy. The optimal values of the 
ten evaluation indicators RMSE, MAE, MAPE, SMAPE, 
RSR, CC, NSE, KGE, IA, and LMI were 1.05, 0.59, 0.08, 
0.12, 0.12, 0.99, 0.98, 0.99, 0.88, and 0.95, respectively.

The predictive evaluation indicators RMSE, MAE, 
MAPE, SMAPE, and RSR values of phase A were lower 
than those of phase AB and phase B, while CC, NSE, 
KGE, IA, and LMI were closer to 1 (Excluding the influ-
enza prediction KGE for male in phase A). The values 
of multiple predictive evaluation indicators in phase B 
were higher than those in phase AB and phase A or fur-
ther away from 1, especially MAPE and SMAPE. Table 4 
shows that compared with phase B, all ten evaluation 
indicators in phase A showed significant differences 
(P < 0.05), while compared with phase AB, six indicators 

Table 2 IQR of various meteorology factors during different research phases
Phase Pressure

(hPa)
Pres-difference
(hPa)

Humidity
(%)

Precipitation (mm) Temperature
(°C)

Temp-difference
(°C)

Wind
(m/s)

Sunshine
(h)

Day light
(h)

AB 10.20 1.50 18.00 0.60 10.70 3.00 1.10 8.40 2.04
A 10.20 1.50 18.50 0.80 10.70 3.00 1.10 8.50 2.05
B 9.88 1.50 17.30 0.10 10.48 3.08 1.10 7.60 1.99

Table 3 Test for differences in ER values across three phases with different cumulative lag times
Variables A-AB-B A-AB A-B AB-B

H P Z P Z P Z P
Pressure 11.84 0.00 -1.33 0.19 -2.34 0.02 -3.23 0.00
Pres-difference 24.72 0.00 -3.20 0.00 -2.56 0.01 -4.52 0.00
humidity 6.54 0.04 -2.78 0.01 -0.32 0.77 -1.61 0.11
Precipitation 2.91 0.23 -1.58 0.12 -1.01 0.32 -0.92 0.37
temperature 37.95 0.00 -3.30 0.00 -5.13 0.00 -4.71 0.00
Temp-difference 1.27 0.53 -1.04 0.31 -0.76 0.46 -0.76 0.46
Wind 5.54 0.06 -1.30 0.20 -2.15 0.03 -1.42 0.16
Sunshine 5.04 0.08 -0.48 0.65 -1.93 0.06 -1.90 0.06
Day light 26.91 0.00 -4.97 0.00 -2.28 0.02 -3.77 0.00
(Note: Non parametric Kruskal-Wallis test is used for differences between the three phases, and Mann-Whitney test is used for comparison between the two phases)
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showed significant differences. And it was also confirmed 
by the predicted and actual values in Fig. 12. Which indi-
cates that phase A had the best prediction effect, and 
phase B had the worst one.

The prediction effect for the ≥ 13 age group in phase 
A was the best, with the lowest RMSE, MAE, MAPE, 
SMAPE, and RSR values of 1.05, 0.59, 0.08, 0.12, and 
0.12, respectively, and the highest IA and LMI values of 
0.99 and 0.88. The NSE (0.98) and KGE (0.95) values for 
females in phase A were the highest.

More detailed evaluation indicator values are shown in 
Fig. 11. More detailed actual and predicted influenza val-
ues are shown in Fig. 12.

Discussion
Although Fig.  6 shows that the fluctuations in meteo-
rology factors, day light, holiday and allergen in both 
phases A and B were cyclical, and might affect seasonal 
influenza, Fig. 7 shows that not all of these factors were 
significantly correlated with influenza. The correlation 
between allergens and holidays with influenza is very 

Fig. 10 The lag and cumulative effects of the association between meteorology factors and influenza based on GAM analysis (Note: lag0-14 represents 
a single day lag of 0-14d, (3) represents a cumulative 3-day lag over multiple days, (7) represents a cumulative 7-day lag over multiple days, and (14) rep-
resents a cumulative 14-day lag over multiple days)
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weak (-0.05 < r < 0.05, P < 0.05), indicating that they may 
not be important influencing factors for influenza in Xia-
men. Therefore, we did not include them in subsequent 
GAM analysis and predictive studies.

Table  1 shows that the 0–12 age group accounts for 
nearly 85% of all influenza cases in Phase A. Out of the 
9 influenza cluster incidents reported from 2010 to 2021 
in Xiamen, 8 incidents occurred in primary schools and 
1 incident occurred in junior high schools. Therefore, 
suggesting the mobility of children is crucial for study-
ing the impact of human behavior on influenza. During 
school, students are in relatively closed classrooms and 
susceptible groups gather, making it easy for influenza to 
spread quickly. However, due to limited participation in 
extracurricular group activities, there are fewer oppor-
tunities for infection and introduction of influenza virus. 
During holidays, children usually go to public places to 

participate in activities, play, shopping, etc., and are often 
accompanied by other family members, which increases 
the chance of regional influenza transmission. Although 
there is an increase in student mobility during holidays, 
the density and frequency of gatherings are often low, 
and they are mainly concentrated outdoors, such as tour-
ist attractions [41, 42]. During the COVID-19 epidemic, 
students in Xiamen were repeatedly required to study at 
home for a long time due to the prevention and control 
measures. Table  1 shows that the proportion of influ-
enza in the 0–12 age group has decreased from 84.14% in 
phase A to 74.54% in phase B, but it is uncertain whether 
studying from home has reduced transmission in school, 
reduced transmission in public places, or both. Therefore, 
these situations may help to understand that the correla-
tion between holidays and influenza is not significant.

Table 4 Test for differences in evaluation indicator values across three phases with different groups of people
Evaluation indicator A-AB-B AB-A AB-B A-B

H P Z P Z P Z P
RMSE 6.75 0.03 31.00 0.04 13.00 0.48 4.00 0.03
MAE 6.94 0.03 31.00 0.04 17.00 0.94 3.00 0.02
MAPE 14.06 0.00 33.00 0.02 0.00 0.00 0.00 0.00
SMAPE 12.19 0.00 26.00 0.22 0.00 0.00 0.00 0.00
RSR 5.19 0.07 28.00 0.13 14.50 0.63 4.50 0.04
CC 7.63 0.02 5.00 0.04 22.50 0.51 33.00 0.02
NSE 7.65 0.02 5.00 0.04 23.00 0.47 33.50 0.02
KGE 5.76 0.06 5.50 0.05 18.50 1.00 31.00 0.04
IA 7.86 0.02 7.00 0.07 24.00 0.36 34.00 0.01
LMI 11.51 0.00 0.00 0.00 20.00 0.81 36.00 0.00
(Note: Non parametric Kruskal-Wallis test is used for differences between the three phases, and Mann-Whitney test is used for comparison between the two phases)

Fig. 11 Evaluation indicators based on RF-Bi-LSTM predictions
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The high incidence period of seasonal influenza in Xia-
men often occurs in late winter and early spring from 
December to January of the following year, and in sum-
mer from May to July, while seasonal pollen is distrib-
uted from March to May each year. During the pollen 
period, there was a sustained moderate precipitation and 
high humidity, as confirmed by Fig. 6. Precipitation and 
relative humidity are negatively correlated with pollen 
concentration [43]. Rain makes pollen less airborne and 
very high humidity levels are even detrimental to pollen 
[21]. Pollen bio-aerosol and UV light exposure lead to 
immuno-activation, and sometimes allergic symptoms, 
which seem to protect against flu-like viruses, or at least 
severe outcomes from them [21]. Therefore, pollen may 
inhibit the spread of influenza, but the meteorological 
conditions have suppressed the concentration and patho-
genicity of pollen in Xiamen. There was no significant 
correlation between allergens and influenza in this study, 
which may be due to the important role played by meteo-
rological conditions during the pollen period.

Vaccination is currently the most effective response 
to influenza [44]. However, the average vaccination rate 
of influenza vaccine in Chinese Mainland from 2014 to 
2020 was 2.43%, while the adult vaccination rate of the 
United States in the influenza season in 2020 was 48.4%, 
suggesting that the vaccination rate of influenza vaccine 
in Chinese Mainland is extremely low [44, 45]. The high-
est influenza vaccination rate in Xiamen from 2010 to 
2021 was only 2.39% (2020), indicating that vaccination 
cannot form a sufficient immune barrier in the popula-
tion. Moreover, the existing influenza vaccination protec-
tion rate is only 40–60%, and influenza viruses are prone 

to mutation [44]. Therefore, the current vaccination has 
a very limited effect on suppressing the influenza epi-
demic in Xiamen. The correlation analysis also showed 
that there was no significant correlation between the vac-
cination rate and the incidence rate of influenza (r = 0.41, 
P = 0.18) in this study. Therefore, the vaccination rate was 
not used for subsequent GAM analysis and prediction.

Figures 5 and 7 show that the descriptive statistics and 
correlation analysis results of influenza and meteorology 
factors in phase AB and phase A were generally consis-
tent. However, the influenza and precipitation values in 
phase B significantly decreased, the minimum values of 
humidity and temperature increased, and the correlation 
between precipitation and the pres-difference and pre-
cipitation and temperature decreased. The abnormali-
ties of influenza, pres-difference, precipitation, humidity, 
and temperature in phase B might have an impact on the 
correlation analysis between meteorology factors and 
influenza.

GAM analysis showed that although the relationship 
trend and risk value of meteorology factors with influ-
enza in phase AB and phase A were somewhat similar, 
the risk effect of precipitation > 100 mm on influenza in 
phase A presented a mild upward trend, which was dif-
ferent from the continuous downward trend in phase AB, 
and the risk effect curve of wind on influenza in phase A 
was not as obvious as the U-shaped curve in phase AB, 
while the difference between phase B and phase AB and 
phase A was more significant.

GAM analysis showed that both low and high pres-
sure in phase AB and phase A were risk factors for influ-
enza, and they were generally consistent with the high 

Fig. 12 Predicted true influenza values over three months based on RF-Bi-LSTM
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incidence of influenza (Fig. 6), mainly due to the signifi-
cant correlation between high pressure and the influenza 
epidemic season, as well as between low pressure and the 
subepidemic season. However, in phase B, pressure is 
positively correlated with the onset of influenza. There-
fore, due to the impact of phase B, high pressure in phase 
AB has a higher risk of influenza than in phase (A) Since 
the minimum, M50, maximum, and ‾X values of pressure 
in these three phases were very close, and no extreme 
pressure events were detected from 2020 to 2021 [19, 20], 
this was mainly due to the abnormal number of influenza 
cases in phase (B) In addition, the impact of pressure on 
influenza shows a significant cumulative effect. Wang et 
al. believe that pressure is closely related to temperature 
and humidity, thereby increasing the risk of influenza [9].

A high pres-difference was mainly distributed from 
January to February, and the initial stage of phase B had a 
high number of influenza cases, which led to a high pres-
difference (8-10.5  hPa) being a risk factor for influenza. 
This shows an opposite trend to the phase A and phase 
AB. Affected by Phase B, high pres-difference in phase 
AB has a greater impact on influenza than in phase A.

The incidence of influenza in phase B, especially the 
non-epidemic influenza season in 2021 (late summer and 
early autumn), the number of influenza cases was rela-
tively high in that year, when the humidity in Xiamen was 
also higher. Therefore, high humidity in phase B poses a 
more significant risk of influenza. In 2021, Xiamen expe-
rienced extreme weather with less cold and more heat 
and severe drought in winter and spring [19], resulting 
in a low humidity in the winter and spring influenza epi-
demic season. Although the overall fluctuation in phase B 
influenza was not significant, Fig. 6 shows that there were 
more influenza cases in the winter of 2021, and compared 
to Phase A, the humidity in the winter of phase B was 
lower, leading to this extreme weather being an impor-
tant reason for the increased risk effect of low humidity 
on influenza in phase B. The impact of these phenomena 
in phase B on phase AB was not significant. The range 
of humidity levels that had a risk effect on influenza in 
phase A and phase AB was generally consistent with the 
humidity value characteristics reported by Ng et al. [46]. 
and Wang et al. [9].

Many extreme weather events occurred in Fujian Prov-
ince in phase B, including low precipitation and weak 
rainstorm intensity in each quarter of 2020 and low 
precipitation in the winter and spring of 2021 [19, 20], 
which was consistent with the situation in which the P75, 
maximum and average values of precipitation in phase B 
were lower than those in phase A in this study. In 2021, 
the rainy season (from April to July) lasted a long time, 
and the average precipitation in Fujian Province was 12% 
higher than that in the same period of the previous year 
[19]. Although the overall number of phase B influenza 

cases decreased substantially, the number of influenza 
cases in the summer and autumn of 2021 was relatively 
high, and the risk effect of high precipitation on influenza 
was enhanced in phase B. This is opposite to the trend of 
phase A and phase AB. However, compared with phase B 
and phase AB, phase A has a more significant cumulative 
and lag effect. Although the trends, value ranges, peaks, 
and lag times of risk effect of the four meteorology fac-
tors, including temperature, temp-difference, wind, and 
sunshine, on influenza in phase AB and phase A were 
basically consistent, there were significant differences in 
the risk characteristics of these four meteorology factors 
on influenza in phase B compared to phase AB and phase 
A (Figs. 9 and 10).

In phase AB and phase A, for every one IQR unit 
increase in day light, influenza cases showed a continu-
ous downward trend with the increase of cumulative days 
in this study (low peak: accumulate 14d, AB: ER = -75.60; 
A: ER = -58.51), indicating that increasing daylight hours 
would be beneficial for suppressing influenza infection. 
Day light can affect immune function by regulating peo-
ple’s circadian rhythm [22, 23, 47]. The circadian rhythm 
is also important for coordinating complex biological 
processes such as immunity, which is most evident in the 
respiratory system and can be understood from a molec-
ular perspective [23]. This study showed that the trend 
in phase B is opposite to that in phases AB and A, sug-
gesting that this may have distorted the true relationship 
between sunlight and influenza. Therefore, it led to the 
impact of day light in phase A on influenza being signifi-
cantly higher than that in phase AB.

The impact of meteorological factors on influenza is 
not significantly different between males and females in 
this study. However, compared to other age groups, chil-
dren aged 4–12 were more affected by pressure, precipi-
tation, sunshine, and day light, which may be related to 
the immune and behavioral characteristics of different 
age groups. During the early childhood period from 0 
to 3 years old, the fetus has a stronger immune system 
due to obtaining more immunoglobulins in the mother’s 
body. Children aged 4–12 have weaker immune function 
due to being in the immune system building phase, and 
frequent mobility and aggregation behaviors.

In summary, the sharp decline in influenza activity 
affected the analysis of the association between meteo-
rology factors and influenza in phase AB, and this effect 
was more significant when only phase B was analyzed, 
although extreme weather conditions such as humidity 
and precipitation were also influencing factors.

The significant decline in the number of influenza cases 
in phase B might have been influenced by various factors, 
but the PHSM during the COVID-19 pandemic might 
be the most important reason. Many previous research 
reports have confirmed that PHSM during COVID-19 
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significantly limit influenza transmission [48–55]. PHSM 
includes wearing masks, maintaining interpersonal dis-
tance, restricting travel and gatherings, suspending 
classes, hand hygiene, etc., aiming to reduce the risk and 
scale of infectious disease transmission, as well as allevi-
ate the burden on the health system, economy, and soci-
ety [6, 50, 56, 57]. The effectiveness depends on intensity, 
the timing of implementation and/or de-implementation, 
socio-cultural aspects (such as societal compliance and 
trust in authority), etc. [6, 56]. For example, when the 
implementation time of PHSM coincides with the peak 
activity of the influenza season, the impact is significant 
[6]. Overall, COVID-19 PHSMs had reduced influenza 
transmissibility by a maximum of 17.3–40.6% and attack 
rate by 5.1–24.8% in the 2019–20 influenza season: for 11 
different locations and countries [6].

Children were the most important group affected 
by influenza in Xiamen, with nearly 85% of children 
aged ≤ 12 years suffering from influenza [58]. Clearly, 
measures to prevent and control the COVID-19 epi-
demic, such as wearing masks, school closures, restrict-
ing gatherings, hand hygiene, etc. reduced the risk of 
transmission among the most vulnerable groups. Table 1 
shows that the influenza proportion of children aged ≤ 12 
years dropped from 84.14% before the COVID-19 period 
to 74.54% during the COVID-19 period, indicating that 
PHSM had a more significant impact on children in Xia-
men. These interventions may alter the natural pattern 
of influenza transmission, thereby affecting the associa-
tion features between meteorology factors and influenza 
incidence.

The method we used in this study was to input multi-
factor values for 7 days to predict the daily average influ-
enza cases for the next 7 days and to achieve predictions 
through multistep rolling. This not only met the demand 
for daily predicted values in daily work but also avoided 
the situation of large relative errors between daily pre-
dicted values and actual values through the 7-day daily 
average method.

This study showed that RF-Bi-LSTM had low evalu-
ation indicators, which means it had high prediction 
accuracy for influenza through meteorology factors. And 
regardless of whether before or after stratification, the 
prediction effect of period A is the best.

Although the time data and influenza data used to 
predict influenza reflect the characteristics of influenza 
epidemic caused by comprehensive factors such as vacci-
nation, demographic characteristics, prevention and con-
trol policies, and influenza activity, the sharp decline of 
influenza in the context of PHSM during the COVID-19 
epidemic significantly affected the association between 
meteorology factors and influenza, so meteorology fac-
tors data that cannot explain the truth of the correla-
tion was captured when predicting influenza. This might 

result in the prediction performance of phase B not being 
as good as phase AB or phase A. The prediction effect of 
the AB period was not as good as that of the A period, 
indicating that the AB period was also affected by the B 
period. The difference test of the predicted evaluation 
indicators in Table 4 also confirms this result.

The use of RF-Bi-LSTM for influenza prediction in 
Phase A achieved the best results, with MAPE values 
(0.08–0.14) significantly lower than similar studies that 
previously used LSTM for influenza prediction (0.47–
0.88) [3], and also lower than the prediction effect of 
deep learning hybrid model for influenza (0.13–0.22), 
consistent with the autoregressive moving average-gen-
eralized autoregressive conditional heteroscedasticity 
(ARMA—GARCH) model prediction effect (0.08–0.14) 
[59]. The CC value (0.97–0.99) is significantly higher 
than the evaluation value (0.72–0.96) of predicting influ-
enza using machine learning models such as RF, support 
vector regression (SVR), and extreme gradient boosting 
(XGBoost) [60]. Therefore, RF- Bi-LSTM can be used as a 
good model combination for predicting influenza.

Due to environmental factors such as meteorology and 
pollen allergens, the impact on respiratory infectious 
diseases such as influenza is continuously receiving high 
attention, and high-intensity government regulation will 
seriously affect the natural spread of respiratory infec-
tious diseases. For example, PHSM on a global scale has 
severely suppressed the spread of influenza, thereby seri-
ously affecting the analysis and prediction of the asso-
ciation between environmental factors and respiratory 
infectious diseases such as influenza. This limitation will 
persist for a long time, but such special periods can be 
excluded in the study. Ali et al.‘s study showed that they 
can simulat influenza activity by constructing the stan-
dard susceptible–exposed–infected–recovered trans-
mission model under the counterfactual scenario of 
implementation timing of COVID-19 PHSMs, and simu-
lat to predict the incidence under no effect of PHSMs [6, 
61].

This study also has some limitations. Firstly, solar radi-
ation including ultraviolet (UV) light is another impor-
tant indicator affecting infectious diseases [22], however, 
due to the lack of complete data, this study was not 
included in the analysis. Secondly, due to the inability 
to collect complete data on seasonal allergen pollen, this 
study replaced it with dummy variables based on pol-
len period. Thirdly, there is a lack of data on indoor and 
outdoor population mobility in public places, and online 
platforms such as Google and Baidu cannot well reflect 
the mobility data of children aged 0–12 who are most 
susceptible to influenza. Therefore, this study only ana-
lyzed the indicators that best reflect the degree of child 
mobility, holidays.
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Conclusion
The varying degrees of intervention measures adopted 
during different phases can lead to significant differences 
in the impact of meteorology factors on influenza and in 
the influenza prediction. The sharp decline in influenza 
activity in the context of PHSM during the COVID-19 
pandemic had significantly affected the long-term multi-
year analysis of the association between meteorology fac-
tors and influenza and of the prediction of influenza.

This hints that when studying the correlation and pre-
diction between meteorology factors and respiratory 
infectious diseases, it is important to select the data 
year span cautiously. In association studies of respira-
tory infectious diseases, especially influenza, and envi-
ronmental factors, it is advisable to exclude periods with 
more external interventions to reduce interference with 
environmental factors and influenza related research, 
or to refine the model to accommodate the alterations 
brought about by intervention measures. In addition, the 
RF-Bi-LSTM model has good predictive performance for 
influenza.
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