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Abstract 

Background In the hospital environment, carbapenemase-producing Pseudomonas aeruginosa (CPPA) may lead 
to fatal patient infections. However, the transmission routes of CPPA often remain unknown. Therefore, this case study 
aimed to trace the origin of CPPA ST357, which caused a hospital-acquired pneumonia in a repatriated critically ill 
patient suffering from Guillain-Barré Syndrome in 2023.

Methods Antimicrobial susceptibility of the CPPA isolate for 30 single and combination therapies was determined by disk-
diffusion, Etest or broth microdilution. Whole-genome sequencing was performed for three case CPPA isolates (one patient 
and two sinks) and four distinct CPPA ST357 patient isolates received in the Dutch CPPA surveillance program. Furthermore, 
193 international P. aeruginosa ST357 assemblies were collected via three genome repositories and analyzed using whole-
genome multi-locus sequence typing in combination with antimicrobial resistance gene (ARG) characterization.

Results A Dutch patient who carried NDM-1-producing CPPA was transferred from Kenya to the Netherlands, 
with subsequent dissemination of CPPA isolates to the local sinks within a month after admission. The CPPA case 
isolates presented an extensively drug-resistant phenotype, with susceptibility only for colistin and cefiderocol-
fosfomycin. Phylogenetic analysis showed considerable variation in allelic distances (mean = 150, max = 527 
alleles) among the ST357 isolates from Asia (n = 92), Europe (n = 58), Africa (n = 21), America (n = 16), Oceania (n = 2) 
and unregistered regions (n = 4). However, the case isolates (n = 3) and additional Dutch patient surveillance program 
isolates (n = 2) were located in a sub-clade of isolates from Kenya (n = 17; varying 15–49 alleles), the United States 
(n = 7; 21–115 alleles) and other countries (n = 6; 14–121 alleles). This was consistent with previous hospitalization 
in Kenya of 2/3 Dutch patients. Additionally, over half of the isolates (20/35) in this sub-clade presented an identi-
cal resistome with 9/17 Kenyan, 5/5 Dutch, 4/7 United States and 2/6 other countries, which were characterized 
by the blaNDM-1, aph(3’)-VI, ARR-3 and cmlA1 ARGs.

Conclusion This study presents an extensively-drug resistant subclone of NDM-producing P. aeruginosa ST357 
with a unique resistome which was introduced to the Netherlands via repatriation of critically ill patients from Kenya. 
Therefore, the monitoring of repatriated patients for CPPA in conjunction with vigilance for the risk of environmental 
contamination is advisable to detect and prevent further dissemination.
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Background
In the hospital, introductions of carbapenemase-produc-
ing Pseudomonas aeruginosa (CPPA) may lead to patient 
infection and mortality [1]; however, the exact origin of 
CPPA can often not be traced. Multiple case reports have 
suggested an association between CPPA introduction and 
medical treatment abroad [2–7]. The treatment of CPPA 
infections is a challenge, since it often presents a multid-
rug-resistant (MDR) or extensively drug-resistant (XDR) 
phenotype [8, 9]. Therefore, the World Health Organiza-
tion has highlighted the critical need for the development 
of new antibiotics to combat CPPA infections [10]. Given 
the clinical risk CPPA poses, tracing the dissemination is 
pivotal to restrict further intra- and interhospital transmis-
sions, in addition to enable evidence-based policy making.

Overall, various acquired carbapenemase-encoding 
genes have been reported in P. aeruginosa. Of these genes 
blaVIM appears to be the most ubiquitous, while other 
recurrent genes (blaIMP blaGES, blaKPC and blaNDM) present 
differences in geographical prevalence [1, 11]. Per exam-
ple, blaNDM has been commonly reported in South- and 
Southeast Asia, and infrequently in Europe and North-
America [1, 12, 13]. Furthermore, previous studies have 
shown that certain high-risk CPPA sequence types (ST) 
are endemic in different countries. For instance, the VIM-
2-producing P. aeruginosa ST111 was predominant in the 
Netherlands [14], IMP-1-producing P. aeruginosa ST235 
was the main lineage in Japan [15], and VIM-2-producing 
P. aeruginosa ST235 dominated in Russia [16]. Nonethe-
less, a wide diversity of less frequent sequence types can 
co-occur. In the Netherlands, a third of the CPPA isolates 
belonged to 21 sequence types other than ST111 between 
2015 and 2017 [14]. The presence of these less frequent 
sequence types could be explained by dissemination 
through healthcare-related travel, such as medical evacua-
tion, repatriation, and medical tourism. This is exemplified 
by a rare nation-wide outbreak of VIM-2-producing P. aer-
uginosa ST111 in the United States, which was determined 
to originate from bariatric surgery in Mexico [17]. Another 
example is the doubling of Ukrainian-related CPPA cases 
in the Netherlands, due to medical evacuation and migra-
tion of Ukrainians in 2022 [7].

The true scale at which intercontinental dissemina-
tion of CPPA occurs between health-care institutions is 
not clear. Surveillance studies have provided a molecu-
lar overview of CPPA prevalence in various geographic 
regions [8, 14, 18–20]. However, these studies are lim-
ited in the epidemiological scope. The reports on patient 
repatriation and medical tourism provide a detailed 
insight into the epidemiology underlying intercontinen-
tal CPPA transmission events. Still, these reports sel-
dom touch upon the context of CPPA clone endemicity 
abroad.

Integration of both phylogenetics and antimicrobial 
resistance gene (ARG) characterization could potentially 
trace the origin of CPPA. In addition, repositories such 
as the NCBI Pathogen Detection Isolate Browser contain 
an assortment of international CPPA isolates which may 
provide a reference for CPPA endemicity abroad. There-
fore, the aim of this case study was to trace the origin of 
CPPA ST357, which caused a hospital-acquired pneu-
monia in a repatriated critically ill patient suffering from 
Guillain-Barré Syndrome.

Methods
Patient screening
According to Dutch guidelines, patients admitted to 
the Intensive Care Unit (ICU) are routinely screened by 
oropharyngeal, nasopharyngeal and rectal culture for 
carbapenemase-producing Pseudomonas aeruginosa, 
Enterobacterales and Acinetobacter baumanii twice a 
week and upon admittance. Patient samples are enriched 
in tryptose phosphate broth (18  h, 35  °C,  O2)(Tritium, 
Eindhoven, Netherlands) and subsequently cultured on 
selective MacConkey agar plates with ceftazidime-van-
comycin and ceftriaxone-vancomycin (18  h, 35  °C,  O2)
(Tritium, Eindhoven, Netherlands). Isolates were identi-
fied by means of MALDI-TOF (Vitek MS, bioMérieux, 
Lyon, France).

Environmental screening
Environmental screening is not routinely employed, 
however, this study encompassed three sampling rounds 
(August 2022, March 2023, September 2023) of the ICU 
of a large medical center in the Netherlands. To screen 
for CPPA, all intensive care unit sink drains, faucet aera-
tors, high-touch sites of medical devices and patient beds 
were sampled. Sink drains were sampled by inserting 
a flocked swab (eSwab, COPAN diagnostics, Murrieta, 
CA, USA) 5–7  cm into the sink drains at three equally 
spaced sites to reduce sampling bias. The samples were 
enriched in tryptose phosphate broth (18  h, 35  °C,  O2)
(Tritium, Eindhoven, Netherlands) and subsequently cul-
tured on selective CHROMID ESBL plates (18 h, 35  °C, 
 O2) (bioMérieux, Lyon, France). Isolates were identified 
by MALDI-TOF (Vitek MS, bioMérieux, Lyon, France).

Antimicrobial susceptibility testing
Susceptibility of one patient CPPA isolate and two envi-
ronmental CPPA isolates to cefiderocol, ceftazidime, 
ciprofloxacin, meropenem, piperacillin-tazobactam and 
tobramycin was assessed by disk diffusion (Oxoid, Thermo 
Fisher Scientific, UK). Additional MIC values were deter-
mined for amikacin, aztreonam, cefiderocol, ceftazidime, 
ceftazidime-avibactam, ceftolozane-tazobactam, cipro-
floxacin, fosfomycin, imipenem-relebactam, meropenem, 
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meropenem-vaborbactam, piperacillin-tazobactam and 
tobramycin by gradient Etest (bioMérieux, Lyon, France). 
For colistin, MIC was determined by broth microdilution 
(Micronaut, MERLIN Diagnostika GmbH, Germany). 
The antimicrobials described above were tested and inter-
preted according to EUCAST guidelines (version 13.1) 
[21]. Antimicrobial synergy was examined by the MIC-
cross method described previously [22, 23].

Whole‑genome sequencing and genome assembly
Clinical CPPA isolates were sequenced within the Dutch 
national CPPA surveillance of the National Institute for 
Public Health and the Environment (RIVM) using the 
Illumina NextSeq550 platform with the Nextera DNA 
Flex Library Prep kit (Illumina, San Diego, USA) and the 
Oxford Nanopore technologies (ONT) GridION with 
the DNA V14 – barcoding SQK-RBK114.24 kit (Oxford 
Nanopore Technology, Oxford, UK). The environmental 
isolates were sequenced as part of the regional surveil-
lance consortium, and processed at the Maastricht Uni-
versity Medical Center using the Illumina MiSeq with the 
Nextera XT Library Preparation kit (Illumina, San Diego, 
USA).

The FASTQ read quality was filtered using BBDuk 
v38.84 [24] to attain a minimum quality of Q25 and mini-
mum read length of 36 bp for Illumina, while a minimum 
quality of Q10 and minimum read length of 500-bp were 
retained for ONT. Trimmed read quality was evaluated 
using Geneious Prime v2023.1.1 [25], with subsequent 
de novo assembly using SPAdes v3.15.5 [26] for Illumina 
reads and Flye v2.9.1 [27] for ONT reads.

Collection of international CPPA genomes
P. aeruginosa SNP clusters containing antimicrobial resist-
ance gene (ARG) profiles that were comparable to the case 
isolate (RIVM_050529) were investigated in the NCBI 
Pathogen Detection Isolate Browser [28]. The follow-
ing query criteria were applied: “Pseudomonas aeruginosa 
AND aac(6’)-Il AND aadA1 AND ant(2’’)-Ia AND aph(3’)-
IIb AND aph(3’)-VI AND ARR-3 AND blaNDM-1 AND 
blaOXA-10 AND blaOXA-846 AND blaVEB-9 AND catB7 AND 
cmlA1 AND crpP AND fosA AND sul1 AND tet(A) AND 
blaPDC-11”. All the available FASTA assemblies and metadata 
within the matching SNP cluster were extracted for com-
parative analysis. Additional assemblies and metadata of P. 
aeruginosa ST357 genomes were acquired via the Bacterial 
and Viral Bioinformatics Resource Center (BV-BRC) [29] 
and the Pseudomonas Genome Database [30].

Whole‑genome analyses
An ad hoc whole-genome multi-locus sequencing typ-
ing (wgMLST) scheme for P. aeruginosa ST357 was 

developed by annotation of all assemblies with Prokka 
v1.14.5 [31] and pangenome analysis using Roary v3.13.0 
[32]. The wgMLST scheme consisted of 15835 loci, of 
which 5662 loci were present in 90% of the assemblies. 
The allelic distances between strains were calculated with 
pyMLST v2.1.5 [33], missing alleles were omitted from 
this analysis. Allelic distances were applied to construct 
a phylogenetic tree by means of the UPGMA method in 
ape v5.7–1 [34], and were visualized by means of ggtree 
v3.8.1 [35, 36]. The resistance markers and multilocus 
sequence typing (MLST) were determined in the staramr 
pipeline v0.9.1 [37], which incorporates the ResFinder 
database v24-05–2022 [38, 39] and the PubMLST data-
base [40] using the MLST v2.23.0 tool [41]. The presence 
of the resistance markers was plotted into a heatmap 
with ggplot2 v3.4.3 [42]. Type III secretion system (T3SS) 
effector genes were identified in the Virulence Factor 
Database [43]. The P. aeruginosa O-specific antigen was 
typed using PAst v1.0 [44]. Additional visualizations of 
the P. aeruginosa assemblies were created in Geneious 
Prime with annotation of integrons by Integron Finder 
v2.0.2 [45] and insertion sequences via the ISFinder data-
base [46].

Results
Case description
In February 2023, a young Dutch individual was hospital-
ized with paresis development similar to Guillain-Barré 
Syndrome (GBS) in Zanzibar, Tanzania. Three days prior 
to admission, the patient had suffered from increasingly 
deteriorating right-sided hemiparesis. Three days after 
admission, the patient was transferred due to increasing 
severity of symptoms to the ICU of a referral hospital in 
Nairobi, Kenya. The patient developed aspiration pneu-
monia, which led to mechanical ventilation via a trache-
ostomy and administration of amoxicillin/clavulanic acid 
(dosage unknown), 7  days after initial admission. In the 
following 4 days, the patient received additional pipera-
cillin/tazobactam (dosage unknown) due to increased 
fever and CRP-values. This was subsequently changed 
to ciprofloxacin (dosage unknown) after an Enterobacter 
cloacae complex isolate (antibiogram unknown) was cul-
tured from sputum, 13 days after admission. The patient 
was eventually repatriated to the Netherlands via a venti-
lator-assisted transcontinental flight following 18 days of 
hospitalization abroad.

Upon admission to the Dutch ICU ward (Zuyder-
land MC, Netherlands), the patient was placed in single 
patient isolation room A. The tracheostomy tube was 
replaced and the patient was given piperacillin/tazobac-
tam (4.5 g, 4 d.d.) empirically from day 19 until day 21. 
In addition, an initial oropharyngeal swab was acquired, 
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from which a CPPA isolate (RIVM_C050529) was cul-
tured. Furthermore, a CPPA was cultured from a bron-
chial secretion which was acquired on day 23, and the 
patient was administered a combination of meropenem 
(2 g, 3 d.d.) and colistin IV (3 MIU, 3 d.d.) from day 26 
to day 28. The patient developed symptoms similar to 
locked-in syndrome and suffered from seclusion-induced 
anxiety in the isolation room. Therefore, the patient was 
transferred to the standard ICU room B adjacent to the 
nurses’ station 25  days after initial hospitalization. Fur-
thermore, the patient’s situation deteriorated since the 
P. aeruginosa infection which caused the pneumonia 
was unresponsive to meropenem and colistin. Based on 
additional antimicrobial resistance testing, the patient 
was switched to a combination treatment of cefiderocol 
(1 g, 4 d.d.) and intravenous fosfomycin (4 g, 2 d.d.) from 
day 34 until day 51. This therapy appeared effective and 
resulted in clinical improvement. Further treatment with 
nebulized colistin (2 MIU, 2 d.d.) from day 47 until day 
71 prevented reinfection, but not the P. aeruginosa colo-
nization. The patient was transferred to a rehabilitation 
clinic and given a single patient room and sanitary facili-
ties, 72  days after initial admittance. Follow-up screen-
ing by oropharyngeal, nasopharyngeal and rectal swabs 
remained positive for the CPPA until 190 days after ini-
tial admittance, followed by four successive negative 
screening-cultures spanning 78 days.

An environmental screening of the ICU ward during 
the patient’s admittance exposed sink drain coloniza-
tion with a CPPA isolate in isolation room A (TY-ZU-
0087) and standard room B (TY-ZU-0088), 34 days after 
the patient’s initial hospitalization. This CPPA appeared 
to be an introduction to the ICU since 7 months earlier 
environmental screening provided no cultures of XDR 
or MDR P. aeruginosa isolates. After assessment of the 
ICU procedures, it was hypothesized that removal of 
subglottic secretions from the patient’s tracheal tube 
was the most likely source of CPPA colonization in the 
sink drains. Due to the well-characterized risk of P. aer-
uginosa to colonize patients from the sink drain environ-
ment [47–50], the decision was made to immediately 
cap-off all sink drains linked to room A and room B. In 
addition, a permanent water-free patient care protocol 
was instituted and all sinks in the ICU patient rooms 
were removed. In addition, the reusable and washable 
tracheal tubes have been banned and were replaced by 
disposable tracheal tubes on an institutional level. Envi-
ronmental follow-up screening of the ICU’s remaining 
faciliatory sinks two months after the patient’s trans-
fer, did not reveal any suspected XDR or MDR P. aer-
uginosa isolates. In addition, no transmission to other 
patients was detected. After the patients discharge from 

the rehabilitation center, all the sanitary facilities and the 
adjacent sewage network were replaced.

Phenotypic and genotypic characterization of case isolates
Disk diffusion and gradient test showed that the isolates 
RIVM_C050529, TY-ZU-0087 and TY-ZU-0088 were 
resistant to all first and second line antibiotics. Table  1 
presents the antimicrobial susceptibility profiles for each 
isolate according to EUCAST v14.0. Additionally, isolate 
RIVM_C050529 was resistant to the novel last-resort antibi-
otics cefiderocol, ceftazidime-avibactam, ceftolozane-tazo-
bactam, imipenem-relebactam, meropenem-vaborbactam. 
Synergy testing (Table 1) of this isolate revealed borderline 
sensitivity to cefiderocol (2 µg/ml) when combined with fos-
fomycin or amikacin. In contrast, none of the other tested 
synergies appeared to lower the MIC. Genomic analysis of 
short-read sequencing data characterized the case isolates 
as high-risk ST357/O11 clones containing the T3SS effec-
tor genes exoT, exoU and exoY. All three isolates carried a 
vast array of ARG (Table 2), including the carbapenemase 
gene blaNDM-1, beta-lactamase genes blaOXA-10, blaOXA-50 
and blaPAO, extended spectrum beta-lactamase gene 
blaVEB-1, aminoglycoside resistance genes aac(6’)-Il, aadA1, 
ant(2’’)-Ia, aph(3’)-IIb and aph(3’)-VI, and the ciprofloxa-
cin resistance gene crpP. In addition, point mutations were 
detected in the gyrA (T83I) and parC (S87L) genes, which 
confer resistance to ciprofloxacin. Of the genes presented 
in Table 2, aph(3’)-IIb, blaOXA-50 blaPAO, catB7 and fosA are 
part of the intrinsic resistome of P. aeruginosa.

Phylogenetic analysis with international P. aeruginosa 
ST357 isolates
To trace the potential geographic origin of case isolate 
RIVM_C050529, we first examined a set of 4 additional 
clinical CPPA isolates with ST357 that were detected 
in the Dutch national CPPA surveillance program. As 
shown in Table  2, three of these isolates were linked to 
previous travel and hospitalization abroad in Kenya and 
Somalia. In addition, three of these isolates harbored the 
blaNDM-1 gene and one isolate harbored blaIMP-7, while 
two isolates had identical resistomes to RIVM_C050529. 
Since these isolates were associated with international 
travel, the NCBI Pathogen Detection Isolate Browser was 
queried for P. aeruginosa isolates with similar resistomes. 
Altogether, 29 isolates with identical resistomes were 
identified. All these isolates were included in a single 
cluster (PSD000019917) containing 133 isolates vary-
ing 0 to 104 SNPs, with a mean of 41 SNPs (accessed 
September 2023). All available genome assemblies and 
corresponding metadata in this cluster were extracted 
(n = 103). In addition, available non-duplicate P. aer-
uginosa ST357 genome assembly and metadata were 
extracted from BV-BRC and the Pseudomonas Genome 
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Database (n = 90). The extracted isolates originated 
from varying geographic regions including Asia (n = 92), 
Europe (n = 58), Africa (n = 21), North America (n = 11), 
South America (n = 5),Oceania (n = 2) and unregistered 
regions (n = 4) (Additional file 1).

Figure  1 presents the UPGMA tree of CPPA ST357 
from the Netherlands in context with internation-
ally obtained ST357 isolates based on wgMLST allelic 
distances (Additional file  2; Additional file  3). Overall, 
the genotypic diversity varied considerably, with on 
average 150 alleles difference between isolates and the 
largest distance being 527 alleles. Three of five Dutch 
patient isolates (RIVM_C015245, RIVM_C042465, 
RIVM_050529) and the two Dutch sink drain isolates 

(n = 2) clustered in a single clade with 30 international 
isolates from Kenya (n = 17), United States (n = 7), India 
(n = 3), Australia (n = 1), Singapore (n = 1) and Tanza-
nia (n = 1) (mean of 29 alleles). All three Dutch patient 
isolates presented the closest resemblance to the Ken-
yan isolates (varying 14–31 alleles), followed by the 
United States isolates (varying 21–38 alleles). This is in 
accordance with the preceding hospitalization in Kenya 
related to isolates RIVM_C042465 and RIVM_050529, 
but not RIVM_C015245. The Dutch sink drain iso-
lates TY-ZU-0086 and TY-ZU-0087 showed the high-
est degree of similarity to RIVM_C050529 (varying 
14–19 alleles). This, in combination with the absence 
of XDR P. aeruginosa during an earlier environmental 

Table 1 Antimicrobial susceptibility profile for the Dutch case isolates, interpreted according to EUCAST clinical breakpoints v14.0

a These antimicrobial agents were initially tested on isolate RIVM_C050529, TY-ZU-0087 and TY-ZU-0088 using Kirby-Bauer disk diffusion. All these antimicrobials 
agents were resistant according to EUCAST interpretation (all diameters were 6 mm, except cefiderocol which was 14–15 mm)
b Please note that according to EUCAST guidelines the validated MIC determination method for fosfomycin is the agar dilution and not Etest, thus no EUCAST 
interpretation is given

Method Antimicrobial agent RIVM_ C050529 EUCAST

Broth-microdilution (mg/L) Colistin 4 S

E-test (mg/L) Amikacin 128 R

Aztreonam  > 256 R

Cefiderocola 4 R

Ceftazidimea  > 256 R

Ceftazidime-Avibactam  > 256 R

Ceftolozane-Tazobactam  > 256 R

Ciprofloxacina  > 32 R

Fosfomycin 64 NAb

Imipenem-Relebactam  > 32 R

Meropenema  > 32 R

Meropenem-Vaborbactam  > 64 R

Piperacillin-Tazobactama  > 256 R

Tobramycina 128 R

Synergy E-test (mg/L) Amoxicillin-Clavulanic acid/ Aztreonam 256/256 R/R

Cefiderocol/ Amikacin 2/64 S/R

Cefiderocol/ Fosfomycin 2/32 S/NAb

Ceftazidime-Avibactam/ Amikacin 256/128 R/R

Ceftazidime-Avibactam/ Aztreonam 256/256 R/R

Ceftazidime-Avibactam/ Fosfomycin 256/64 R/NAb

Ceftolozane-Tazobactam/ Amikacin 256/128 R/R

Ceftolozane-Tazobactam/ Aztreonam 256/256 R/R

Ceftolozane-Tazobactam/ Fosfomycin 256/64 R/NA

Fosfomycin/ Amikacin 32/32 NAb/R

Imipenem-Relebactam/ Amikacin 32/128 R/R

Imipenem-Relebactam/ Aztreonam 32/256 R/R

Imipenem–Relebactam/ Fosfomycin 32/64 R/NAb

Meropenem-Vaborbactam/ Amikacin 64/128 R/R

Meropenem-Vaborbactam/ Aztreonam 64/256 R/R

Meropenem-Vaborbactam/ Fosfomycin 64/64 R/NAb
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screening, supports the hypothesis that these strains 
were likely introduced to the sink drains via evacuation 
of the patient’s tracheal tube.

The patient isolate RIVM_C044827 which was linked 
to previous hospital admission in India, did not appear 
to directly cluster. However, there were three Indian 
isolates which showed the highest genotypic similarity 
(74–77 alleles). Lastly, patient isolate RIVM_C048676 

without a link to foreign hospitalization presented a 
48–99 allelic difference with six Czech isolates and one 
German isolate.

Resistome analysis with international P. aeruginosa ST357 
isolates
The sub-clade to which the three Dutch patient iso-
lates with identical resistomes belonged, additionally 

Fig. 1 UPGMA tree based on wgMLST allelic distance. The color of the circles at the end of the edges represent the nation of the isolate’s origin. 
Countries with less than five isolates are represented by the white circles. The isolate identifiers which belong to the sub-cluster are highlighted 
in red
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contained international isolates with an identical 
resistome Fig. 2. This resistome was found in 9 of 17 of 
the Kenyan, 4 of 7 of the United States isolates, as well 
as a single Australian and Tanzanian isolate. In contrast, 
only 3 of the other 165 isolates outside of this subclade 
contained a resistome that was identical to RIVM_
C050529, since the combination of blaNDM-1, APH-
3’(VI), ARR-3 and cmlA1 was absent (Additional file 4). 
Although these three isolates were similar based on the 
resistome, they were very distantly genotypically related 

to RIVM_050529 with 220 to 343 allelic differences. 
To further explore the resistome of the isolates in de 
Dutch-Kenyan-United States clade, the genomic struc-
ture of isolate RIVM_C042465 was analyzed using the 
long-read ONT data. This resulted in a single chromo-
some which contained multiple clinically relevant ARG 
on a resistance island spanning about 37.4  kb (Fig.  3). 
This resistance island consisted of two distinct intI inte-
grase-associated gene cassettes, which carried among 
others the beta-lactamase gene blaoxa-10 and tobramycin 

Fig. 2 UPGMA tree and heatmap of the sub-clade. The color of the circles at the end of the edges represent the nation of the isolate’s origin (left). 
Each isolate’s corresponding ARG is presented in the heatmap (right). The purple squares represent presence of the ARG, while white represents 
the absence

Fig. 3 The resistance island carrying blaNDM-1 in RIVM_C042465. Red arrows represent antimicrobial resistance genes, green arrows represent 
insertion sequences and transposases, blue arrow represent integron-associated sites and grey arrows represent other genes
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resistance gene ant(2’’)-Ia. Furthermore, the typical 
ISAba125–blaNDM-1–ble element which causes carbap-
enem-resistance was identified. Of the two remaining 
Dutch isolates, one (RIVM_C048676) also presented an 
identical resistome to 5/6 Czech isolate with less than 
100 alleles difference (Additional file 4). While for isolate 
RIVM_C044827 no identical resistomes were detected 
in the international dataset.

Discussion
The aim of this case study was to trace the origin of CPPA 
ST357, which caused a hospital-acquired pneumonia in 
a repatriated critically ill patient suffering from Guillain-
Barré Syndrome. Therefore, assemblies of Dutch and 
global isolates were analyzed to attain a high-resolution 
overview of CPPA ST357 sub-clades by means of whole-
genome phylogenetics and ARG characterization. This 
approach demonstrated the potential to trace the origin 
of CPPA isolates related to repatriated patients using 
genomic epidemiology.

A significant finding for this study was that three 
unique Dutch CPPA ST357 patient  isolates belonged to 
a sub-clade which was largely composed of isolates from 
Kenya and the United States. This indicated international 
transmission, which was in accordance with previous 
repatriation of two Dutch patients from Kenya. Further-
more, this sub-clade could be further characterized by a 
blaNDM-1-carrying resistance island which induced the 
XDR phenotype.

These findings are in line with a series of case reports 
which presented novel CPPA in regions where the ende-
micity was relatively low and associations of these intro-
ductions with preceding medical treatment abroad. 
While transmission of MDR bacteria is a global and 
common occurrence, cross-national transmission is 
rarely traced and confirmed via genomic epidemiology. 
Such as the study on the CPPA ST111 outbreak in the 
United States which was derived from medical tourism 
in Mexico [17], and the outbreak of methicillin-resistant 
Staphylococcus aureus ST239 in Portugal, which likely 
originated from South America [51]. Similar to these 
studies, the current findings have shown that interna-
tional transmissions of CPPA ST357 belonging to a single 
sub-clade may occur independently from each other, can 
be linked to the same geographic region and is ultimately 
a potential risk for further domestic dissemination. Inter-
estingly, the distinction of the CPPA ST357 blaNDM-1 
sub-clade with the co-occurrence of a unique resistome 
is consistent with other independent observations, which 
similarly associated the presence of specific ARGs to var-
iation in P. aeruginosa lineages [18, 52].

The Kenyan isolates which were included in the sub-
clade were derived from two studies which collected 

these isolates from six Kenyan medical centers in the 
period 2015–2020 [19, 20]. Even though 16 of these 
CPPA ST357 isolates were derived from Nairobi in 2018 
and 2019, the endemic dissemination of this sub-clone is 
not directly evident due to the limited number of partici-
pating centers in Nairobi. However, a similar isolate was 
found in the adjacent Tanzania as early as 2014. This, in 
addition to the two Dutch isolates of patients admitted in 
Kenya (Nairobi), support that the clone in this sub-clade 
is likely endemic to the region.

The ad hoc wgMLST-based allelic distances were 
unexpectedly high between the patient case isolate 
RIVM_050529 and the two epidemiologically linked 
sink isolates (14 and 19 alleles). In contrast, the 16 
related Kenyan (Nairobi) isolates included in this 
study presented only 0 to 18 allelic differences. Pre-
vious studies based on a BioNumerics P. aeruginosa 
wgMLST scheme have shown a range of 0 to 17 allelic 
differences for epidemiologically linked (outbreak) iso-
lates [49, 53]. While another study presented a range 
of 0–59 alleles for ST357 isolates from two Indonesian 
ICUs over the course of 33  months [54]. The allelic 
distance between the patient case isolate and the two 
sink isolate might have been caused by differences in 
the wet-lab protocol rather than the genomic analy-
sis. A benchmarking study for whole-genome short-
read sequencing of foodborne microbial pathogens 
has shown that the use of the Nextera XT DNA library 
prep kit compared to other Illumina library prepara-
tion kits introduced additional allelic differences in a 
core-genome MLST [55].

Another unanticipated finding was that the Dutch 
patient RIVM_015245, which was linked to preceding 
hospitalization in Belgium, was included in the Ken-
yan sub-clade. To our knowledge, no other P. aerugi-
nosa ST357 from Belgium has previously been reported. 
Due to the high similarity with the other Kenyan iso-
lates, a possible explanation may be that the preceding 
travel history of the patient was not complete. Another 
unexpected finding were four isolates from Minnesota, 
United States, which presented a close genotypic resem-
blance to the Dutch and Kenyan isolates of the sub-clade. 
It is unlikely that these strains have been domestically 
acquired, since the CPPA prevalence in the United States 
only contributes to approximately 2 to 4% of all carbape-
nem-resistant P. aeruginosa [1, 56, 57]. In addition, these 
studies only reported a 0% to 6% blaNDM-1 prevalence in 
these CPPA isolates.

For infection prevention and control, the practice of 
tracing the origin of a novel CPPA or other nosocomial 
pathogens is one reliant on a combination of available 
epidemiological and laboratory data [58]. This proce-
dure is often limited by incomplete epidemiological data 
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or the discriminatory power of typing methods such 
as MLST. For instance, even if a CPPA introduction is 
linked to foreign hospitalization, this link does not com-
pletely exclude the possibility that transmission may 
have occurred through the local hospital environment. 
Although, the understanding of intra- and inter-hospital 
transmissions has increased with the rise of WGS-based 
approach for CPPA [47–50, 59], international dissemi-
nation still constitutes a challenge. Through a thorough 
investigation of the domestic and international isolates, 
we have shown that the patient-to-sink CPPA transmis-
sion which occurred in the previously uncolonized sinks 
were indeed of a non-domestic origin. Therefore, the 
current study may provide an example for the investi-
gations of additional international transmission events 
and thus may contribute to optimal infection control 
measures.

There are some potential drawbacks which apply to the 
current study. The genomes compared in this study have 
been assembled using different assembly methods which 
introduces a degree of bias between the genomes. Addi-
tionally, the current study analyzed a few CPPA isolates 
of a single sequence type which were related to foreign 
hospitalization. It is unknown if the approach used in 
this study can be applied to a broader spectrum of CPPA 
sequence types.

The current approach is dependent on a worldwide 
coverage of well-characterized CPPA strains analyzed 
by means of WGS, so that these strains can be used as a 
reference. Therefore, it is beneficial that endemic CPPA 
strains are characterized in countries with a limited cov-
erage, such as the studies performed in Kenya by Musila 
et al. (2021) and Kiyaga et al. (2022) [19, 20].

This study presents an XDR subclone of CPPA ST357 
with a unique resistance island which has been intro-
duced to the Netherlands via repatriation of critically ill 
patients from Kenya. Travel of persons and repatriation 
of patients from countries with a high CPPA endemic-
ity to countries with a low CPPA endemicity will remain 
an irrevocable challenge for patient safety. Therefore, the 
monitoring of repatriated patients for CPPA in conjunc-
tion with vigilance for the risk of environmental con-
tamination is advisable to detect and prevent further 
dissemination.
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