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Abstract 

Background  Describing the transmission dynamics of infectious diseases across different regions is crucial for effec-
tive disease surveillance. The multivariate time series (MTS) model has been widely adopted for constructing cross-
regional infectious disease transmission networks due to its strengths in interpretability and predictive performance. 
Nevertheless, the assumption of constant parameters frequently disregards the dynamic shifts in disease transmission 
rates, thereby compromising the accuracy of early warnings. This study investigated the applicability of time-varying 
MTS models in multi-regional infectious disease monitoring and explored strategies for model selection.

Methods  This study focused on two prominent time-varying MTS models: the time-varying parameter-stochastic 
volatility-vector autoregression (TVP-SV-VAR) model and the time-varying VAR model using the generalized additive 
framework (tvvarGAM), and intended to explore and verify their applicable conditions for the surveillance of infectious 
diseases. For the first time, this study proposed the time delay coefficient and spatial sparsity indicators for model 
selection. These indicators quantify the temporal lags and spatial distribution of infectious disease data, respectively. 
Simulation study adopted from real-world infectious disease surveillance was carried out to compare model perfor-
mances under various scenarios of spatio-temporal variation as well as random volatility. Meanwhile, we illustrated 
how the modelling process could help the surveillance of infectious diseases with an application to the influenza-like 
case in Sichuan Province, China.

Results  When the spatio-temporal variation was small (time delay coefficient: 0.1–0.2, spatial sparsity:0.1–0.3), 
the TVP-SV-VAR model was superior with smaller fitting residuals and standard errors of parameter estimation 
than those of the tvvarGAM model. In contrast, the tvvarGAM model was preferable when the spatio-temporal varia-
tion increased (time delay coefficient: 0.2–0.3, spatial sparsity: 0.6–0.9).

Conclusion  This study emphasized the importance of considering spatio-temporal variations when selecting 
appropriate models for infectious disease surveillance. By incorporating our novel indicators—the time delay coeffi-
cient and spatial sparsity—into the model selection process, the study could enhance the accuracy and effectiveness 
of infectious disease monitoring efforts. This approach was not only valuable in the context of this study, but also has 
broader implications for improving time-varying MTS analyses in various applications.
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Introduction
Infectious disease surveillance is crucial in the early 
stages of a disease epidemic or outbreak [1–3]. Previ-
ous studies have demonstrated the advantages of using 
multivariate time series (MTS) models to construct 
cross-regional infectious disease transmission networks, 
particularly in terms of interpretability and predictive 
performance [4–6]. As a result, MTS models, along with 
mechanistic models, have emerged as significant research 
tools in the field of infectious disease surveillance [7, 8]. 
However, despite the potential of MTS models, signifi-
cant challenges arise when applying them to infectious 
disease control efforts. Specifically, traditional MTS 
models often rely on a central assumption: parameters 
such as coefficients and disturbance variances are con-
stant [9]. In other words, these models implicitly assume 
that the transmission rate of the disease or the transmis-
sion pattern among different regions and populations 
does not change over time. This assumption clearly strug-
gles to accurately reflect the dynamic characteristics of 
infectious disease transmission. Furthermore, these mod-
els ignore the influence of neighboring incidence rates 
and other factors, making it difficult to ensure the accu-
racy and effectiveness of early warnings [10, 11]. More 
importantly, there may be extensive time-lag correlation 
effects among variables, meaning the incidence of local 
infectious diseases could be influenced by various factors 
from past periods and their own historical values [12, 13]. 
Consequently, due to their constant parameter settings, 
traditional MTS models cannot describe the dynamic 
characteristics of real-world situations and the changes 
in system structure over a certain period. This limitation 
may result in significant discrepancies between the mod-
el’s predictions and the actual spread of the disease.

In the field of infectious disease surveillance, the 
consideration of time-varying parameters is gradually 
gaining attention. Previous research has employed vari-
ous time-varying parameter models, such as Bayesian 
spatiotemporally varying coefficient models, varying 
coefficient distributed lag non-linear models, and quasi-
Poisson varying coefficient regression models [12–16]. 
These models primarily focus on how a single inde-
pendent variable (e.g., weather conditions or air pollut-
ants) affects a dependent variable (e.g., infectious disease 
incidence) over time. However, when aiming to explore 
the interrelationships and changes in the incidence 
sequences of infectious diseases across regions, these 
models may not provide a comprehensive perspective. To 

comprehensively analyze the transmission dynamics of 
infectious diseases across different regions, we can draw 
upon two primary models widely used in fields like eco-
nomics, finance, and psychology, despite their unprec-
edented application in infectious disease research: the 
time-varying model based on the Bayesian framework 
and the time-varying model based on the Generalized 
Additive Model (GAM) framework. These two models 
are common methodologies in Granger causality explora-
tion. Firstly, the Bayesian framework model, represented 
by the TVP-SV-VAR model, stands out for its ability to 
flexibly capture temporal variations in data [17, 18]. 
This model assumes that the coefficients, variances, and 
covariances are time-varying, with all parameters follow-
ing a random walk process assumption. This allows the 
model to effectively capture the asymptotic changes in 
the underlying structural and swiftly respond to any sud-
den shifts. Nevertheless, the downside of this model lies 
in its complexity, which may lead to overfitting issues. On 
the other hand, the tvvarGAM model, as a representative 
of the time-varying model using the GAM framework, 
excels in its flexible handling of time-lag coefficients 
[19, 20]. This model only assumes time-varying lag coef-
ficients, thus reducing empirical assumptions about the 
data and lowering the risk of overfitting. However, this 
model may not be as sensitive as the TVP-SV-VAR model 
in capturing instant relationships and random volatility. 
These two representative models possess distinct char-
acteristics, while many other models are variations based 
on these two representatives.

The great potential of time-varying multivariate time 
series models for infectious disease surveillance is still 
not fully exploited. This is primarily due to the fact that 
the epidemic of infectious disease exhibits its own tem-
poral and spatial variational features, but so far there has 
been a lack of model comparison as well as model selec-
tion indicators tailored to such data features. In infec-
tious disease research, it is imperative to consider the 
spatial variations induced by multiple complex factors 
such as the natural environment, pathogenesis, popula-
tion transmission, and interaction. This makes the spa-
tiotemporal distribution of infectious diseases more 
complex and variable than economic and financial data. 
Consequently, it is necessary to explore and validate the 
applicability conditions of both the TVP-SV-VAR and 
tvvarGAM models for infectious diseases surveillance.

In order to solve the above problem, we referred to 
the statistical framework proposed by Held [21] to help 
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build model selection indicators. The original Held’s 
framework decomposes the disease incidence into an 
“endemic” and an “epidemic” part (e.g., an epidemic 
with region and epidemic among regions), which can 
monitor the spread of infectious disease and quantify 
the effect of different components. Furthermore, in 
our previous application of this framework to explore 
the spatio-temporal dynamics and potential ecologi-
cal drivers of acute respiratory infectious diseases 
[22], we observed significant findings. Specifically, it 
was revealed that the auto-correlation within each 
area (time delay coefficient) and the cross-correlation 
between different areas (spatial sparsity) could indicate 
the pattern of disease-specific transmission. On this 
basis, this study further proposed both of them as indi-
cators for time-varying MTS model selection to explore 
the infectious disease on surveillance data.

In this study, we first presented the details of the TVP-
SV-VAR model and tvvarGAM model respectively before 
comparing their differences in theory. Since each model 
has its own advantages in handling either temporal or 
spatial variation, we proposed the time delay coefficient 
and spatial sparsity indicators for model selection. Fur-
thermore, we used the  simulation study adopted from 
real-world infectious disease surveillance to compare 
model performances under various scenarios of spatio-
temporal variation as well as random volatility. Finally, 
we illustrated how the modelling process could help the 
surveillance of infectious diseases with an application to 
the influenza-like case in Sichuan Province, China.

Method
Related theoretical research
TVP‑SV‑VAR model
The impacts of random fluctuations and drifts are usually 
accompanied by disease data, and would lead to biased 
coefficient estimation if models with constant volatil-
ity are used. Hence, the time-varying parameters in the 
TVP-SV-VAR model with the random volatility assump-
tion could effectively reveal the mutual influence rela-
tionships and characteristics among different time series 
of incidence data. Specifically, the general expression of 
the TVP-SV-VAR model is:

(1)Y t=Y ∗

t βt+A−1
t Ŵtεt , t = s + 1, · · · , n

At=

1 0 · · · 0

a21,t
. . .

. . .
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. . .

. . . 0
ak1,t · · · akk−1,t 1

.

where Y t is a k-dimensional time series (e.g., the time 
series of incidence data from k different areas), s is the 
maximum time lag, k stands for dimensionality, and 
Y

∗
t=Ik ⊗ (1,Y ′

t−1, · · · ,Y
′
t−s) . Besides, let βt be the time-

varying auto-regression coefficients, At be the inno-
vation of one variable that will affect the others with 
different degrees during the temporal-dynamic pro-
cess, and ht=(h1t , · · · ,hkt)

′ be the logarithmic random 
volatility with hik = log γ 2

it, j=1, · · · k , t=s+1, · · · , n . As 
followed by the work of Nakajima [23–25] and Primic-
eri [26], all the non-zero and non-one elements in the 
lower triangular matrix At were stacked as a new vec-
tor at=(a21, a31, a32, a41, · · · , ak ,k−1)

′ . Furthermore, the 
random walk process was adopted to characterize the 
changing process of time-varying parameters as below. 
The series of coefficient changes is βt , the series of struc-
tural information changes is at , and the series of volatility 
changes is ht,

where uβt , uat and uht are disturbance terms. Then the 
structural impact including εt is

where βs+1 ∼ N (uβ0 ,Ŵβ0), as+1 ∼ N (ua0 ,Ŵβ0) and 
hs+1 ∼ N (uh0 ,Ŵβ0).

Since both βt and at are subject to the random walk 
process, and the current change of parameters is deter-
mined according to the previous period values and 
random errors, it is reasonable that the process is a short-
term constraint. At the same time, because ht also satis-
fies the random walk process, the model can reflect the 
random wave characteristics in the time series.

Parameter estimation was carried out by the Markov 
chain Monte Carlo (MCMC, it is a powerful statistical 
simulation method that can approximate the numerical 
value of a target probability distribution through ran-
dom sampling without knowing the specific form of the 
distribution).

After parameter estimation, time-varying impulse 
response analysis was used to explore the relationships 
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between incidence time series among different areas 
both simultaneously and chronologically. Specifically, it 
describes the evolution of a model’s variables in reaction 
to a shock (i.e., one standard deviation unit applied to the 
random error term) in one or more variables. To this end, 
we rewrote (1) as follows:

where B(L)=In−B1L−B2L
2
− · · ·−BsL

s , ηt=A−1∑εt , 
and B(L) is the time-lag operator. Assuming yt is the 
covariance-stationary time series with mean µ , the 
expectation on both sides of Eq. (4) yields,

From the model presented above, it could be seen that 
the TVP-SV-VAR model relies on the random fluctuation 
assumption of the time-varying parameters to capture 
the information of the fluctuations of first and second 
moments, so as to characterize the changes of the model 
parameter coefficients. It could deal with both auto-cor-
relations within one area and cross-correlations between 
different areas in a unified framework. However, the 
TVP-SV-VAR model comes at the cost of more assump-
tions and higher degrees of freedom, which makes it 
liable to problems such as model misspecification and 
overfitting, especially when there is also a lack of appro-
priate model selection indicators. See Appendix A for 
more details about the TVP-SV-VAR model.

TvvarGAM model
The most important difference between the tvvarGAM 
and TVP-SV-VAR model is that the former does not con-
centrate on the higher moments of time series data (i.e., 
concurrent relationships among different time series, 
random volatility, and so on), so that it reduces to a rela-
tively simple form.

where Y t is a k × 1 vector with k observations (i.e., each 
observation comes from one area) at time t, β0,t is the 
intercept term, Bt is the time-lag operator, and ε is the 
random disturbance term that follows a normal distri-
bution. The Generalized Additive Model (GAM) frame-
work was used to model the time-varying parameters as 
splines of time to estimate the time-varying parameters. 
The independent variables were divided into several con-
tinuous intervals, and each interval used a separate spline 
function to generate a smooth curve. In this study, thin 
plate regression spline basis, ten basis functions, and wig-
gliness penalty scheme were adapted [20, 27, 28]. Finally, 
a 95% Bayesian confidence interval (CI) was used to 

(4)B(L)yt=B0+ηt

(5)µ=B0 + B1µ+ B2µ+ · · · + Bsµ=(In−B1−B2− · · ·−Bs)
−1

B0.

(6)Y t = β0,t + BtY t−1 + ε

estimate the uncertainty of the smoothing function. See 
Appendix B for more details about the tvvarGAM model.

Compared with the TVP-SV-VAR model, the tvvar-
GAM model relies on fewer assumptions to avoid the 
potential issue of overfitting, which is mainly reflected 
as fluctuations in the second moment. Based on its theo-
retical advantages, the tvvarGAM model was used in this 
study to estimate the time-varying time-lag correlation 
coefficients between regional infectious diseases. How-
ever, the tvvarGAM model may prove inadequate when 
both temporal and spatial variations are present in the 
data structure. In such scenarios, the key to selecting an 
optimal model lies in striking a balance between bias and 
variance. To achieve this equilibrium, it is crucial to iden-
tify suitable metrics that can guide the model selection 
process.

Simulation study
In the simulation study, we explored the performance of 
the time-varying multivariate time series model under 
different degrees of spatiotemporal heterogeneity by 
using the two key indicators of time delay coefficient and 
spatial sparsity. We first used the real percentage of Influ-
enza-like Illness (ILI%) time series of Sichuan province 
and adopted the common VAR model to conduct a pre-
liminary exploration. On this basis, the specific param-
eters boundary values of the simulation scene were set as 
follows, and more details are provided in Appendix C.

Simulation scenarios based on the time delay coefficient 
and spatial sparsity
As mentioned in the introduction part, since time delay 
coefficient and spatial sparsity are important indicators 
when characterizing the epidemics of infectious diseases 
and choosing the appropriate time-varying MTS models, 
the simulation scenarios were constructed on these two 
indicators.

The time delay coefficient measures the auto-corre-
lation of incidence data between different time points 
within one area. In this study, a time-varying VAR model 
is generated by randomly assigning a time series to each 
non-zero parameter with randomness obeying a linear 
increasing, linear decreasing, Sigmoid increasing, Sig-
moid decreasing, and normal distribution. If an edge is 
missing from the initial matrix, all entries in the param-
eter time series are set to zero. The maximum value of 
the time delay coefficient (noted as θ) was set for the dif-
ferent time-lag correlation coefficients, i.e., the maximum 
lagged correlation between regional incidence was 0.1, 
0.2, and 0.3.

Meanwhile, the spatial sparsity indicates the prob-
ability of having cross correlations among incidence 
time series of different areas, in response to the spatial 
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correlation of incidence. In this study it was set based 
on the range of magnitude of the time lag coefficients 
between incidences of neighbouring areas, and the 
time-lag correlation between the time series was set to 
varying degrees of spatial sparsity (noted as v_sparse): 
0.1, 0.3, 0.6, and 0.9.

Specifically, a null matrix of VAR parameters initialized 
with p × p dimensions (the approximate number of ILI% 
variables in an analytical study of the dynamic hazard 
identification of actual neighboring municipal (prefec-
ture) ILI%) was first incorporated into the VAR model, 
setting all p auto-correlation terms to be non-zero, since 
auto-correlation was considered to be present in most 
natural and social phenomena and can be observed in 
essentially any application. Next, randomly set x of the 
p × (p-1) non-diagonal elements to be present, i.e., there 
was a cross-lagged effect, corresponding to the probabil-
ity that its edge was present as p = v_sparse.

By setting different maximum values of the time-vary-
ing time-lag coefficients and different degrees of spatial 
sparsity values, as well as whether the time series has 
random volatility, we could further explore and compare 
the performances of TVP-SV-VAR model and tvvar-
GAM model under various scenarios of spatio-temporal 
variation.

Performance evaluation
This study used the RMSE to evaluate the fitted residual 
of the two models. To evaluate the estimation error of the 
time-lag correlation coefficient of the model, the stand-
ard error of each time-lag correlation coefficient in the 
target city (prefecture) equation was used, and the mean 
values of different time points and different parameters 
were calculated successively for comparison.

Sensitivity analysis on the order of time vector elements
When applying MTS models to the surveillance of infec-
tious diseases, it was used to set the target area (i.e., the 
area of interest) as the last element of the time vector, 
while its neighbouring areas were put into other ele-
ments. In order to verify the robustness of time delay 
coefficient estimates under different orderings of time 
vector elements, we further conducted sensitivity analysis 
by reshuffling the elements (i.e., area) in the time vector 
and checking whether changing the  time vector order-
ings would affect the estimates of time delay coefficients 
among different areas. The results of the robustness anal-
ysis of this study show that the order of the variables does 
not have a large effect on the magnitude of the time-lag 
correlation coefficient of interest in the study, and the 
results are robust (see more details in Appendix C.3).

Case study
General description
ILI% is widely used for influenza surveillance to reflect 
the intensity of local influenza epidemics [29, 30]. In this 
study, the influenza-like case data came from Sichuan 
Provincial Center for Disease Control and Prevention 
and included sentinel surveillance data from 2015 to 
2019 in Sichuan Province. The identification criteria for 
ILI patients were based on the World Health Organiza-
tion’s standard case definition [31]. Sichuan Province is a 
representative province with typical multi-ethnic genetic 
background, multi-cultural customs and multi-type natu-
ral landforms. This study takes Sichuan Province, which 
has obvious diversity in economic development, natu-
ral environment, cultural customs and biological genet-
ics. As a key region for influenza surveillance in China, 
Sichuan’s representativeness guarantees the applicability 
of this method in these regions and offers evidence for 
future applications.

Statistic analysis

Step 1. Data preprocessing

	 The original data used in this study comprised 
weekly counts of influenza cases and the total num-
bers of outpatient and emergency visits, segmented 
by age group, at each surveillance site. Subsequently, 
the ILI% was determined by calculating the propor-
tion of ILI patients relative to the total outpatient and 
emergency department visits in designated sentinel 
hospitals. Influenza-like case surveillance is a routine 
surveillance activity, and the analysis of ILI data is 
not considered human subject research and does not 
require the associated ethical review.

	 In this study, the original data set was system-
atically collated and transformed to generate high-
quality data samples suitable for subsequent analysis. 
The data sample presented a five-column structure 
(see more details in Appendix D). Specifically, the 
first column listed the monitoring points of each city, 
and the second column accurately calculated and 
recorded the percentage of ILI corresponding to each 
monitoring point, providing a solid data basis for in-
depth analysis of the spatial distribution and dynamic 
changes of influenza epidemic. The third column 
represents this point in time and lays the foundation 
for subsequent construction of time series data. In 
addition, the fourth and fifth columns indicate the 
latitude and longitude of the monitoring points in 
each city, respectively.
Step 2. Model selection
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	 Before conducting the time-varying MTS anal-
ysis, it is necessary to select appropriate city clus-
ters for the estimation of the TVP-SV-VAR model 
or the tvvarGAM model. This selection is based on 
the size range of the ILI% delay coefficient between 
cities (prefectures) and their geographical location.
	 First, we separately took each city as the target 
city, so that its neighboring cities together con-
stituted a cluster. In terms of the time series vec-
tor setting, the target city was set at the end of the 
vector, while the order of its neighboring cities was 
arranged from farthest to closest to the target based 
on the lengths of the boundary with the target city.
	 Second,  in order to avoid pseudo-regression, 
the Augmented Dickey-Fuller (ADF) test and 
Johansen cointegration test were used (see more 
details in Appendix E.2).
	 Furthermore, to determine the optimal lag 
order, we built an ordinary VAR model within each 
cluster. The number of neighboring cities (prefec-
tures) was used as a measure of spatial sparsity, 
and the time delay coefficient set in the simulation 
study corresponded to the lag order. The AIC, BIC 
and HQ information criteria were calculated in the 
model, and the optimal lag order should minimize 
the average value of the three criteria.
	 Lastly, we carefully selected an appropri-
ate time-varying multivariate time series model 
for modeling the clusters based on the number of 
neighboring cities (prefectures) surrounding the 
central cities and the optimal lag order determined 
through calculations. Specifically, the quantity of 
adjacent cities (prefectures) serves as an indicator 
of spatial sparsity, reflecting the relative isolation or 
connectivity of the target city in space [4]. Mean-
while, the optimal lag order functions as a metric 
for the time delay coefficient. Collectively, these 
parameters form the foundation for our model 
selection process.
Step 3. Model estimation
	 Applying the time-varying multivariate series 
model to sentinel monitoring ILI% data of Sichuan 
Province from 2015 to 2019. According to the time-
varying MTS model selection framework suggested 
by the simulation findings, the case analysis was 
carried out region-by-region from the perspective 
of infectious disease surveillance in the real world. 
Specifically, we employed the aforementioned time-
varying MTS methods to visualize the dynamic risk 
of ILI% among neighboring cities. All data analyses in 
this study were based on R 4.2.1, the “bvarsv” pack-
age is used to estimate the TVP-SV-VAR model [32], 
the tvvarGAM model use the “tvvarGAM” package 

to evaluate the data [19], and the statistical test level 
was 0.05.

Result
Simulation result
Constant variance of time series residuals
When the variance of the time series residuals was set to 
be constant, the comparison results of the fitted residuals 
and the standard errors of the parameter estimates of the 
two models were shown in Table  1. The results showed 
that the fitted RMSE of the TVP-SV-VAR model was 
smaller under relatively low time delay coefficients and 

Table 1  The fitted RMSE and SE between the two models (when 
residual variance is constant)

Boldface indicated that the two models had better evaluation index values

θ v_sparse tvvarGAM TVP-SV-VAR

RMSE SE_mean RMSE SE_mean

0.1 0.1 1.1010 0.0916 1.0778 0.0022
0.3 1.0246 0.0832 1.0085 0.0020
0.6 1.0693 0.0746 1.0691 0.0018
0.9 1.7505 0.1042 1.7745 0.0025

0.2 0.1 1.2727 0.0932 1.3302 0.0021
0.3 1.2734 0.0717 1.2727 0.0018
0.6 1.5236 0.0609 1.5401 0.0015
0.9 3.8220 0.0971 3.9444 0.0024

0.3 0.1 1.6484 0.0816 1.7232 0.0019
0.3 1.9966 0.0757 2.1175 0.0017
0.6 2.8271 0.0588 2.8923 0.0014
0.9 9.2745 0.0887 9.6173 0.0022

Table 2  The fitted RMSE and SE between the two models (when 
residual variance is time-varying)

Boldface indicated that the two models had better evaluation index values

θ v_sparse tvvarGAM TVP-SV-VAR

RMSE SE_mean RMSE SE_mean

0.1 0.1 1.0931 0.0806 1.0913 0.0020
0.3 1.0445 0.0748 1.0357 0.0018
0.6 1.0701 0.0691 1.0777 0.0017
0.9 1.7313 0.0942 1.7421 0.0023

0.2 0.1 1.3505 0.0808 1.3442 0.0020
0.3 1.3193 0.0698 1.3159 0.0017
0.6 1.4920 0.0587 1.5142 0.0014
0.9 3.7728 0.0939 3.8760 0.0024

0.3 0.1 1.7329 0.0743 1.7344 0.0018
0.3 2.0218 0.0775 2.1598 0.0017
0.6 2.7826 0.0575 2.8492 0.0014
0.9 9.1967 0.0878 9.5142 0.0022
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Fig. 1  Geographic heat map of ILI% annual mean by city for 2015–2019. Panel a is the spatial distribution of 21 cities (prefectures) in the study 
region; Panels b–f are geographical heat maps of ILI% annual mean value of each city (prefecture) from 2015 to 2019, respectively

Table 3  Lag orders for each cluster model

Target city Cluster Lag order

Luzhou Neijiang, Yibin, Zigong, Luzhou 2

Guangyuan Mianyang, Bazhong, Nanchong, Guangyuan 3

Leshan Yibin, Ya’an, Zigong, Meishan, Leshan 1

Chengdu Deyang, Ziyang, Aba, Meishan, Ya’an, Chengdu 1

Nanchong Guang’an, Suining, Dazhou, Mianyang, Bazhong, Guangyuan, Nanchong 1

Meishan Leshan, Ya’an, Zigong, Chengdu, Ziyang, Neijiang, Meishan 1
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spatial sparsity values. Under all the settings of time delay 
coefficients and spatial sparsity values, the TVP-SV-VAR 
model consistently exhibited a smaller standard error 
for the estimated time delay coefficients. In addition to 
considering the time delay, the disturbance term of the 
TVP-SV-VAR model also included the influence of the 
simultaneous pulses between time series. When the time 
delay coefficient and spatial sparsity value were large, 

the other time series had a greater influence on the time 
delay of the central time series. In this case, the simul-
taneous pulses captured by the perturbation term in the 
TVP-SV-VAR model played a more prominent role in 
shaping the estimated time delay coefficient. Therefore, 
the RMSE of the TVP-SV-VAR model was larger than 
that of tvvarGAM when the time delay coefficient and 
spatial sparsity value were larger. On the contrary, the 

Fig. 2  Comparison of RMSE between TVP-SV-VAR model and VAR model in target cities (prefectures)
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TVP-SV-VAR model was better with lower RMSE and 
standard error. In the case of large time delay coefficients 
and spatial sparsity values, if the concurrent relationships 
between time series were not priority for consideration, 
then the fitted residuals of the tvvarGAM model were 
smaller than those of the TVP-SV-VAR model.

Time‑varying variance of time series residuals
According to the results in Table 2, the fitting RMSE of 
the TVP-SV-VAR model was smaller with a low time 
delay coefficient and low spatial sparsity value when the 
variance of the time series residuals was set to be time-
varying. Under all the settings of time delay coefficients 

and spatial sparsity values, the TVP-SV-VAR model 
consistently demonstrated smaller standard errors for 
the estimated time delay coefficients. According to the 
characteristics of the model, for a series with random 
volatility, the tvvarGAM model with a time-varying 
delay coefficient and constant fluctuation might ignore 
the changes in the disturbance term when the time delay 
coefficient and spatial sparsity value were large, resulting 
in biased estimated coefficients. Therefore, for time series 
with random volatility, it is advisable to employ the TVP-
SV-VAR model for estimating the time delay coefficient 
to avoid such bias.

Case study result
Descriptive analysis
Figure 1 showed the geostatistical heat map of the annual 
mean ILI% of neighboring cities from 2015 to 2019. 
According to the results, the changes in Aba, Guangyuan 
and Bazhong were relatively stable over the five years, 
while Bazhong had been showing a lower level of ILI% 
and Yibin had been showing a higher level of ILI%. See 
Appendix E.1 for more details on descriptive analysis.

Model selection
Table  3 showed the lag orders for each cluster model. 
Given the combined performance of sparsity and lag 

Table 4  Comparison between the RSD of the TVP-SV-VAR model 
and that of the benchmark model

Abbreviations: mRSD mean residual standard deviation, RSD residual standard 
deviation

ILI% of target city 
(prefecture)

mRSD (TVP-SV-VAR) RSD (VAR)

Luzhou 3.927 4.472

Guangyuan 2.198 2.451

Leshan 0.429 0.513

Average 2.185 2.479

Fig. 3  Stochastic volatility of ILI% in Luzhou (1 Neijiang, 2 Yibin, 3 Zigong, 4 Luzhou) and dynamics change of contemporaneous relationship 
with ILI% in the remaining cities. Note: Subplot 1 shows stochastic volatility; the rest show contemporaneous relationships. Stochastic volatility 
is used to describe the time-varying nature of volatility or variance in time series data, it can more flexibly and accurately describe and predict 
changes in volatility in time series data. The contemporaneous relationship refers to the association among multiple variables at the same point 
in time (or almost simultaneously), it reveals how these variables interact or correlate with each other at that particular moment
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Fig. 4  Dynamic change of time delay correlation coefficients between ILI% in Luzhou (1 Neijiang, 2 Yibin, 3 Zigong, 4 Luzhou) and the remaining 
neighboring cities. Note: Numbers in parentheses indicate lag periods



Page 11 of 16Yu et al. BMC Infectious Diseases          (2024) 24:832 	

order, we chose Luzhou, Guangyuan, and Leshan as 
representative examples for TVP-SV-VAR model esti-
mation in scenarios characterized by minimal delay 
coefficients and sparsity. In contrast, Chengdu, Nan-
chong and Meishan were selected as examples for 
tvvarGAM model estimation under the scenario of 
large delay coefficients and spatial sparsity.

Dynamic risk identification when time delay coefficients 
and spatial sparsity were small
According to the model selection results, Luzhou, 
Guangyuan and Leshan cities were selected as exam-
ples to perform the TVP-SV-VAR model estimation. 
More details of Luzhou and other cities were shown in 
Appendix F.

Analysis and comparison of the standard deviation of 
model residuals  Figure 2 compared the RMSE between 
TVP-SV-VAR model and VAR model in target cities (i.e., 
Luzhou, Guangyuan, and Leshan). Among them, ILI% of 
Luzhou had a large volatility in 2016, ILI% of Guangyuan 
had two volatility peaks at the beginning of 2017, and 
ILI% of Leshan had a large volatility peak at the end of 
2017.

In addition, Table 4 showed that, on average, the stand-
ard deviation of shocks estimated by the TVP-SV-VAR 
model was smaller than that of the ordinary time-invar-
iant parameter VAR model.

Dynamic change analysis of the relationship between sto‑
chastic volatility and the same period and detection of 
parameter anomalies  According to Fig.  3, the random 
volatility of ILI% in Luzhou generally presented cyclical 
fluctuations, with the peak appearing in the first half of 
each year and the bottom generally appearing in the sec-
ond half of each year.

Dynamic change analysis of time delay correlation coef‑
ficients and detection of parameter anomalies  Figure 4 
could help check whether the time delay coefficients over 
time exceeded the upper limit of the previous epidemic 
standards and the warning threshold. Based on infectious 
disease surveillance, any outliers in time delay coefficients 
could be monitored in real time. When the parameter 
value exceeded the upper limit of the epidemic standard 
or the warning threshold, the surveillance system would 
issue a real-time warning signal, focusing on the preven-
tion and control of the risk of epidemic sources among 
the corresponding neighborhood.

Time‑varying impulse response analysis  Figure  5 
showed that one unit of standard deviation shock on 
the ILI% of Neijiang would cause a significant posi-
tive impulse response on that of Luzhou around the 
193rd week, with the highest value close to 2, and a long 
response duration until after 26 weeks of lagging. In the 
101st week, the ILI% of Luzhou showed the second-
largest impulse response, with the positive and negative 
responses oscillating in the first period and soon con-
verging to a positive response until it converged to zero. 
In the 57th week, the ILI% of Luzhou showed a relatively 
obvious negative impulse response with a maximum 
negative response of about -0.94. As for the ILI% of Yibin, 
the response for one unit of standard deviation shock 
was negative in the remaining period except for the early 
impulse response that oscillated positive and negative 
until the 110th week, and gradually converged to zero 
around the 26th week. In contrast, the ILI% of Zigong 
responded to one unit of standard deviation shock in a 
positive way, with the highest value close to 0.70 during 
the study period.

Prediction comparison  In this study, the rolling one-
step-ahead forecasting was performed with 26 time 
periods. Gibbs sampling was set at 10,000 times with 

Fig. 5  Time-varying impulse response of ILI% in Luzhou to ILI% shocks in neighboring cities
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preheating 1,000 times. The prediction results were 
shown in Fig. 6 and Table 5.

The results from Fig.  6 and Table  5 showed that the 
average values of the prediction error evaluation index 

of TVP-SV-VAR model of ILI % in the above three cit-
ies (prefectures) were less than that of the VAR model. 
Therefore, the prediction performance of the TVP-SV-
VAR model was better than that of the VAR model with-
out time-varying parameters.

Fig. 6  Forecast of ILI%
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Dynamic risk identification when time delay coefficients 
and spatial sparsity were large
Based on the model selection results, the tvvarGAM 
model estimation under this scenario was selected for 
Chengdu, Nanchong and Meishan. More results of 
Chengdu and other cities were shown in Appendix G.

Figure  7 showed the suspected transmission network 
of ILI % among neighboring cities centered on the ILI% 
of Chengdu at nine equal intervals. At the first four time 
points, ILI % of Aba had a positive correlation with that 
of Chengdu. Meanwhile, during the first seven time 
points, ILI% of Chengdu had a positive correlation with 
that of Deyang, and the parameter gradually decreased 
over time. At the last three time points, ILI% of Chengdu 
had a positive correlation with that of Meishan, and the 
relationship between ILI% of Meishan and Chengdu 
changed from positive to negative.

Discussion
This study explored the performances of TVP-SV-VAR 
model and tvvarGAM model in the scenario of infectious 
diseases surveillance and early warning. The simulation 
results showed that the TVP-SV-VAR model had better 
predictive performance when the time delay coefficient 
and spatial sparsity were small. On the contrary, in the 
case of large time delay coefficient and spatial sparsity, 
the tvvarGAM model outperformed the TVP-SV-VAR 
model with smaller residuals. In addition, for time series 
with random volatility, the TVP-SV-VAR model should 
be used to estimate the time delay coefficients because 
its standard error was smaller, to avoid the estimation 
coefficient bias. In addition, based on our proposed 
model selection framework, the case study found some 
interesting time-lag relationships between Chengdu-
the megacity with more than 10 million population-and 
its neighbors (e.g., Aba and Meishan), which deserved 

further attention in practical surveillance of infectious 
diseases.

Changes in the temporal and spatial distribution of 
infectious diseases cases are particularly important for 
epidemic monitoring and warning, which can help find 
key areas of infectious disease and judge the spread of the 
epidemic situation, to take timely prevention and control 
measures. Therefore, this study aims to discuss the char-
acteristics and robustness of the time-varying parameters 
estimated by the two models as a means of exploring the 
applicability of the two models in different infectious dis-
ease surveillance and warning scenarios. As shown by the 
results of the simulations, there was a significant differ-
ence in the performance of the two models under differ-
ent scenarios. Furthermore, this study proposed model 
selection for different scenarios under a statistical frame-
work, i.e., using the time delay coefficient to capture tem-
poral trends within regions and the spatial sparsity to 
capture the spatial trends between regions. On this basis, 
model selection indicators were constructed to indicate 
the transmission pattern of infectious diseases so that 
an appropriate model could be chosen for surveillance 
practice.

The two main models have strong practicability and 
flexibility, and can be widely applied to a variety of real-
time surveillance and rapid response scenarios of infec-
tious diseases with spatial and temporal heterogeneity. 
This includes, but is not limited to, acute respiratory 
infectious diseases such as SARS-CoV-2 [33], influenza 
[34] and pertussis [35], natural focal endemic diseases 
such as dengue fever [36], hemorrhagic fever with renal 
syndrome [37] and malaria [38], and intestinal infectious 
diseases such as bacillary dysentery [39] and hand, foot 
and mouth disease [40].

Meanwhile, our case study illustrated that the pro-
posed model selection framework could benefit the 
surveillance of infectious diseases in several ways. 
First of all, the spatial–temporal correlations indicated 
by the time-varying MTS models could help identify 
some possible transmission paths of infectious diseases, 
which was extremely meaningful for local authori-
ties to make plans for disease control and prevention. 
For example, for Luzhou, ILI% of Zigong lagging one 
phase had the greatest correlation to ILI% of Luzhou 
in the current phase (average time delay coefficient 
was 0.172), ILI% of Zigong had a positive impact on 
ILI% of Luzhou and the highest value was close to 0.70. 
Therefore, it is of great significance for the spread of 
the epidemic from Zigong to Luzhou, and more atten-
tion should be paid to the prevention and control of ILI 
transmission in Zigong. Besides, according to the time 
delay coefficient, it can also be reminded to maintain a 

Table 5  Predicted Performance Evaluation

Abbreviations: MAE mean absolute error, MPE maximum permissible error, MAPE 
mean absolute percent error

ILI% of target 
city (prefecture)

Model RMSE MAE MPE MAPE

Luzhou TVP-SV-VAR 2.120 1.786 -39.709 49.556

VAR 2.675 2.097 -11.325 55.530

Leshan TVP-SV-VAR 1.427 1.077 3.293 16.869

VAR 1.470 1.151 -0.889 18.633

Guangyuan TVP-SV-VAR 0.323 0.262 6.165 20.804

VAR 0.381 0.315 10.552 25.484

Average TVP-SV-VAR 1.290 1.042 -10.084 29.076

VAR 1.509 1.188 -0.554 33.216
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Fig. 7  Time delay parameters estimated by constructing a tvvarGAM model with the ILI% of Chengdu as the target city (prefecture). Panel (a) 
is the geographical location of the target city and neighboring city in Sichuan Province. Panel (b) is the transmission network of ILI %. Blue solid 
arrows indicate positive correlations, red dashed arrows indicate negative correlations, and the width of the arrow is proportional to the absolute 
value of the corresponding parameter
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long enough temporal window for early warning. For 
example, in the lag-2 phase, the correlation between 
ILI% of Luzhou and ILI% of Zigong turned into an 
obvious negative correlation (the average time delay 
coefficient was -0.226), which also indicated that the 
epidemic monitoring in Zigong should expand its mon-
itoring window to one week in advance. The results 
also suggested that the time delay coefficient and spa-
tial sparsity of infectious diseases between regions were 
very important. It showed that the interaction between 
regions plays an important role in the spread of infec-
tious diseases. In our study area, a joint prevention and 
control mechanism for infectious disease events can be 
established to implement risk management, monitoring 
and early warning, information exchange, local linkage 
and collaborative disposal of major infectious disease 
events under specific circumstances.

There were some limitations of this study. From the 
strict perspective of infectious diseases surveillance, sta-
tistical analysis was only one part of the overall process. 
In other words, even some statistically significant spatio-
temporal correlations were found by this study, it was 
still mandatory to take further steps (e.g., epidemiologi-
cal investigation, etiology and laboratory studies) to con-
firm the transmission of diseases. In addition, since our 
model is a spatiotemporal model, we need to use histori-
cal data from each region, and how to ensure the timeli-
ness and quality of the data reported by each region is an 
important challenge when implementing the model. In 
order to meet such challenges, establishing a solid data 
integration platform and strict data quality control speci-
fications are necessary prerequisites for the successful 
use of the model. Finally, this study proposed the indica-
tor of the time-varying MTS models in infectious disease 
monitoring from the spatial and temporal dimensions, 
respectively. However, considering that infectious dis-
ease data also have the characteristics of spatio-temporal 
interaction, more sophisticated spatial–temporal joint 
indicators could be considered in the future to help select 
appropriate time-varying MTS model for the surveillance 
of infectious diseases.
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