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Abstract 

Background  Invasive Escherichia coli disease (IED), also known as invasive extraintestinal pathogenic E. coli disease, 
is a leading cause of sepsis and bacteremia in older adults that can result in hospitalization and sometimes death 
and is frequently associated with antimicrobial resistance. Moreover, certain patient characteristics may increase 
the risk of developing IED. This study aimed to validate a machine learning approach for the unbiased identification 
of potential risk factors that correlate with an increased risk for IED.

Methods  Using electronic health records from 6.5 million people, an XGBoost model was trained to predict IED 
from 663 distinct patient features, and the most predictive features were identified as potential risk factors. Using 
Shapley Additive predictive values, the specific relationships between features and the outcome of developing IED 
were characterized.

Results  The model independently predicted that older age, a known risk factor for IED, increased the chance 
of developing IED. The model also predicted that a history of ≥ 1 urinary tract infection, as well as more frequent and/
or more recent urinary tract infections, and ≥ 1 emergency department or inpatient visit increased the risk for IED. Out-
comes were used to calculate risk ratios in selected subpopulations, demonstrating the impact of individual or combi-
nations of features on the incidence of IED.

Conclusion  This study illustrates the viability and validity of using large electronic health records datasets 
and machine learning to identify correlating features and potential risk factors for infectious diseases, including IED. 
The next step is the independent validation of potential risk factors using conventional methods.
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Introduction
Commensal Escherichia coli, a gram-negative bac-
terium, colonizes the gastrointestinal tract soon 
after birth, establishes a symbiotic relationship, and 

comprises part of the normal intestinal microbiota in 
humans [1]. Conversely, pathogenic variants of E. coli 
are divided into intestinal and extraintestinal patho-
gens and cause various infections, such as urinary tract, 
inflammatory bowel, diarrheal, and bloodstream infec-
tions. Extraintestinal pathogenic E. coli (ExPEC) strains 
can live in the intestinal microbiota without causing 
disease but can be pathogenic in other body sites [1, 2]. 
ExPEC strains infect otherwise sterile body sites, such 
as blood, cerebrospinal fluid, pleural or peritoneal fluid, 
or renal parenchyma, which may lead to severe and 
potentially lethal invasive diseases (e.g., bacteremia, 
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sepsis, meningitis) [3, 4]. ExPEC strains possess numer-
ous virulence factors that allow strains to survive in dif-
ferent extraintestinal compartments [1, 5–9].

Invasive E. coli disease (IED), also known as invasive 
ExPEC disease, is a leading cause of sepsis and bac-
teremia in older adults and is frequently resistant to 
antimicrobial therapy [10–12]. The incidence rates for 
E. coli bacteremia are higher in adults aged ≥ 60  years 
compared with the general population, increasing up to 
and beyond 85 years [13–15]. More than 50% of E. coli 
bacteremia cases have a urinary origin [12].

Hospitalizations due to E. coli–related urinary tract 
infections (UTIs), intra-abdominal infections, bacte-
remia, and sepsis continue to increase, and antimi-
crobial resistance is one of the contributing factors [7, 
11]. The treatment of IED is complicated by multidrug 
resistance driven by acquisition of plasmid-encoded 
AmpC β-lactamases, extended-spectrum β-lactamases, 
and carbapenemases [7]. Multidrug resistance among 
ExPEC strains contributes to treatment failures with 
further consequences on hospitalizations, morbidity, 
and healthcare costs [11].

Certain comorbidities, as well as procedures, increase 
the risk of developing IED. A study revealed that risk 
factors for E. coli bacteremia in men were urinary cath-
eterization and urinary incontinence; risk factors in 
women were cancer, chronic renal failure, congestive 
heart failure, and urinary incontinence [14]. A sys-
tematic literature review concluded that renal dialysis, 
solid-organ transplantation, neoplastic disease, and 
indwelling vascular and urinary catheters increase the 
risk for E. coli bacteremia, with the authors stressing 
the need for further research to identify additional risk 
factors [13].

Traditional approaches to identifying risk factors, 
such as systematic literature reviews, require sig-
nificant time and domain expertise. However, the 
performance of commonly used machine learning 
approaches, such as linear regression models, sup-
port vector machines, and decision trees, has often 
been surpassed by XGBoost, a regularized gradient-
boosting model [16, 17]. In addition, XGBoost can 
use mixtures of continuous, categorical, and partially 
missing features that would be challenging to imple-
ment in, e.g., regression models. Recent studies have 
shown that XGBoost models could predict risk factors 
for COVID-19 critical illness and mortality and mul-
tidrug-resistant gram-negative bacilli in patients with 
hematologic conditions and febrile neutropenia [18–
21]. XGBoost-based approaches provide good to high 
accuracy for predicting risk factors for studied condi-
tions and outcomes and require comparatively fewer 
resources [16, 18–20].

The objective of this study was to identify and validate 
potential risk factors for IED that did not rely on exist-
ing knowledge of the disease using patient data extracted 
from the Optum® de-identified Electronic Health Record 
dataset (Optum® EHR) (released September 8, 2021) [22]. 
To achieve this, we employed a novel approach that lev-
eraged an XGBoost model trained to predict an individu-
al’s likelihood of developing IED (Supplementary Fig. S1), 
identified key predictive features using Shapley Additive 
exPlanation (SHAP) values [23], and reinterpreted these 
SHAP values into simplified exposure variables for fur-
ther evaluation using traditional epidemiological meas-
ures. This method does not require extensive domain 
knowledge or bespoke feature engineering, is robust to 
missing data, and produces results that can be validated 
in independent datasets and checked against the medical 
literature. In our study, this method corroborated known 
major risk factors identified in previous work and sug-
gested multiple novel and high-impact potential risk fac-
tors for IED.

Methods
Study design
A patient-level prediction model was used to identify 
potential risk factors for IED in patients within 14  days 
to 1  year after a patient-specific index date [24] (Sup-
plementary Fig. S1). The index date was defined as the 
patient’s first healthcare encounter between January 
1, 2014, and December 31, 2016, and could represent a 
clinically meaningful occurrence, such as the start of 
a new treatment, or an arbitrary date, such as a routine 
office visit or screening. A 14-day washout period was 
chosen to minimize the chance that acute IED symp-
toms at the index date would serve as predicting features. 
Data from ≤ 2 years prior to the index date were used to 
inform the prediction.

Patients were aged ≥ 18 years at the index date and had 
2 years of continuous observations prior to the index date 
(also defined as the lookback period) and for 1 year fol-
lowing the index date. IED was defined as a diagnosis 
of E. coli sepsis (International Classification of Diseases, 
Tenth Revision A41.51) or a positive E. coli culture from 
a normally sterile body site, such as blood, cerebrospinal 
fluid, pleural fluid, or peritoneal fluid.

Data source and feature engineering
Data were collected from the Optum de-identified 
Electronic Health Record dataset (release September 8, 
2021) [22] and converted to the Common Data Model 
schema, version 5.3.1 [25]. Conversion to the Common 
Data Model allowed the terms from the native database 
to be mapped to a standardized hierarchical vocabu-
lary of concepts. Optum’s data are derived from more 
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than 50 healthcare provider organizations in the United 
States, which include > 700 hospitals and 7000 clin-
ics, with anonymized longitudinal Optum® EHR data 
for approximately 99.5 million distinct patients aged 
0 to 82  years (individuals > 82  years were censored to 
prevent de-anonymization). Data include basic demo-
graphics, diagnoses of medical conditions, prescrip-
tions, procedures, inpatient and outpatient visits, and 
laboratory measurements.

Upon identification of the patient cohort, each 
patient was randomly assigned to either a training 
(60%), validation (20%), or test (20%) group. Features 
were then created from each patient’s conditions, 
drugs, procedures, laboratory measurements, age, and 
biological sex from the 2 years prior to their index date. 
In addition, higher-level features for classes of condi-
tions, medications, and procedures were added (e.g., 
“systemic corticosteroids” for prednisone), based on 
the Medical Dictionary for Regulatory Activities [26], 
First DataBank Enhanced Therapeutic Classification 
[27], and Current Procedural Terminology, Fourth Edi-
tion [28] vocabularies, respectively, as mapped by the 
Common Data Model. To select the features that would 
be used in the model, a cohort with a 1:1 case–control 
ratio was randomly sampled from the training patients, 
and the 100 most prevalent features in each category 
were identified. This resulted in a total of 663 total fea-
tures, including age and sex.

Age was encoded directly as the number of years of 
age at index date. Sex was encoded as a binary variable 
where “True” indicated female. Laboratory measure-
ments were encoded as an ordinal variable based on 
the most recent laboratory value for a patient relative 
to their index date, with 1 indicating a value below the 
laboratory-reported normal range, 2 indicating within 
normal range, and 3 indicating above normal range. 
Zero was used to indicate that the patient did not have 
a measurement recorded during the lookback period. 
For all other feature groups (conditions, drugs, proce-
dures, and healthcare visits), a weighted sum was calcu-
lated based on the number of occurrences of that event 
in the patient’s lookback period. Specifically, the fea-
ture value for each patient was calculated as n

i=1
e
−dti , 

where n is the total number of observed events for that 
feature, d represents a decay factor, and ti represents 
the number of days between event i and the index date. 
Patients who had no observed events for a given fea-
ture during the lookback period would have a feature 
value of 0. This encoding allowed information regard-
ing the frequency and recency of a patient’s events to 
be encoded in a single variable. From this pool of fea-
tures, those with 0 variance or with high correlation 
with another feature (Pearson r > 0.9) were removed.

Model design, tuning, and evaluation
An XGBoost model was trained on the binary pre-
diction task using the training set [16]. XGBoost was 
used because it is performant on large datasets, can 
accommodate features of varying scales and missing-
ness, and can learn more flexible relationships between 
features and outcomes than would be possible using, 
e.g., regression models. However, XGBoost has multi-
ple configuration parameters (or “hyperparameters”) 
whose optimal values are not known a priori. These 
values must be identified through a process of hyper-
parameter tuning; for this study, a grid search across 
the parameter space was performed on threefold splits 
of the training dataset. The parameters that resulted in 
highest mean average precision across the 3 folds were 
then used in the final model. Average precision (a dis-
crete analogue of the area under the precision-recall 
curve) was chosen as the evaluation metric because it 
is robust enough to class imbalances in the data, and 
the dataset for this study was highly imbalanced (see 
“Results” section). The final model was tuned on the 
entirety of the training set, and its performance was 
evaluated on the test set using average precision, area 
under the receiver operating characteristic curve, and 
other metrics.

Model interpretation
Interpretation of the feature-outcome relationships 
learned by the model is essential for the objective of this 
study, which is to identify potential risk factors, i.e., fea-
tures that are highly predictive of the outcome. Beyond 
a certain threshold, improving the model’s performance 
yields diminishing returns as the major feature-outcome 
relationships stabilize.

Shapley values are a concept originating from game 
theory that represent the individual contributions of 
members of a group to an outcome. SHAP values [23] are 
a method of applying Shapley values to predictive mod-
els and represent the individual contribution of a feature’s 
value to the model’s predictions. In other words, the sum 
of the SHAP values for all values across all features equals 
the output of the model for a single prediction.

SHAP values were used in this study to both identify 
important features and to characterize the responses 
of the model to different values of a given feature. Fea-
ture importance was calculated using the mean absolute 
SHAP value across all patient values for that feature. A 
high mean absolute SHAP value indicates a feature that 
was impactful in the model’s decisions across the cohort 
of patients. To identify the most important features to the 
model, features with the highest mean absolute SHAP 
value were selected.



Page 4 of 12Clarke et al. BMC Infectious Diseases          (2024) 24:796 

However, the mean absolute SHAP value does not 
characterize the actual relationship between the feature 
and the outcome learned by the model. To elucidate that 
relationship for each of the most important features, the 
feature values and SHAP values across all patients were 
plotted. These plots were used to illustrate the distribu-
tion of feature values for the cohort and their effect on 
the model’s predictions.

Identifying potential risk factors
From manual inspection of these plots, an approximate 
threshold was identified for each feature that separated 
impactful values from less impactful values. This thresh-
old was then used to reformulate previously categorical 
or continuous features into binary exposure variables 
(e.g., “age in years” might become “age ≥ 30,” or “days 
since hospital visit” might become “hospital visit in past 
30  days”). These exposure variables were then used to 
train a separate logistic regression model of the outcome 
on the original population. From this model, estimates of 
the relative risk for each exposure variable were obtained. 
Exposure variables with high relative risk were identified 
as potential risk factors for further investigation.

Operational environment
Feature engineering, model tuning, and all other analy-
ses were performed in a computational environment with 
30 cores and 230 GiB of RAM, running Ubuntu 18.04.3. 
Original licensed data were stored in a database server 
prior to patient selection, after which the data were 
stored locally.

Results
Study population and prevalence
The study population used to train and test the model 
comprised 22,041,367 patients from the database who 
met the previously specified criteria (e.g., age ≥ 18 years at 
the time of their index date [defined as their first health-
care encounter between January 1, 2014, and December 
31, 2016] and ≥ 2 continuous years of observation in the 
database prior to the index date). Of these, 5362 devel-
oped IED within 14 days to 1 year of their index date, for 
a case prevalence of 0.0002 (or 1 case per 5000 patients).

Model performance
Patients were randomly selected to be in the training 
(80%) or test (20%) sets, and an XGBoost model was 
trained on a binary prediction task using the training 
set. Reflecting the low real-world incidence of IED, the 
study population was strongly skewed towards non-IED 
patients, and this skew was reflected in the training data. 
Therefore, model performance during hyperparameter 
tuning was measured by its average precision, a discrete 

analogue of the area under the precision-recall curve, as it 
is more appropriate for imbalanced data (see “Methods”  
section). After hyperparameter tuning, the final XGBoost 
model had an average precision of 0.0031 and a receiver 
operating characteristic area under the curve of 0.85 
on the test dataset (Supplementary Figs. S2a and S2b). 
Although an average precision of 0.0031 may appear to 
suggest poor performance, the “no skill” threshold for 
this metric on this dataset is 0.000243 (the proportion of 
cases in the total population), which is an order of mag-
nitude lower than the model’s value. These metrics indi-
cate that the final model performed substantially better 
than random at predicting which patients would develop 
IED, given the imbalance in the data. For this study, the 
model’s performance is primarily useful in understand-
ing whether the features identified by the model reflect 
actual predictive utility. In other words, there would be 
no value in the interpretation of important features if the 
model were unskilled.

Features influential to model predictions
Features derived from the Optum® EHR data for all 
patients were evaluated based on SHAP values to assess 
the contribution of each feature to the model’s predic-
tions. The features with the greatest mean absolute SHAP 
value (i.e., those most influential and “important” to the 
model’s predictions) were age, inpatient and emergency 
department (ED) visits (irrespective of reason for visit), 
furosemide consumption, type 2 diabetes (T2D) with-
out complication, UTIs, use of laxatives, phlebosclerosis, 
female sex, outpatient or office visits, other higher-level 
terms indicating routine care (such as office visits), use of 
antihistamines, and magnetic resonance imaging clinic 
visits (Fig. 1a).

Because the training process of XGBoost involves non-
deterministic sampling (except for certain combinations 
of hyperparameters), the calculated SHAP values can 
vary between models with identical hyperparameters and 
comparable performance. As a check of the robustness of 
the identified features, 10 additional models were trained 
using different random seeds. The mean absolute SHAP 
value of each feature was calculated for all 10 models and 
then each was ranked in descending order. Although the 
mean absolute SHAP value varied between individual 
models, the ranking for the topmost important features 
remained stable. For the following analyses, a single mod-
el’s calculated SHAP values were used.

The use of SHAP values also permitted inspection 
of the model’s encoding of the dependency between a 
feature and the outcome. In many cases, this relation-
ship was found to be non-linear. For instance, for some 
features, in patients for whom the feature was never 
observed, the overall effect on the model’s prediction was 
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small or negative, but for patients with ≥ 1 occurrence 
of the feature, the contribution of that feature was sub-
stantial and increased with its recency or frequency. As 
these features may not be classified as important using 

the mean absolute SHAP value heuristic, especially if the 
majority of patients do not have that feature, the mean 
absolute SHAP value among those patients with ≥ 1 
occurrence of a feature was also calculated. This revealed 

Fig. 1  Most important features to the model predictions; a features are ranked by feature type and mean feature contribution (mean absolute 
SHAP value) across all patients and b patients for whom that feature occurred at least once in their lookback period. 2D, 2-dimensional; SHAP, 
Shapley Additive exPlanationp; T2D, type 2 diabetes
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a slightly different ranking of features, with ceftriaxone 
and hydromorphone consumption, fever, echocardiog-
raphy, computed tomography, and measurements related 
to kidney stones ranking higher (Fig. 1b).

Age
A patient’s age at index was the largest contributor to 
the model’s predictions and showed a strong correla-
tion with relative risk of developing IED (Fig.  2). The 
relative risk contributed by a patient’s age in the model 
was < 1 for patients aged 18–59  years but > 1 for those 
aged ≥ 60  years, indicating that the latter age group is 
at higher risk for IED. Moreover, the relative risk asso-
ciated with age showed an almost linear increase with 
age > 60 years.

T2D and UTIs
The presence of certain medical conditions in the 2 years 
prior to the patient’s index date was a substantial con-
tributor to their relative risk for IED, as predicted by the 
model. A history of T2D or a prior occurrence of a UTI 
was associated with a relative risk > 1 (Fig.  3). Patients 
with these conditions in the past 2  years showed an 
increased risk as the frequency or recency of the events 
increased. More frequent and/or more recent UTIs were 
predicted to increase the relative risk between 1.25 and 
2.5.

Healthcare visits
Patients with ≥ 1 ED or inpatient visit for any reason in 
the prior 2 years had an increased risk for developing IED 
(Fig.  4). Of those with > 1 such visit, increasingly recent 
or frequent ED or inpatient visits substantially increased 
their relative risk for IED. Patients who had no recorded 
outpatient visits in the prior 2 years were also at higher 
risk for IED. The risk decreased for patients with more 
frequent or regular outpatient visits. Potential explana-
tions for these associations are outlined in the following 
sections.

Interpreting model results as exposures
The features described above were also reframed as 
binary exposure variables (e.g., “aged ≥ 60 years” or “any 
prior history of UTI”) and the relative risk for IED con-
sidered between exposed and unexposed groups.

Age
Based on the increase in the model’s predicted relative 
risks for patients aged ≥ 60  years (Fig.  2), an “exposure” 
was created that divided the study population between 
those ≥ 60 years at the index date (“exposed” group) and 
those < 60  years (“unexposed” group). Approximately 
30% of the study population fell into the exposed group, 
with a case prevalence of 0.0005 (n = 6,677,443) com-
pared with 0.0001 among the unexposed (n = 15,357,535). 
Age ≥ 60 years was associated with a relative risk of 4.90 
and an attributable fraction among the exposed (AFe) of 
0.80.

Fig. 2  Effect of age on relative risk of IED. The marginal effect of patient age on that patient’s relative risk for IED. The x-axis represents the age 
of the patient in years, and the y-axis represents the relative risk for IED attributable to the patient’s age (as derived from the per-patient SHAP 
value). Each bin represents patients who share that range of x- and y-values, with the color indicating how many patients in the total cohort fall 
into that bin. IED, invasive Escherichia coli disease; SHAP, Shapley Additive exPlanation
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History of UTI
Additionally, the model attributed a higher risk to 
patients who had ≥ 1 UTI in the past 2 years than those 
who did not (Fig.  3). Using this as an exposure vari-
able, case prevalence in the exposed group (representing 
approximately 5% of the study population) was 0.0012 
(n = 1,071,192) compared with 0.0002 (n = 20,968,186) 
in the unexposed group. The relative risk in the exposed 
group was 6.05, with an AFe of 0.83.

History of T2D
Approximately 7% of the study population had a record 
of T2D in the previous 2 years. Using this as an expo-
sure variable, the case prevalence among the exposed 
group was 0.0009 compared with 0.0002 among the 
unexposed group, with a relative risk of 5.01 and AFe of 
0.80, lower than the relative risk associated with a his-
tory of UTIs.

Inpatient visits
Approximately 10.6% of the study population had ≥ 1 
inpatient visit in the past 2 years, with a case prevalence 

Fig. 3  Effect of T2D and UTIs on risk for IED. The x-axis represents the weighted sum of the number of times a patient had a recorded diagnosis 
of a UTI or T2D in their lookback period. The y-axis represents the relative risk for IED attributable to the weighted sum of those diagnoses. The 
color of each bin represents the percentage of patients who fall into that range of x- and y-values. Increasing values of x can be due to either more 
recent or more frequent diagnoses, or both. Note that especially in the case of chronic diseases, such as T2D, the number of diagnoses likely reflects 
increased healthcare utilization. IED, invasive Escherichia coli disease; T2D, type 2 diabetes
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of 0.0010 compared with 0.00016 for those without an 
inpatient visit. The relative risk for IED in this popula-
tion was 6.31 (AFe, 0.84), similar to the relative risk in 
patients with a history of UTI.

Multivariate exposure variables
The exposures described above were combined to 
understand whether the high-risk populations they 
identified were independent from one another (and 
thus represented separate high-risk groups). Patients 
aged ≥ 60 years with a history of UTI in the past 2 years 
represented 1.9% of the population but had nearly 10 

times the case prevalence of those who did not meet 
these criteria (0.0022 vs. 0.0002, respectively). The rela-
tive risk in the exposed group was 10.56, with an AFe 
of 0.91—substantially higher than either feature consid-
ered separately (Table 1).

Adults aged ≥ 60  years with a history of T2D repre-
sented 4.3% of the study population and had a relative 
risk of 6.30 and AFe of 0.84, comparable to the risk attrib-
utable to a history of UTI. This relatively small increase 
in risk in the combined population compared with either 
adults ≥ 60 years or those with T2D suggests that they are 
not independent high-risk groups; indeed, patients with 

Fig. 4  Effect of healthcare visits on IED prediction; a the marginal effect of inpatient visits or b ED visits on the relative risk for IED. The x-axis 
represents the weighted sum of the number of times a patient had a recorded visit of that type in their lookback period, and the y-axis represents 
the relative risk for IED attributable to the weighted sum of those visits. The color of each bin represents the percentage of patients who fall 
into that range of x- and y-values. ED, emergency department; IED, invasive Escherichia coli disease
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a history of T2D in the age group ≥ 60 years had a mod-
estly increased relative risk of 2.89 (AFe, 0.65) compared 
with adults ≥ 60 years without T2D. In contrast, patients 
with a history of UTI among the age group ≥ 60  years 
had a relative risk of 5.24 (AFe, 0.81) compared with 
adults ≥ 60 years without a history of UTI. This is com-
parable to the relative risk associated with a history of 
UTI in the general ≥ 18 years study population, suggest-
ing that age and UTIs identify separate high-risk groups.

Patients aged ≥ 60  years who had ≥ 1 inpatient visit 
showed a relative risk of 9.94 (AFe, 0.90); those with a 
prior history of both UTI and inpatient visits had a rela-
tive risk of 14.90 (AFe, 0.93). Patients meeting all 3 cri-
teria (age ≥ 60 years, history of ≥ 1 UTI, and ≥ 1 inpatient 
visit in the past 2  years) had a substantially elevated 
relative risk of 20.44 and AFe of 0.93; however, such 
patients represented only 0.7% of the study population 
(n = 152,661).

Discussion
The study has demonstrated the use of machine learning 
models and large real-world datasets to identify correlat-
ing features and potential risk factors for infectious dis-
eases, such as IED. By using a data-driven approach that 
required minimal clinical input, the model identified a 
variety of features that correlated with increased odds of 
a patient developing IED within 2 years.

In our model, SHAP values were calculated for all 
features and patients to assess the contribution of each 
feature to the model’s predictions. Dependence plots of 
the SHAP values and feature values were used to further 

understand the relationship between a feature and the 
risk of the outcome, as encoded by the model. Although 
such dependencies do not necessarily represent causal 
relationships, they may represent clinically meaningful 
phenomena that warrant further investigation.

By interpreting these complex results as binary risk-
exposure variables (e.g., “age ≥ 60” or “any prior history 
of UTI”), the impact of these features could be expressed 
in common epidemiologic metrics, such as relative risk 
and attributable risk fraction, enabling comparisons to be 
made with results from other models, data sources, and 
clinical literature. Moreover, features could be analyzed 
jointly to understand whether they represent potentially 
independent sources of risk. This approach examines 
only correlations between these factors and IED in the 
study population and does not identify causal relation-
ships, but the transformation of these complex features 
into simple binary terms and the resulting analysis per-
mit future external validation and investigation.

The findings of this model are concordant with the lit-
erature. Previous studies have established that the inci-
dence of E. coli bacteremia increases with age [13–15]. 
A descriptive epidemiology study conducted in England 
revealed that 70.5% of ExPEC bacteremia cases occurred 
in patients aged ≥ 65 years [15], with the highest rate in 
men aged ≥ 85 years. In this study, the primary focus of 
infection was most commonly related to the urinary, 
hepatobiliary, and gastrointestinal tracts, and approxi-
mately half of the cases of community-onset bacteremia 
were related to a history of undergoing healthcare inter-
ventions. A population-based cohort study involving 

Table 1  Summary of variables identified to be influential to model predictions based on the mean absolute SHAP value

AFe attributable fraction among the exposed, IED invasive Escherichia coli disease, SHAP Shapley Additive explanation, T2D type 2 diabetes, UTI urinary tract infection
a Patients who were aged ≥ 18 years at index and had ≥ 2 years of observation in the database prior to index
b Expressed as the ratio of IED cases within the risk group to the total number of patients in the risk group
c Patients who had ≥ 1 UTI in the past 2 years
d Patients with a record of T2D in the past 2 years
e Percentage of cases that can be assigned to a specific risk factor in patients with ≥ 1 inpatient visit in the past 2 years

Univariate exposure variables Population,a% IED case prevalenceb Relative risk AFe

Age ≥ 60 years 30.3 0.0005 4.90 0.80

  History of UTIc 4.9 0.0012 6.05 0.83

  History of T2Dd 7.2 0.0009 5.01 0.80

Inpatient visite 10.6 0.0010 6.31 0.84

Multivariate exposure variables Population, % IED case prevalence Relative risk AFe

  Age ≥ 60 years and history of UTIc 1.9 0.0022 10.56 0.91

  Age ≥ 60 years and history of T2Dd 4.3 0.0012 6.30 0.84

  Age ≥ 60 years and inpatient visite 4.3 0.0017 9.94 0.90

  Age ≥ 60 years and history of UTI and inpatient 
visit

0.7 0.0044 20.44 0.95

History of UTI and inpatient visit 1.3 0.0030 14.90 0.93
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administrative databases from a health maintenance 
organization described a higher incidence of E. coli bac-
teremia among patients ≥ 85  years than those aged 65 
to 69  years [14]. Furthermore, a systematic literature 
review of 210 studies reported increasing incidence rates 
of E. coli bacteremia as patients’ age increased from 60 
to ≥ 80 years [13].

Additionally, our model indicated that a history of UTI 
increased the probability of IED, with more frequent or 
more recent UTIs further increasing the risk of develop-
ing IED. Previous studies have reported UTI as a source 
of IED, with indwelling urinary catheters, renal dialysis, 
and kidney transplantation also established as risk fac-
tors for E. coli bacteremia [13, 14]. Additional work is 
required to better understand the role of previous UTIs 
as an independent risk factor for IED.

The following risk factors for E. coli bacteremia have 
been previously identified in patients aged ≥ 65  years: 
indwelling urinary catheter in men (odds ratio [OR], 77.4; 
95% confidence interval [CI], 9.50–630.33; P < 0.001); uri-
nary incontinence without catheterization in men (OR, 
6.78; 95% CI, 2.43–18.97; P < 0.001) and women (OR, 
2.85; 95% CI, 1.51–5.38; P < 0.001); and chronic renal fail-
ure in women (OR, 25.72; 95% CI, 2.49–264.80; P = 0.006) 
[14]. Renal dialysis (relative risk, 26.9) and solid-organ 
transplantation (relative risk, 20.3) increased the risk of 
developing E. coli bacteremia, which represented 23–55% 
of all bacteremia cases following kidney transplantation 
[13].

Our model identified a history of hospitalization as a 
potential novel risk factor for developing IED. The link 
between an increasing number of ED and inpatient visits 
and a higher probability of IED suggests that a history of 
hospitalization may be an important factor for develop-
ing IED. These findings may suggest that patients who 
interact more often with the inpatient healthcare system 
show an increased propensity to develop IED, possibly 
reflecting an overall poorer health status and increased 
frailty. Although previous studies explored the differ-
ences between community- and hospital-acquired E. coli 
bacteremia cases, none discussed prior hospitalization 
as a potential risk factor for IED [13–15]. Further work 
needs to be done to understand whether the reason(s) for 
the prior hospitalization(s) and/or ED visits correlates 
with a differential risk of developing IED. The increased 
risk for IED identified by our model for patients with no 
recent outpatient visits suggests that having less access to 
(primary) healthcare and/or reduced medical monitoring 
may also contribute to a patient’s risk of developing IED, 
which may be important in low-income or resource-poor 
settings.

In addition to univariate potential risk factors, our 
model and approach also identified combinations of 
potential risk factors that put patients at much higher 
risk for IED. Patients aged ≥ 60  years with a history of 
UTI were shown to be at substantially greater risk than 
either individual risk group alone. Patients who also had 
an inpatient visit in the past 2 years were at even higher 
risk. A similar analysis also revealed that the risk con-
tributed by T2D, an important potential risk factor when 
considered in isolation, is strongly linked to patient age.

The model identified other features that correlated 
with IED, including high platelet distribution width and 
blood urea nitrogen, the presence of albumin in urine, 
and a recent increase in heparin. These potential predic-
tive features for IED have not been described previously 
in the literature but likely reflect the existence of under-
lying medical conditions that are risk factors themselves. 
For example, high levels of blood urea nitrogen and the 
presence of albumin in urine may be indicative of chronic 
kidney disease, a known risk factor of developing IED. 
High platelet distribution width may predict mortality in 
patients with sepsis, based on previous studies [29–31].

For patients aged ≥ 60 years with a history of UTI, dia-
betes mellitus and history of kidney disease have been 
identified as risk factors for IED in previous studies [12–
14, 32]. According to a systematic review of 210 studies, 
the risk of developing E. coli bacteremia was increased in 
patients undergoing renal dialysis or solid-organ trans-
plantation (with signs of kidney disease) [13]. Our study 
also showed that a history of kidney disease increases the 
probability of IED.

A population-based cohort study based on health 
maintenance organization data revealed higher rates of 
E. coli bacteremia among women with diabetes mellitus 
and men aged 80 to 84 years with diabetes mellitus [14]. 
Two studies, 1 from France and 1 from Brazil, reported 
that almost 20% of patients with E. coli bacteremia had 
diabetes mellitus [12, 32]. In our study, the prevalence 
of diabetes was approximately 30% among patients 
aged ≥ 60 years with a history of UTI; T2D increased the 
risk for predicting IED twofold.

Our model and approach to data interpretation have 
proved useful for initial screening and identification of 
potential risk factors and predictive features of IED. How-
ever, some limitations must be acknowledged. Most sig-
nificantly, the model identifies only correlations between 
features and outcomes and does not necessarily establish 
any causal or clinical relationship between a feature and 
the outcome. Such relationships can be identified or con-
firmed only through causal analysis, clinical validation, 
and potentially the use of randomized, controlled trials. 
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Without such corroboration, it is possible some of these 
correlations are spurious or due to technical artifacts of 
the data.

Additionally, the model is limited by the fact that it 
is intrinsically retrospective and conducted on non-
research–grade Optum® EHR data. Specifically, the 
model is sensitive to how the outcome is defined in the 
database and any biases inherent in the data (including 
those resulting from inconsistent collection or data miss-
ing not at random). For instance, previous studies identi-
fied that certain specific procedures and consumption of 
certain foods may increase the risk for IED [13, 33–35]. 
In this study, the dataset may not capture all procedures 
and patient lifestyle choices.

Moreover, the model cannot identify high-risk 
sequences of events. As described, the temporal rela-
tionship between occurrences of an event in a patient’s 
medical record is compressed to a scalar value for each 
event. This makes the current approach infeasible for 
identifying sequences of different events that together 
may identify a uniquely high-risk individual, or even for 
identifying exactly how the pattern of a single event may 
contribute to the outcome.

Considering these limitations, we propose that our 
approach could be used as a preliminary screening tool 
to identify potential risk factors for a specific disease 
or outcome with minimal pre-specification or domain 
knowledge. Subsequently, the identified risk factors may 
be evaluated and/or confirmed using literature searches 
or traditional risk factor identification approaches (e.g., 
logistic regression).

Conclusions
This study represents an advancement in the scale of data 
for which this model may be employed for infectious 
disease research. Earlier infectious disease studies have 
applied XGBoost models to data from smaller population 
samples, ranging from 100 to 4000 patients in up to 33 
hospitals [18–21]. Our analysis included more than 22 
million patients from > 700 hospitals and > 7000 clinics.

The identified potential risk factors for IED must now 
be investigated in independent cohorts using more con-
ventional methods. By determining the prevalence of 
these risk factors in the population, we will be able to 
confirm their usefulness in predicting IED, and they can 
then be used to improve our understanding of the disease 
and aid in treatment and prevention strategies.
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