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Abstract 

Background Dengue fever remains a significant public health challenge in tropical and subtropical regions, with its 
transmission dynamics being influenced by both environmental factors and human mobility. The Dominican Repub‑
lic, a biodiversity hotspot in the Caribbean, has experienced recurrent dengue outbreaks, yet detailed understanding 
of the virus’s transmission pathways and the impact of climatic factors remains limited. This study aims to elucidate 
the recent transmission dynamics of the dengue virus (DENV) in the Dominican Republic, utilizing a combination 
of genomic sequencing and epidemiological data analysis, alongside an examination of historical climate patterns.

Methods We conducted a comprehensive study involving the genomic sequencing of DENV samples collected 
from patients across different regions of the Dominican Republic over a two‑year period. Phylogenetic analyses were 
performed to identify the circulation of DENV lineages and to trace transmission pathways. Epidemiological data were 
integrated to analyze trends in dengue incidence and distribution. Additionally, we integrated historical climate data 
spanning several decades to assess trends in temperature and their potential impact on DENV transmission potential.

Results Our results highlight a previously unknown north–south transmission pathway within the country, 
with the co‑circulation of multiple virus lineages. Additionally, we examine the historical climate data, revealing long‑
term trends towards higher theoretical potential for dengue transmission due to rising temperatures.
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Background
Dengue fever, caused by dengue virus serotypes 1–4 
(DENV-1–4), represents a significant public health 
challenge in tropical and subtropical regions [1]. A vec-
tor-borne disease predominantly transmitted by Aedes 
aegypti mosquitoes, annually affects millions with 
symptoms ranging from mild fever to severe condi-
tions like dengue hemorrhagic fever and dengue shock 
syndrome [1]. In the past 3  years, dengue activity has 
surged in the Americas. Approximately 3.4 million 
cases were reported in 2023, exceeding the 2.8 mil-
lion total for 2022 [2]. Situated in the Caribbean basin, 
the Dominican Republic has been frequently grappled 
with dengue outbreaks over the past two decades. The 
high incidence of dengue in this country is thought 
to impact the overall epidemiology of dengue in the 
region.

In 2023, 28,078 cases have been reported by the coun-
try’s surveillance system which captures physicians’ 
reporting of dengue cases [2]. Though this surveillance 
system does not provide a complete picture of dengue 
transmission, it allows health authorities to maintain 
awareness of, and response to, dengue transmission 
throughout the country. In fact, the number of RT-
PCR positive samples normally obtained per year, and 
exceeding 7,000 in 2023, is sufficiently high to provide an 
opportunity to further characterize transmission using 
genomic surveillance approaches or through additional 
analysis of related epidemiological data. In this regard, 
we implemented a genome-based surveillance approach 
in partnership with the Pan-American Health Organiza-
tion and the Central Public Health Laboratory in Santo 
Domingo to sequence and analyze DENV whole genome 
sequences from the 2023 epidemic. We aimed and identi-
fying existing lineages within the context of recent emer-
gence of novel DENV-2 and -3 variants in the Americas 
[3]. In addition, by integrating genomic, epidemiological, 
and climatic data, we provide a historical overview of the 
epidemiological trajectory of DENV in the Dominican 
Republic. This comprehensive analysis lays the ground-
work for establishing a genomic surveillance model in 
the Caribbean, with potential to monitor and respond to 
dengue transmission in the region.

Material and methods
Sample collection and whole genome sequencing
A total of 85 samples were obtained from patients exhib-
iting clinical symptoms consistent with dengue viral 
infection. All cases were classified as mild, with the 
most common symptoms being fever and cutaneous 
rash. These samples were sent to the Laboratorio Cen-
tral de Salud Pública of the Dominican Republic in Santo 
Domingo for genomic sequencing. Initially, nucleic acid 
extraction was performed using the QIAamp Viral RNA 
Mini Kit (Qiagen). Subsequently, real-time reverse tran-
scription PCR (RT-qPCR) for DENV 1–4 was conducted 
on the samples, following previously described meth-
ods [4]. Samples that tested positive (n = 85) with a cycle 
threshold (Ct) value of ≤ 36 underwent whole genome 
amplification using a set of tiled primers described else-
where [5, 6]. The resulting DNA amplicons were purified 
using AMPure XP beads (Beckman Coulter, Brea, USA). 
Library preparation of the purified amplicons was carried 
out using the COVIDseq Kit (Illumina, San Diego, USA), 
originally designed for SARS-CoV-2 genomic research 
but adapted for other viruses [7, 8]. Subsequent sequenc-
ing was performed using the Illumina MiSeq platform 
(Illumina, San Diego, USA), following the manufacturer’s 
recommended protocols. Consensus sequence genera-
tion was conducted using the ViralUnity pipeline (avail-
able at https:// github. com/ filip erome ro2/ Viral Unity) and 
typing assignment of dengue virus sequences was accom-
plished using the dengue virus typing tool available at 
https:// www. genom edete ctive. com/ app/ typin gtool/ den-
gue/ [9].

Phylogenetic and phylodynamic inferences
We generated phylogenetic trees to investigate the rela-
tionship between the sequenced genomes from the 
Dominican Republic and those from other regions 
worldwide. Alignment of all sequences was performed 
using MAFFT [10] and manually adjusted using AliView 
[11]. Initial maximum likelihood phylogenies were con-
structed using IQ-TREE 2 software with the HKY + G4 
substitution model [12]. Time-scaled trees were inferred 
using TreeTime [13] and BEAST software [14], preceded 
by TempEst [15] analysis to assess temporal signal. A 

Conclusion This multidisciplinary study reveals intricate patterns of dengue virus transmission in the Dominican 
Republic, characterized by the co‑circulation of multiple DENV lineages and a novel transmission pathway. The 
observed correlation between rising temperatures and increased dengue transmission potential emphasizes the need 
for integrated climate‑informed strategies in dengue control efforts. Our findings offer critical insights for public 
health authorities in the Dominican Republic and similar settings, guiding resource allocation and the development 
of preparedness strategies to mitigate the impacts of climate change on dengue transmission.
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rigorous model selection process, employing path-sam-
pling (PS) and steppingstone (SS) procedures, was uti-
lized to determine the optimal molecular clock model 
for Bayesian phylogenetic analysis [16]. The uncorre-
lated relaxed molecular clock model was chosen based 
on estimation of marginal likelihoods, incorporating 
the codon-based SRD06 model of nucleotide substitu-
tion and the nonparametric Bayesian Skyline coalescent 
model. To simulate the geographic spread of the identi-
fied 2022–2023 transmission clade, we utilized a flexible 
relaxed random walk diffusion model [17, 18], account-
ing for variation in dispersal rates across branches with a 
Cauchy distribution and a jitter window site of 0.01 [19, 
20]. Each sequence was assigned geographic coordinates 
of latitude and longitude. Bayesian phylogenetic infer-
ence analyses were performed in BEAST v1.10.4, with 
two runs of 50 million Markov Chain Monte Carlo chains 
(MCMC) each, and samples were taken every 10,000 
steps in the chain. Convergence was assessed using 
Tracer, ensuring effective sample size for all significant 
model parameters was greater than 200. The maximum 
clade credibility (MCC) trees for each run were sum-
marized using TreeAnnotator after discarding the initial 
10% as burn-in. Finally, the R package ’seraphim’ version 
1.0 [20] was used to extract and visualize spatiotemporal 
data contained within the posterior trees.

Eco‑epidemiological modelling
Weekly reported cases of DENV in the Dominican 
Republic from 2013 to 2023 were gathered and struc-
tured from the PAHO database for dengue [21]. Notified 
infections were defined as dengue cases where a diag-
nostic test was performed and yielded a positive result, 
as per the PAHO platform criteria. The theoretical suit-
ability of climate-driven dengue virus transmission was 
assessed using the mathematical expression of index P, 
incorporating humidity (u) and temperature (t) variables 
[21]:

Briefly, the index utilizes mathematical formulations 
based on empirically established connections between 
DENV and Ae. aegypti characteristics alongside mete-
orological factors. Climate-dependent characteristics 
encompass the extrinsic incubation period (〖γ〗((t))^v), 
adult mosquito lifespan (〖μ〗((u,t))^v), adult mosquito 
biting rate (〖a〗((u))^v), transmission probability per 
mosquito bite from infected human to susceptible mos-
quito  (〖φ〗((t))^(h → v)), and from infected mosquito 
to susceptible human (〖φ〗_((t))^(v → h)). Climate-
independent traits include intrinsic incubation period  

P(u,t) =
a
v
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2φv→h

(t) φh→v

(t) γ v

(t)γ
h
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(u,t)(σ
h + µh(γ h + µv
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(〖γ〗^h), human lifespan (〖μ〗^h), and human infec-
tious period (〖σ〗^h). Comprehensive methodological 
details and technical validation of Index P can be found 
in Nakase et  al. [22, 23]. Monthly climate data for the 
Dominican Republic was sourced from Copernicus.eu 
satellite climate data [24]. Temperature data summary 
was derived by calculating yearly lowest, mean, and max-
imum values.

Results
A total of 85 complete genomes were obtained from 
100 PCR positive samples with sufficient DNA (2  ng/L) 
for library preparation. The average cycle threshold (Ct) 
value for PCR was 24.6, with values ranging between 
12.6 and 36 (Table S1). The ages of the patients sampled 
ranged from 2 to 48 years, with a median age of 17 years. 
Of these patients, 53% (n = 45) were male (Table S1), and 
all cases examined were classified as autochthonous. 
The sequencing procedure yielded an average coverage 
of 84%, ranging from 60 to 99% (Table S1). This allowed 
for the identification of the DENV-2 genotype III variant 
(n = 29) and the DENV-3 genotype III (n = 56) variant. 
Genome sequences were obtained from all three macro-
regions of the Dominican Republic, which are further 
segmented into ten specific regions (Fig. 1A).

The distribution of the DENV-2-III and DENV-3-III 
genotypes reflected current DENV transmission pat-
terns. DENV-2-III has been circulating predominantly 
in the north-central parts of the country since 2014. In 
contrast, DENV-3-III, recently introduced through pop-
ulation-dense areas, was found in both the north-central 
and southeastern regions (Fig. 1A).

While climate-based suitability for DENV transmis-
sion presented clear, yearly oscillations demarking time 
periods with potential for dengue activity, notified DENV 
cases (between 2014 and 2023) revealed only three 
waves, of cases (defined as increases in the number of 
cases above the historical median) occurring in 2015–
2016, 2019–2020 and 2021–2022 (Fig.  1B). The rea-
sons why transmission is low in some years are unclear, 
though we can consider a mix of local factors including 
accumulated herd-immunity to specific serotypes, yearly 
changes in mosquito populations not captured by the 
climate-based suitability measure, and population cross-
immunity post Zika virus emergence after 2016 [25–28]. 
Nonetheless, during the three epidemic waves, Pear-
son’s correlation between cases and suitability was high, 
at 0.88 for 2015–2016, 0.76 for 2019–2020 and 0.93 for 
2021–2022. Together, these results suggest that, although 
climate suitability alone is insufficient to promote waves 
of DENV transmission, local temperature variation tends 
to be highly associated.
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We also explored the historical trends in climate-
based suitability in the Dominican Republic (over the 
past 40 years, Fig. 1C). This study revealed recent trends 
towards higher suitability for DENV transmission, par-
ticularly after the turn of the century, which derives from 
the emergence of much higher seasonal peaks of suitabil-
ity; before 2001, the average yearly peak of suitability was 
1.42 (min 0.95; max 1.89), while after 2001, the average 
peak was 2.08 (min 1.45; max 2.76). However, the time 
period analyzed is too short for a statistical assessment 
of significance. Local climate change, driven by rises in 
temperature, is theoretically favoring the transmission of 
DENV in the Dominican Republic, as in other countries 
of the region.

To understand the phylogenetic history of DENV-2-III, 
we combined our recently sequenced samples (n = 29) 
from 2023 with an additional set of 14 DENV-2-III viral 
genomes that were sequenced in the Dominican Repub-
lic in 2022 [29]. This set included samples collected from 
the Southern, Eastern regions, and the National Dis-
trict (Santo Domingo) [29]. These sequences were then 
combined with other sequences of the same genotype 
(n = 647) retrieved from GenBank for context. Our analy-
sis revealed that the new genomes from this study clus-
ter with sequences recently obtained by others [29] and 
form a distinct monophyletic clade with robust statistical 

support that is basal to the DENV-2-III BR4 variant that 
emerged in 2019 in Brazil (Fig. 2) [4].

Additionally, we reconstructed the viral movements 
of this clade (n = 43) within the different regions in the 
Dominican Republic. We estimate that the mean time of 
origin of this variant was early-January 2014 with a 95% 
highest posterior density (HPD), ranging from mid-June 
2013 to late-January 2014. These results suggest that 
the 2023 epidemic may have not been caused by a novel 
introduction but could be the result of continual trans-
mission within the Dominican Republic of a viral strain 
that was introduced in the region in early 2014. This vari-
ant spread from the southern part of the country (Ozama 
region) toward the southeastern, northern and midwest-
ern, as demonstrated in Fig. 2.

To explore the phylogenetic history of DENV-3-III in 
the Dominican Republic, we combined our new genome 
dataset (n = 56) with 1,760 sequences from GenBank 
for global context. Our analysis revealed that the new 
genomes group within the recently reported American 
lineage II of genotype III; however, our sequences formed 
a distinct monophyletic clade that separates from the 
main lineage, which includes viral sequences recently 
identified from other Caribbean and Latin American 
countries, such as Cuba, Puerto Rico, Brazil, Suriname, 
and as well as in North America (specifically Florida) 

Fig. 1 Dynamics of DENV‑2 and DENV‑3 in the Dominican Republic. A Map of the Dominican Republic (DR) depicting the sampling of new DENV‑2 
and DENV‑3 genome sequences by region and district. The color and size of the circles represent the number of new genomes generated in this 
study: black for DENV‑2 and white for DENV‑3. B Time series of dengue cases reported monthly in Dominican Republic, presented as incidence 
per 100,000 inhabitants (gray bars) versus the climate‑based suitability (index P, blue line) for the period data where available. The shaded areas 
in pink mark visually identifiable waves of cases (between April of consecutive years, see main text) and green marks the year 2023 from which all 
genomic samples were obtained. C Long‑term time series of monthly climate‑based suitability (index P, 1981–2023, blue line). The moving average 
of suitability (plus‑minus 18 months) is presented in black before the year 2001 and in red thereafter (the shaded gray area highlights this time 
period)
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[3, 29]. These results propose a complex transmission 
scenario, with introduction events likely mediated by 
trans-continental travel and underscores the significant 
influence of human movement in facilitating the spread 
and introduction of viral lineages to new regions [8] 
(Fig. 3).

We investigated the spatial–temporal dynamics of the 
Dominican Republic DENV-3-III variant in more detail 
using a smaller data set (n = 56) derived from the American 

lineage II. Phylogeographic analyses allowed the recon-
struction of viral movements across different regions in the 
Dominican Republic (Fig. 3) and suggested a mean time of 
origin in early April 2023 (95% highest posterior density 
(HPD): 2 to 27 April 2023). This variant spread from the 
south of the country (Yuma region) towards the north and 
later to the southern part of the country, as indicated by 
isolates from the Cibao Noroeste, El Valle, and Enriquillo 
regions (Fig. 3).

Fig. 2 Dispersion dynamics of DENV‑2‑III in the Dominican Republic. A Maximum likelihood (ML) phylogenetic analysis of 29 new complete 
genome sequences of DENV‑2‑III generated in this study combined with 661 sequences from GenBank. The scale bar represents units of nucleotide 
substitutions per site (s/s) and the tree is mid‑pointed rooted. Colors represent geographic sampling locations. B The highlight on the right (panel 
B) shows the phylogeographic reconstruction of the Dominican Republic Clade (n = 43). Solid curved lines denote the links between nodes 
and the directionality of movement. Circles represent nodes of the MCC phylogeny and are colored according to their inferred time of occurrence. 
Shaded areas represent the 80% highest posterior density interval and depict the uncertainty of the phylogeographic estimates for each node
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Conclusion
In conclusion, our genome-based surveillance system, 
integrated with other methodologies, provided a nuanced 
view of the recent dengue epidemiology in the Domini-
can Republic. By elucidating a key transmission pathway 
from the South to the North for both genotypes, identify-
ing co-circulation of different DENV serotypes and geno-
types, and highlighting the cumulative effect that local 

climate change appears to be having on the transmis-
sion potential of DENV, we underscore the importance 
of advanced monitoring techniques. The identification of 
the South as point of entry for viral variants requires fur-
ther study, in particular given the presence of likely intro-
duction points (international airports and cruise ports) 
being present both in the North and the South. Seroprev-
alence studies are also urgently needed to characterize 

Fig. 3 Dispersion dynamics of DENV‑3‑III in the Dominican Republic. A Maximum Likelihood (ML) phylogenetic analysis of 56 new complete 
genome sequences of the DENV‑3‑III genotype from this study, in addition with 1,760 sequences from GenBank representing all different DENV‑3 
genotypes. The scale bar represents units of nucleotide substitutions per site (s/s) and the tree is mid‑pointed rooted; B Maximum clade credibility 
tree (MCC) of the DENV‑3‑III emerging American lineage II from 2022–2023, including n = 56 complete genome sequences from the Dominican 
Republic from this study combined with 168 additional genomes for context. Sequences are colored according to sampling location. C 
Phylogeographic reconstruction of the Dominican Republic Clade (n = 56). Circles represent nodes of the MCC phylogeny and are colored 
according to their inferred time of occurrence. Shaded areas represent the 80% highest posterior density interval and depict the uncertainty 
of the phylogeographic estimates for each node. Solid curved lines denote the links between nodes and the directionality of movement
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the local immunity landscape against different serotypes 
in search for a better understanding of the actual sero-
type spatial distribution in the island, and its possi-
ble impact on regional public health in future serotype 
switching events. Only through active tracking of viral 
evolution and spread can we enable timely interventions, 
ensuring communities are fortified against the persistent 
threat of dengue and fostering adaptability in response to 
the changing landscape of infectious diseases.

Limitations
In this study, we elucidate the recent transmission 
dynamics of the dengue virus in the Dominican Republic 
by combining genomic sequencing, epidemiological data 
analysis, and an examination of historical climate pat-
terns. However, the scarcity of complete DENV genome 
sequences in Latin America limits our ability to char-
acterize the molecular epidemiology of viral strains at a 
regional level, highlighting the importance of increasing 
sequencing efforts to improve real-time data generation, 
sharing, and representativeness. Despite this limitation, 
our phylodynamic analysis offers valuable insights into 
the dynamics of DENV in the country, providing a foun-
dation for better-informed public health strategies and 
interventions.
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