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Abstract
Vaccination against COVID-19 was integral to controlling the pandemic that persisted with the continuous 
emergence of SARS-CoV-2 variants. Using a mathematical model describing SARS-CoV-2 within-host infection 
dynamics, we estimate differences in virus and immunity due to factors of infecting variant, age, and vaccination 
history (vaccination brand, number of doses and time since vaccination). We fit our model in a Bayesian framework 
to upper respiratory tract viral load measurements obtained from cases of Delta and Omicron infections in 
Singapore, of whom the majority only had one nasopharyngeal swab measurement. With this dataset, we are 
able to recreate similar trends in URT virus dynamics observed in past within-host modelling studies fitted to 
longitudinal patient data.

We found that Omicron had higher R0,within values than Delta, indicating greater initial cell-to-cell spread of 
infection within the host. Moreover, heterogeneities in infection dynamics across patient subgroups could be 
recreated by fitting immunity-related parameters as vaccination history-specific, with or without age modification. 
Our model results are consistent with the notion of immunosenescence in SARS-CoV-2 infection in elderly 
individuals, and the issue of waning immunity with increased time since last vaccination. Lastly, vaccination was 
not found to subdue virus dynamics in Omicron infections as well as it had for Delta infections.

This study provides insight into the influence of vaccine-elicited immunity on SARS-CoV-2 within-host dynamics, 
and the interplay between age and vaccination history. Furthermore, it demonstrates the need to disentangle host 
factors and changes in pathogen to discern factors influencing virus dynamics. Finally, this work demonstrates a 
way forward in the study of within-host virus dynamics, by use of viral load datasets including a large number of 
patients without repeated measurements.
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Introduction
The persistence of the COVID-19 pandemic can be 
largely attributed to the continuous evolution of the 
virus, resulting in the emergence of new virus variants 
over time. New variants may have differing proper-
ties such as their ability to infect and transmit, associ-
ated disease severity, and susceptibility to pre-existing 
immunity. Both Delta (B.1.617) and Omicron (B.1.1.529) 
have shown greater transmissibility and immune escape 
capacity than past variants of concern (VOC) [1, 2]. 
Vaccinated and previously infected individuals showed 
decreased neutralising capacity of sera against Delta 
infection compared to pre-Delta VOCs [3, 4]. Meanwhile, 
vaccinated and previously infected individuals demon-
strated reduced levels of protection against re-infection 
and symptomatic disease for Omicron compared to pre-
viously circulating VOCs, although protection against 
severe disease during infection was maintained [5–7].

The effectiveness of the developed COVID-19 vaccines 
is challenged with each new variant. A systematic review 
reported that two doses of vaccine induced lower neu-
tralisation titres against Omicron compared to Wild Type 
virus, highlighting the need for booster doses to increase 
antibody levels [8]. Moreover, individuals who received 
non-mRNA vaccines had poorer neutralising ability 
against Delta and Omicron VOCs and faster waning anti-
body and cellular immune responses compared to those 
with mRNA vaccines [9]. However, it must be noted 
that the global immunological landscape against SARS-
CoV-2 has transformed in parallel with the pandemic. 
This is a result of natural infection and mass vaccination 
programmes that have elevated population immunity 
levels [10]. Hence, it is challenging to discern whether 
observations of new variants such as increased ability to 
evade prior immunity are a result of virus evolution, or 
increased population immunity.

Singapore launched its National Vaccination Pro-
gramme against COVID-19 on 30 December 2020, with 
a key strategy of prioritising higher risk sub-populations 
during the gradual vaccine rollout, such as elderly and 
healthcare workers (Fig. 1b). Older age groups were iden-
tified to be of higher risk, with increased susceptibility to 
infection and propensity for onset of severe symptoms 
given infection. This is not only due to their comorbidi-
ties but possibly also due to the decay of immune func-
tion with age, known as immunosenescence [11]. Due to 
the time period of vaccination being determined by an 
individual’s age, waning immunity results in inevitable 
differences in immunity across age groups at any given 
point in time [12]. While vaccination was being made 
available to older age groups, Singapore saw an increasing 
number of cases due to the importation and local trans-
mission of Delta VOC from April 2021 [13]. This resulted 
in a wave of infections due to Delta, as it replaced the 

previously circulating VOCs of Alpha, Beta and Gamma 
and became the predominantly circulating variant up 
until December 2021 with the introduction of Omicron 
(Fig.  1a). By January 2022, Omicron replaced Delta as 
the predominantly circulating variant [14] and Singapore 
faced a corresponding surge in COVID-19 cases while it 
commenced its booster dose administration.

Previous within-host models of SARS-CoV-2 infection 
have been developed to study the relationship between 
viraemia and disease parameters [15, 16], interactions 
between pathogen and host immune response [17–19], 
and treatments [20, 21]. Most of these within-host mod-
els have been focussed on the characterisation of disease 
and virus parameters, such as infectiousness [15, 22], and 
virus latent period [22], with recent work studying the 
effects of vaccination on antibody dynamics [23]. These 
models were fitted to a small number of patients with 
intensive follow up, often obtaining best-fit individual 
parameter values.

Here, we utilise a large dataset consisting of upper 
respiratory tract (URT) viral load measurements from 
70,355 patients of whom the majority only had one naso-
pharyngeal swab measurement. By adopting a Bayes-
ian approach, we estimate and analyse the best-fitting 
parameters to characterise Delta and Omicron infection 
dynamics of different patient subgroups categorised by 
age, vaccine brand and doses received, and time since 
last vaccine dose. Using a mathematical model describing 
SARS-CoV-2 URT infection with a simple clearing host 
immune response, we sought to gain insight into the role 
of infection rate of target cells, natural virus clearance, 
growth rate of immunity during infection, and infected 
cell clearance by immune response in influencing 
observed inter-group variability in infection and immune 
dynamics across VOCs, and patient subgroups.

Materials and methods
Data and the subsequent subsets used
The data was obtained from participating General Prac-
titioner clinics that were registered into the local gov-
ernment’s Public Health Preparedness Clinics (PHPC) 
scheme and enrolled into the national Swab and Send 
Home (SASH) programme. This dataset includes 159,178 
members of the community who attended Swab and Send 
Home clinics in Singapore, with PCR swabs collected 
from 25 April 2021 to 23 May 2022 (S1 Fig). Majority of 
the individuals (87.2%) only had one swab taken during 
their infection, as per the country’s swab protocol dur-
ing the period of data collection. Individuals with more 
than one swab recorded (12.8%) had consequent recovery 
swabs taken while they were in recovery. These individu-
als were more closely monitored as they were identified 
to be at higher risk of severe disease, such as elderly, 
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Fig. 1 Timeline of Singapore’s COVID-19 pandemic and vaccination programme from December 2020 to May 2022. (a) The number of monthly reported 
COVID-19 cases is represented by the black line and follows the left axis. The number of genomic sequences for Delta, Omicron and other variants are 
represented by the red, blue, and yellow bars respectively, and follow the right axis. (b) Timeline of Singapore’s mass vaccination programme for COVID-
19, including details of approvals for vaccine usage locally. The red block represents the approximate time period in which Delta was the predominantly 
circulating variant, April 2021 to early December 2021. The blue block represents the approximate time period in which Omicron was the predominantly 
circulating variant, early December 2021 onwards
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unvaccinated, or vaccinated with non-mRNA-based vac-
cines against COVID-19.

For our analysis, we only included the 70,355 indi-
viduals who were unvaccinated or received minimally 
two doses of a COVID-19 vaccine either made available 
through the national vaccination programme or that 
was commonly administered in Singapore. This includes 
Pfizer-BioNTech/Comirnaty, Moderna, Sinovac-Coro-
naVac and Sinopharm vaccines. We sought to study 
the effects of different vaccination histories and age on 
within-host dynamics of virus and immunity. Hence, 
patients were categorised into vaccine groupings based 
on the vaccine brand(s) and number of doses of COVID-
19 vaccine received. Moreover, we grouped patients by 
age, according to the age stratification used in Singapore’s 
COVID-19 vaccination policies. Patients were catego-
rised into one of six age groups: (1) 0–4 years, (2) 5–11 
years, (3) 12–17 years, (4) 18–39 years, (5) 40–60 years, 
and (6) above 60 years. Lastly, to consider the effects of 
waning immunity, patients were grouped according to 
the time since their last received dose of COVID-19 vac-
cine; with the first group being those who are infected 
within 1 week of receiving their last dose of vaccine 
(0–7 days), then those within the 2nd week (8–14 days), 
within the 3rd to 4th week (15–28 days), within the 2nd 
month (29–60 days), within the 3rd month (61–90 days), 
followed by grouping by 90-day intervals (91–180 days, 
181–270 days, 271–360 days).

Since no information on identity of infecting vari-
ant was provided, we inferred separation of Delta and 
Omicron B.1.1.529 waves using sequencing data made 
available by GISAID [14] (Fig.  1). Patients with date of 
symptom onset between 1 June 2021 to 30 November 
2021 were categorised as Delta infections, and those 
between 1 January 2022 to 18 February 2022 as Omi-
cron infections. We were unable to differentiate between 
infections with different B.1.1.529 sublineages in our 
dataset. However, the Omicron wave in Singapore was 
dominated by BA.1 infections till 4 February 2022, fol-
lowed by co-dominance of BA.1 and BA.2, then with 
BA.2 being the predominantly circulating sublineage 
from 17 February 2022 [24]. As we defined Omicron 
infections in our dataset as infections with date of symp-
tom onset between 1 January 2022 to 18 February 2022, 
the majority of our dataset should include BA.1 infec-
tions since the total nasopharyngeal swabs taken each 
day markedly decreased from mid-February (S1 Fig).

URT viral load data was recorded as cycle thresh-
old (Ct) values, we converted this to viral RNA 
copy number values (copies/mL) using the formula 
log10

(
viralRNAcopies, copies

mL

)
= −0.32 (Ct) + 14.11 

as in Kim et al. [25]. Each individual’s date of symptom 
onset and date of swab(s) taken were recorded. How-
ever, as we model within-host dynamics from the start of 

infection, we had to account for the incubation period of 
virus before symptom onset. We sampled each patient’s 
incubation period based on whether they were classified 
to have Delta or Omicron infection, assuming normal 
distributions with means of 4.41 and 3.42 days and stan-
dard deviations of 0.32 and 0.27 days respectively, based 
on the reported mean and 95% confidence interval from 
a meta-analysis of incubation periods for SARS-CoV-2 
variants [26].

Within-host model
Since only viral load data was available for model fitting, 
we use a simple compartmental deterministic model 
describing SARS-CoV-2 infection within an individ-
ual, detailing virus and immune dynamics. The model 
describes uninfected target cells (T), infected target 
cells (I), free virus (V), and a generic clearing immune 
response (Z). The model is detailed mathematically as:

 
dT

dt
= A − αT − βV T

 
dI

dt
= βV T − δI − γIZ

 
dV

dt
= pI − cV

 
dZ

dt
= ωIZ

In the model, uninfected target cells are assumed to be 
produced at constant rate A and die at rate α per cell. The 
target cells are infected by virus in a mass action man-
ner, resulting in productively infected cells, I. Infected 
cells die at rate δ and are cleared by the immune response 
via a mass action process. Free virus is produced at rate p 
per infected cell, and cleared at rate c. Although it is also 
possible for free virus to also be cleared by the immune 
response, we assume that infected cell clearance is the 
main mechanism of the immune response to inhibit 
infection. Immune response, Z, is assumed to grow in 
a mass action manner at rate ω, in response to infected 
cells. We recognise that the adaptive immune response in 
our model is an over-simplification of a complex system, 
however in the absence of lymphocyte and antibody data, 
incorporating a more complex and biologically represen-
tative form would result in issues of non-identifiability.

The within-host basic reproduction number, R0,within, is 
the expected number of susceptible target cells infected 
by a single infected cell. For our model, R0,within is calcu-
lated as R0,within = βpT0/[c(δ + γZ0)].
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Parameter estimation
The model consists of 8 parameters, 4 of which are fixed 
(Table 1). We assign values to these fixed parameters as 
not all parameters are independent given the lack of data 
of other compartments of the system. We estimate the 
infection rate of target cells (β), natural clearance of virus 
(c), infected cell clearance by immune response (γ), and 
growth rate of immunity (ω).

Since a large majority of patients only had one naso-
pharyngeal swab taken, we were unable to estimate 
parameters at an individual level. Instead, we adopted 
a Bayesian approach and fit the model to individual 
patient’s data, with parameters estimated at a group level. 
The fitted parameters are estimated at one of three lev-
els. The first level is variant-specific, such that all indi-
viduals with the same infecting VOC will have the same 
parameter estimate. The second level is vaccination his-
tory-specific, where there is one parameter estimate for 
all individuals from the same vaccine group who received 
their latest dose of vaccine within the same time period, 
estimated independently of other time periods. The third 
level is age modified vaccination history-specific, where 
there is one parameter estimate for individuals in the 
same age group, who have received the same vaccines 
and their latest vaccine dose within the same time period. 
To assess which parameters best explain differences in 
viral dynamics between vaccine histories and age groups, 
we consider four ODE within-host models that include 
different combinations of parameters fitted at different 
levels (S2 Table).

Depending on the model type, certain immunity-
related parameters are estimated as age-modified vac-
cination history-specific. In these models, either none 
of the immunity-related parameters are age-modified, 
only growth rate of immunity (ω) is age-modified, only 
immune clearance of infected cells (γ) is age-modified, 
or both immunity-related parameters are age-modified. 
To fit a parameter as age-modified vaccination history-
specific, we included an age modifier parameter, θ, that 
acted as a multiplier which scales the selected immu-
nity-related parameter for each age group. We assign 
the 18–39 years age group as our reference group, with 
θreference = θ18−39 yrs = 1.0. A multiplier value was estimated 
for each of the remaining age groups and scales their cor-
responding immunity-related parameter value, relative to 
the 18–39 years age group.

The within-host models are fitted to measurements 
of URT viral load using RStan, a programme interfacing 
R and Stan, allowing for statistical inference by use of 
Markov chain Monte Carlo (MCMC) [30]. We assumed 
log viremia measurements to have normally distributed 
errors, with σ2 taken to be 1. Below, φ is the probabil-
ity density function (pdf) of the normal distribution, Di 
are the URT viral load measurements, Xi are the model 

Table 1 Parameters of the within-host model. Values at which 
fixed parameters are held constant, and priors for estimated 
parameters are stated
Parameter Parameter 

description
Assigned/Estimated Value/

Prior
A Target cell 

production 
per mL and 
per day

Assigned 1.12 × 107 
[27, 28]

α Target cell 
death rate 
per day

Assigned 0.14 [28]

β Infection rate 
of target cells 
per virion

Estimated [10− 12: 
10− 9]

δ Natural 
clearance of 
infected cells 
per day

Assigned 0.14 [28]

γ Immune 
response 
clearance of 
infected cells 
per immune 
cell per day

Estimated [0:10]

p Virus produc-
tion rate per 
infected cell 
per day

Assigned 1.12 × 104 
[29]

c Natural clear-
ance of virus 
per day

Estimated [0.01:10]

ω Growth rate 
of immunity 
per infected 
cell per day

Estimated [0:1]

T0 Initial popu-
lation size of 
uninfected 
target cells 
per mL

Assigned 8 × 107

V0 Initial virus 
inoculum per 
mL

Assigned 1

Z0 Initial 
immune 
effector 
population 
per mL

Assigned 10 
(arbitrary, 
scales 
with γ)

θ Age modi-
fier vector for 
parameters 
estimated at 
age modified 
vaccination 
history-spe-
cific level

Estimated [0:inf ]
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predictions, and n is the total number of measurements 
in the dataset.

 

n∏

i=1

ϕ (log (Di)| log (Xi) , σ2)

Akaike information criterion, corrected Akaike infor-
mation criterion, Bayesian information criterion, and 
median log-likelihood are used to compare model 
performance.

Model selection procedure
We considered multiple ordinary differential equation 
(ODE) within-host models, henceforth referred to as 
model types, in which parameters are varied at different 
levels to determine which model type is able to recre-
ate trends in the data and assess which parameters best 
explain differences in viral dynamics between subgroups. 
We explored four model types in which the immunity-
related parameters, immune clearance of infected cells 
(γ) and growth rate of immunity (ω), were fitted at one of 
two levels: vaccination history-specific, or age-modified 
vaccination history-specific (S2 Table). The two virus-
related parameters, infection rate of target cells (β) and 
natural clearance rate of free virus (c) were assumed to 
be intrinsic to the SARS-CoV-2 variant, and were hence 
varied by VOC across all four model types.

Sensitivity analyses
We conducted sensitivity analyses to assess the impact 
of our assumptions and potential biases on model fit 
results. To assess model robustness to incubation period, 
we repeated the above model fitting with the selected 
model type 2 using a dataset in which we swapped the 
incubation period distributions used for Delta and Omi-
cron infections. To evaluate the impact of longitudinal 
sampling on virus dynamics, we fitted the model type 2 
to two datasets. The first dataset only includes the first 
recorded swab of each individual while the second only 
includes patients who were swabbed once. We also fitted 
an alternative model in which virus clearance by immu-
nity was assumed to be the main mechanism by which 
immunity cleared infection (see supplemental material, 
Equations S1).

Linear regression model
We regressed log10-transformed URT viral loads against 
day of symptom onset. For these linear regression mod-
els, the intercept describes the URT viral load at the time 
of symptom onset (virus peak), the slope represents the 
rate of virus clearance. As we did not have URT viral load 
measurements taken during the early stage of infection, 
it is unclear if the time of symptom onset corresponds 
to the time of virus load peak in virus growth trajectory. 

We used the same categorisation method for patients, 
such that they are stratified by age, vaccine brand and 
doses received, and time since last vaccine dose. We then 
performed separate linear regressions for each patient 
subgroup.

Model fitting was performed in R version 4.1.3 and 
RStan version 2.21.7. Analyses were performed in R ver-
sion 4.3.1.

Results
Data descriptions
URT viral load measurements were taken from commu-
nity samples during the Delta and Omicron waves in Sin-
gapore (S1 Fig). Patients were categorised according to 
age, time since vaccination, and vaccine group. Vaccine 
group is determined by the brand(s) of COVID-19 vac-
cine and number of doses received. We herein refer to a 
vaccine group and its time since vaccination subgroup as 
a vaccination history. The number of measurements per 
vaccination history for each age subgroup is summarised 
in Table  2. Patients presented to clinics to conduct a 
nasopharyngeal swab after symptom onset (S2 Fig).

Regressing URT viral load against day of symptom onset
URT viral load measurements were regressed against 
day of symptom onset, with patients categorised by vac-
cination history and age group (S1 Table). Measured 
peak viremia and clearance rate were inferred from the 
intercept and gradient of linear regression respectively. 
Delta infections tended to have higher measured peak 
viremia and faster rate of virus clearance than Omicron 
infections. With increasing time since last vaccine dose 
received, we observed a slower rate of virus clearance but 
no clear trend for measured peak viremia in both Delta 
and Omicron infections. We observed that generally 
for both VOCs, older age groups have higher measured 
peak viremia across vaccine histories. Although older 
age groups were observed to have slower rate of virus 
clearance for Delta infections, there was no such trend 
observed for Omicron infections.

Mechanistic models and model selection
In addition to exploring the dataset using linear regres-
sion models, we developed a mechanistic model to 
understand the acute infection process. We considered 
four ODE within-host models with parameters varied at 
different levels (VOC-specific, vaccination history-spe-
cific and age modified, vaccination history-specific) that 
were fitted in a Bayesian framework to the URT viral load 
data (S2 Table). Virus-related parameters of infection rate 
of target cells (β) and natural clearance rate of virus (c) 
were assumed to be intrinsic to the infecting variant, and 
were fitted as VOC-specific in all four models. Hence, 
individuals infected with the same VOC would have the 
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same parameter estimates for virus-related parameters, 
regardless of vaccination history and age. Meanwhile, 
immune-related parameters of growth rate of immunity 
during infection (ω) and infected cell clearance by immu-
nity (γ) were fitted as either vaccination history-specific 
or age modified, vaccination history-specific.

Akaike Information Criterion (AIC) [31], corrected 
Akaike Information Criterion (AICc) [32], Bayesian 
Information Criterion (BIC) [33] and median log-like-
lihood are used to compare model performance. For all 
metrics, the closer the score to 0, the better the model 
fit to each dataset. Model types 2 and 4 had the best fit, 
with scores closest to 0 across all metrics for both Delta 
and Omicron datasets (Table  3). Both of these models 
had growth rate of immunity (ω) fitted as age modified, 
vaccination history-specific, while infected cell clear-
ance by immunity (γ) was fitted as age modified, vacci-
nation history-specific for model type 4 and without age 
modification for model type 2. These results indicate 
that minimally the growth rate of immunity parameter 
(ω) had to be age-dependent in order to recreate differ-
ences between different patient subgroups. Comparing 
model types 2 and 4, estimating the immune clearance 
parameter (γ) as age-modified slightly improved model fit 
(Table  3, Model type 4). However, we found that it was 
not essential to recreate differences between age groups. 
Posterior distributions of the age modifier (θ) for immune 
clearance parameter (γ) showed that age modifier values 
were close to or overlapped with the reference value of 
1.0 (S4 Fig), implying that there was little difference in 
immune clearance parameter (γ) across age groups for 
the same vaccination history. Given that model type 2 
was sufficient to recreate differences between patient 
subgroups, we selected model type 2 for its ease of 
interpretability.

Akaike Information Criterion (AIC), corrected Akaike 
Information Criterion (AICc), Bayesian Information 
Criterion (BIC) and median log-likelihood (LL) of the 4 
model variants, for each VOC. VH refers to vaccination 
history-specific level; AM refers to age modified, vaccina-
tion history-specific level.

Resulting URT viral dynamics based on the parameter 
estimates of model type 2 for all vaccination histories 
and age subgroups were computed (Fig.  2). URT vire-
mia in Omicron infections peak earlier than for Delta, 
although with a lower virus peak value. Moreover, Omi-
cron infections have faster virus proliferation but slower 
virus clearance compared to Delta infections (Fig.  2). 
These model dynamics corroborate with the results of 
regressing URT viral RNA against day of symptom onset 
(S1 Table) in which Omicron infections were noted to 
have slower rate of virus decrease and lower viremia 
levels before decrease than for Delta infections. Both 
Delta and Omicron infections were observed to have an 
increasing peak virus value with age. Although rate of 
virus decay for Delta infections decreases with age, no 
such trend was observed for Omicron infections, simi-
lar to the results of regression for rate of virus decrease. 
For Delta infections, vaccinated groups have decreased 
overall viremia compared to unvaccinated counterparts, 
as indicated by the former’s virus trajectories being below 
that of the latter. Furthermore, 3-dose mRNA-vaccinated 
groups have lower viremia than the other doses and vac-
cine type groups. Comparing 2-dose mRNA and non-
mRNA groups, the mRNA groups have reduced overall 
URT viremia, with majority of the virus trajectories being 
below the reference line. However, virus dynamics of 
Omicron infections are largely similar across vaccination 
histories of the same vaccine group, with only slight dif-
ferences in time and magnitude of virus peak.

Modelled components of immunity
In our selected model type, infected cell clearance by 
immune response (γ) and growth rate of immunity dur-
ing infection (ω) both varied by vaccination history while 
the latter also varied by age. Doing so allowed us to exam-
ine differences between vaccine brands, doses, and across 
time since vaccination for both parameters, and age 
effects on growth rate of immunity. All parameter esti-
mates for infected cell clearance by immune response (γ) 
and growth rate of immunity during infection (ω) were 
estimated independently, with no relationship between 
time since vaccination subgroups.

Table 3 Summary of goodness-of-fit
Dataset
(Infecting VOC)

Model Number of estimated Parameters AIC AICc BIC Median LL

Delta (1) VH: γ, ω 100 676,217 676,217 677,078 -338,008
(2) VH: γ, AM: ω 105 669,661 669,661 670,565 -334,725
(3) VH: ω, AM: γ 105 675,683 675,683 676,587 -337,736
(4) AM: γ, ω 110 669,351 669,352 670,299 -334,565

Omicron (1) VH: γ, ω 100 618,031 618,032 618,887 -308,915
(2) VH: γ, AM: ω 105 615,663 615,664 616,562 -307,726
(3) VH: ω, AM: γ 105 617,840 617,841 618,739 -308,815
(4) AM: γ, ω 110 615,560 615,560 616,501 -307,670
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Fig. 2 Posterior median viral load trajectories from Model 2 fit, stratified by vaccination history and age subgroup. mRNA-based vaccines are represented 
by the following colour gradients; yellow to orange for Pfizer-only groups, light green to emerald for Moderna-based groups, lilac to dark purple for PPM, 
and light blue to navy for MMP. Non-mRNA-based vaccines are represented as follows; light blue to navy for Sinopharm groups, and pink to maroon for 
Sinovac. Colour gradient scales with increasing time since last vaccinated. Unvaccinated groups are shown in black, and plotted as a reference. (a) Delta 
infections (b) Omicron infections. (See Fig S6 for plot with samples from posterior)
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In vaccine histories with data available 6–9 months 
post-vaccination, infected cell clearance by immune 
response (γ) was observed to stabilise at a value similar to 
that of the unvaccinated group after 4 weeks since receiv-
ing the last vaccine dose (Fig.  3). For Delta infections, 
vaccinated group estimates for immune clearance param-
eter (γ) are comparable to the unvaccinated group. How-
ever, for Omicron infections vaccinated groups tended to 
have lower immune clearance parameter (γ) value than 
the unvaccinated group (Fig. 3).

Posterior distributions of the age-modifier for growth 
rate of immunity (θ) values for Delta and Omicron infec-
tions showed a decreasing trend in age modifier value 
with increasing age (S5 Fig). Age modifier values are 
highest for the 0–4 years age group (median values for 
Delta and Omicron: 2.17 and 2.84) and lowest for the 
60 + years age group (median values for Delta and Omi-
cron: 0.388 and 0.537). For both VOCs, posterior dis-
tributions of the age modifier for the 12–17 years age 
group are close to or overlap with reference value of 1 
(S5 Fig), indicating little to no difference in age effects on 
growth rate of immunity during infection (ω) from the 
18–39 years reference group. For both Delta and Omi-
cron infections, vaccine groups with sufficient datapoints 
show an increasing, decreasing, then plateauing trend 
with increasing time since vaccination (Fig.  4). A more 
gradual increasing then decreasing trend was observed in 
Omicron infections with growth rate of immunity begin-
ning to plateau at 61–90 days post vaccination, later than 
Delta infections’ 28–60 days. For Delta infections, growth 
rate of immunity (ω) is broadly greater in those vacci-
nated after 14 days of having received their last vaccine 

dose, as compared to unvaccinated counterparts of the 
same age group. However, growth rate of immunity (ω) 
of the vaccinated is similar to or slightly greater than the 
unvaccinated for the same age group.

Differences between Delta and Omicron
Next, we compared parameter estimates and within-
host basic reproduction numbers, R0,within., for Delta and 
Omicron infections. R0,within is calculated from parameter 
estimates of each VOC. This is a measure of within-host 
viral fitness representing the infection potential of a virus 
that indicates whether an infecting viral population will 
establish itself in the host.

We found that for the same patient subgroups, values 
for infected cell clearance by immune response (γ) and 
growth rate of immunity during infection (ω) are greater 
for Omicron infections (Figs. 5 and 6).

We observed higher virus infection rate of target cells 
(β (mean [95% CI]): 5.18 [4.78, 5.54] x 10− 10 ml− 1 day− 1 
vs. 3.94 [3.82, 4.08] x 10− 10 ml− 1 day− 1) and lower natural 
clearance rate of free virus (c (mean [95% CI]): 0.81 day− 1 
[0.80, 0.821] vs. 1.56 day− 1 [1.54, 1.57]) for Omicron com-
pared to Delta. R0, within values for Omicron infections are 
higher than Delta infections (Table  4). Moreover, Delta 
infections in vaccinated groups have similar R0, within val-
ues to the unvaccinated group, while Omicron infections 
in vaccinated groups have higher R0, within values than the 
unvaccinated group.

Fig. 3 Distribution of parameter estimates for immune clearance of infected cells (γ) for each vaccination history of Model type 2 (A and C). Coloured 
lines connect the median values of immune clearance of infected cells (γ) for each vaccine and time since vaccination subgroup (B and D)
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Fig. 4 Distribution of growth rate of immunity during infection (ω) estimates for each vaccination history and age subgroup, plotted on the log10 scale. 
Coloured lines connect the estimated median value of the growth rate of immunity estimate for the given subgroup. Unvaccinated group facet shows 
estimates for growth rate of immunity for each age group. (a) Delta infections, (b) Omicron infections
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Sensitivity analyses
To assess model sensitivity to data limitations, choices 
of incubation period distribution and infection-clearing 
mechanism, we conducted sensitivity analyses.

First, we tested model sensitivity to the types of patients 
with longitudinal samples in the dataset. We created two 
alternative datasets for model fitting. The first dataset 
only included the first recorded swab of each individual. 
The second dataset only included patients who had one 
swab taken. Results of both model fits showed similar 
observed differences in parameter estimates between 
Delta and Omicron infections, vaccination histories, and 
age groups. However, we observed that virus decay phase 
for both model fits for Delta and Omicron infections 
were noticeably slower than in the original model fit (S7 
& S8 Figs).

Next, we investigated the model’s sensitivity to chosen 
value of standard deviation for the normally distributed 
errors of log viremia measurements. We performed two 
model fittings with different standard deviations of viral 
load errors, σ2 = 0.5 and σ2 = 2. Results of these fittings 
showed that certain parameters, namely infection rate of 
target cells (β) and clearance of infected cells by immu-
nity (γ) were sensitive to σ2 value. Parameters of natural 
clearance rate of virus (c), age modifier (θ), and growth 
rate of immunity (ω) were insensitive (S13 & S14 Figs). 
We note that R0,within values are consequently affected by 
the σ2 value, since it incorporates β and c in its calcula-
tion. Despite this, all trends observed for infected cell 
clearance by immunity (γ) and growth rate of immunity 
(ω) were conserved regardless of assumed value of σ2.

Thirdly, to investigate model sensitivity to incubation 
periods for Delta and Omicron infections, we fitted our 
model to data with switched distributions for incubation 
periods of Delta and Omicron infections. The model fit 
to dataset with swapped incubation periods maintained 
similar magnitudes of virus peak and rate of virus decay 
to the original model fits (S9 Fig). Observed differences 
and trends in immunity-related parameters for vaccina-
tion histories and age subgroups were also robust. How-
ever, there was a marked difference in the time of virus 
peak for both Delta and Omicron infections, with Delta 
infection peaking earlier and Omicron infection peaking 
later than in the original model fit. These results indicate 
that the early stages of infection in our model are sensi-
tive to our choice in incubation period.

Lastly, to assess our choice in infection-clearing mech-
anism by immunity, we developed and fitted an alterna-
tive model in which clearance of free virus by immunity 
was assumed to be the main mechanism by which immu-
nity controls infection (see supplemental material, Equa-
tions S1). Model diagnostics for this alternative model 
were poor (S10 Fig) and it was unable to recreate virus 
dynamics. These results justify our choice of model 
with clearance of infected cells by immunity as the main 
mechanism.

Discussion
From our initial data exploration via the regression analy-
sis (S1 Table), we observed higher measured peak viremia 
in Delta infections, faster rate of virus clearance in Delta 

Fig. 5 Distribution of estimates for immune clearance of infected cells parameter (γ) for each vaccination history, for Delta and Omicron
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Fig. 6 Estimates for growth rate of immunity during infection (ω) for each vaccination history and age subgroup for Delta and Omicron infections, plot-
ted on the log10 scale. The first row shows the unvaccinated group’s estimates for immune proliferation for Delta and Omicron, split by age. Coloured 
lines connect the median values of immune proliferation estimates for each subgroup
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infections, and slower rate of virus clearance in older age 
groups, similar to the results of the within-host model. 
The mathematical model further allowed us to examine 
dynamics of both virus and immune dynamics during 
infection, and their interplay.

We have constructed a simple mathematical model 
describing the within-host dynamics of infection with 
SARS-CoV-2, fitted to URT viral load data collected in 
Singapore. We characterised heterogeneities in infection 

dynamics across vaccine histories and ages by fitting 
immunity-related parameters as vaccination history-
specific, with or without age-modification. Moreover, by 
varying virus-related parameters by infecting VOC, it 
was possible for us to recreate differences between Delta 
and Omicron infections.

Resulting URT virus dynamics from model fitting 
showed rapid virus growth, early peak, followed by grad-
ual decay in circulating virus. The shapes of our model 

Table 4 Estimated R0,within values for each vaccination history, for Delta and Omicron infections
VACCINE 
GROUP

VOC R0, within value [mean; 95% CI]

UNVACCINATED Delta 4.44 [4.40; 4.49]
Omicron 8.90 [8.77; 9.05]

Time since last dose (days)
0–7 8–14 15–28 29–60 61–90 91–180 181–

270
271–
360

2-dose Pfizer
(PFIZER 2)

Delta 4.23 [4.15; 4.33] 11.38 [10.06; 
13.00]

4.29 [4.22, 4.37] 4.49 [4.44; 4.55] 4.67 [4.62; 4.73] 4.56 [4.51; 
4.61]

4.80 
[4.74; 
4.87]

4.59 
[4.45; 
4.78]

Omicron 9.80 [9.10; 
10.98]

14.38 [11.01; 
21.40]

11.16 [9.78; 
14.45]

9.66 [9.05; 
10.65]

9.11 [8.75; 9.57] 10.21 [9.98; 
10.45]

9.99 
[9.76; 
10.24]

9.45 
[9.09; 
9.91]

2-dose Moderna
(MODERNA 2)

Delta 4.35 [4.11; 4.72] 3.24 [3.12; 3.38] 4.22 [4.15; 4.28] 4.43 [4.37; 4.48] 4.54 [4.49; 
4.60]

4.59 
[4.51; 
4.67]

Omicron 6.25 [6.00; 6.54] 8.66 [8.48; 
8.86]

12.80 
[11.39; 
15.49]

10.52 
[8.38; 
15.63]

2-dose Sinovac
(SINOVAC 2)

Delta 5.94 [5.15; 6.99] 4.21 [4.03; 4.44] 4.56 [4.34; 4.89] 4.54 [4.47; 4.61] 4.47 [4.41; 4.52] 4.71 [4.64; 
4.78]

5.11 
[4.75; 
5.84]

Omicron 14.10 [11.03; 
21.32]

9.35 [8.93; 9.88] 10.78 [9.65; 
14.00]

2-dose 
Sinopharm
(SINOPHARM 2)

Delta 4.45 [4.19; 4.79] 4.16 [4.02; 4.32] 4.27 [4.17; 4.38] 4.77 [4.59; 5.02] 5.66 [5.00; 6.89] 4.51 [4.38; 
4.68]

5.22 
[4.97; 
5.56]

Omicron 6.69 [6.40; 7.04] 15.39 [11.67; 
22.90]

11.57 [10.50; 
13.74]

3-dose Pfizer
(PFIZER 3)

Delta 4.78 [4.71; 4.85] 4.62 [4.53; 4.71] 4.20 [4.16; 4.25] 4.49 [4.43; 4.56] 4.25 [4.16; 4.37]
Omicron 11.97 [11.06; 

13.57]
9.14 [8.87; 9.45] 10.11 [9.75; 

10.54]
9.57 [9.34; 9.82] 10.71 [10.38; 

11.09]
10.05 [9.87; 
10.25]

3-dose Moderna
(MODERNA 3)

Delta 4.94 [4.74; 5.24] 4.63 [4.26; 5.73] 4.20 [3.97; 4.52] 4.45 [4.24; 4.92]
Omicron 9.45 [8.99; 

10.09]
7.30 [7.10; 7.52] 13.95 [10.76; 

22.21]
8.63 [8.41; 8.88] 9.28 [9.01; 9.63] 10.14 [9.68; 

10.79]
3-dose Sinovac
(SINOVAC 3)

Delta 4.21 [4.10; 4.34] 4.59 [4.43; 4.78] 5.44 [4.92; 6.29] 5.87 [4.75; 7.84]
Omicron 9.69 [8.87; 

12.03]
10.41 [9.69; 
11.73]

9.96 [9.43; 
10.75]

10.89 [9.57; 
14.12]

3-dose 
Sinopharm
(SINOPHARM 3)

Delta
Omicron 9.82 [8.73; 

13.82]
14.10 [7.75; 
24.06]

2-dose Pfizer, 
Moderna booster
(PPM)

Delta 4.41 [4.32; 4.52] 4.28 [4.03; 4.68] 4.12 [3.92; 4.37] 3.89 [3.82; 3.97]
Omicron 9.40 [8.97; 9.97] 7.34 [7.13; 7.58] 11.51 [10.47; 

13.20]
8.81 [8.58; 9.07] 9.41 [8.99; 

10.03]
10.60 [10.08; 
11.36]

2-dose Moderna, 
Pfizer booster
(MMP)

Delta 4.71 [4.48; 5.07] 5.66 [4.61; 7.54] 5.22 [4.48; 6.77]
Omicron 9.18 [8.28; 

11.94]
11.95 [8.97; 
18.54]

11.25 [9.95; 
14.10]

10.10 [9.48; 
11.09]

9.70 [9.06; 
11.30]

10.33 [9.39; 
12.01]
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fits for URT viremia (Fig.  2) are broadly similar to that 
observed in a human challenge trial with wild-type virus 
for both nasal and throat viral load trajectories [34]. 
Despite us fitting our models to individual data where a 
majority of the individuals only had one nasopharyngeal 
swab taken, by estimating parameters at a group level, we 
were able to recreate similar trends in URT virus dynam-
ics observed in other within-host models of URT SARS-
CoV-2 infection fitted to longitudinal patient data [15, 17, 
25]. The Bayesian approach we adopted made it possible 
for us to utilise our dataset which included a large num-
ber of individuals with only one measurement taken dur-
ing acute infection. Hence, it is possible for our model to 
be used for other swab datasets with a large number of 
patients, but without repeated measurements allowing 
exploration of the impact on virus dynamics of a wide 
range of vaccination histories and ages.

Model selection results showed that it was necessary 
to vary growth rate of immunity during infection (ω) 
by age and vaccination history to reproduce differences 
observed between patient subgroups (Table  3). As a 
result of this age modifier, growth rate of immunity (ω) 
decreased with increasing age for the same vaccination 
history, suggesting weakened immune function in older 
age groups (Fig. 4). These results provide supporting evi-
dence for existing hypotheses on the role of immunose-
nescence in SARS-CoV-2 infection in older individuals 
[35–37]. We further noted that for a given age group, 
growth rate of immunity (ω) remained higher for vacci-
nated groups compared to the unvaccinated regardless 
of time since vaccination. These results in Fig.  4 align 
with findings that although both older and younger age 
groups had raised antibody responses following vac-
cination, antibody titres were lower in older age groups 
than in younger individuals despite vaccination [38, 39]. 
We found that clearance by immune response (γ) could 
be varied by vaccination history without the need for age 
modification (Table 3). Although there was a clear trend 
over time since vaccination for growth rate of immunity 
(ω), no trend over time since vaccination was observed 
for immune clearance (γ). This suggests that there are 
little changes in the function of clearing immunity over 
time since vaccination and instead, time since vaccina-
tion is perhaps more relevant to the activation of immu-
nity given infection. However, this conclusion remains 
tentative with the lack of immunological measurements 
in our data. Overall, our model is able to recreate over-
all differences in parameter estimates for growth rate of 
immunity (ω) with differing vaccination history and age.

By considering time since last vaccine dose received 
as a means of subgrouping, we are able to capture differ-
ences in infection dynamics across time since vaccination 
subgroups that was possibly due to waning immunity. We 
found that both Delta and Omicron infections showed 

increasing growth rate of immunity during infection (ω) 
for the first 2 weeks post-vaccination before decreas-
ing, then finally plateauing from approximately 60–90 
days post-vaccination. For Delta and Omicron, growth 
rate of immunity (ω) at 0–7 days for a vaccine group and 
age subgroup is typically lower than that at 8–14 days or 
15–21 days. These findings are consistent with studies of 
T-cell and antibody response after 2 doses of mRNA vac-
cines that showed increased levels after 21 days post-vac-
cination [40, 41]. Furthermore, Gao et al. reported that 
antigen-specific effector T-cells contracted to approxi-
mately pre-vaccination levels by day 90 post-vaccina-
tion [41], with similar declining of antibody titres [42] 
observed in individuals who completed their primary 
series of vaccination. Waning of humoral response after 
third mRNA dose was also observed, albeit at a slower 
rate than after the second dose [5]. Although we did not 
model specific components of immunity, trends observed 
for the generic clearing immunity included in our model 
appears to mimic these observations of the waning adap-
tive immune response. In the absence of measurements 
of the effector immune response we are unable to draw 
definitive conclusions regarding the reasons for this 
eventual decline in growth rate of immunity (ω).

Comparing Delta and Omicron infections, model 
results showed faster virus growth, earlier and lower 
virus peaks followed by slower virus decline for all Omi-
cron infections (Fig.  2). We found Omicron infections 
to have higher R0, within values than Delta infections 
(Table  4), with higher estimates for virus infection rate 
of target cells (β) and modelled components of immu-
nity, and lower estimates for natural clearance rate of 
free virus (c). These results corroborate with a previ-
ous study using a model of virus infection dynamics of 
Delta and Omicron variants in nasal and lung cell types, 
whose results showed Omicron to have greater fitness 
advantage in human nasal epithelial cells with higher 
target cell infection rate and faster growth rate of virus, 
but lower peak viral load than Delta [43]. Although other 
studies have reported lower viral load for Omicron than 
Delta [44, 45], results in literature remain conflicting. 
Some studies have shown Delta and Omicron infections 
to have little difference in their viral load regardless of 
vaccination status [46, 47], while others have reported 
higher viral load for Omicron infections [48]. However, 
these studies had not accounted for differences in incuba-
tion period of infected individuals. As such, their results 
compare viral load measurements for Delta and Omi-
cron infections regardless of date of symptom onset, with 
measurements likely to have been taken at different time-
points of individual virus dynamics trajectories. A recent 
study of Delta and Omicron viral kinetics accounting for 
time since last infection or vaccination reported higher 
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peak viral loads for Delta infections compared to Omi-
cron (BA.1), similar to our results [49].

We found that vaccination altered URT viral dynamics 
more in Delta infections than Omicron. The difference 
in virus dynamics is especially apparent in the 3-dose 
mRNA vaccine groups that had lowered virus peak value 
and, in some cases, increased rate of virus decline for 
Delta infections (Fig.  2). There was no such discernible 
trend for 3-dose mRNA vaccine groups with Omicron 
infections, with URT viral load dynamics being similar 
regardless of vaccine brand. These results align with find-
ings of other studies. Yang et al. found largely similar viral 
dynamics among individuals who were unvaccinated, 
received 2 doses of inactivated vaccine, and received 
3 doses of inactivated vaccine during Omicron infec-
tion [50]. A study on Delta and Omicron virus dynamics 
showed a greater difference in viral load of the 2-/3-dose 
vaccine groups compared to those unvaccinated for 
Delta infections compared to Omicron [44]. However, 
Puhach et al. found that although vaccination decreased 
both RNA and infectious viral loads for Delta infections, 
the same was not observed for Omicron infections. The 
study showed that for Omicron infections, although 
3-dose vaccinated individuals had lower infectious viral 
loads than 2-dose vaccinated individuals, RNA viral load 
of the two groups were largely similar [51]. Moreover, we 
found that Omicron infections in vaccinated groups had 
greater R0,within values and lower value for clearance of 
infected cells by immunity (γ) compared to the unvacci-
nated groups. Our results show that vaccination was not 
able to subdue virus dynamics in Omicron infections as 
well as it had for Delta infections. This is possibly because 
the vaccines included in this study were the monovalent 
COVID-19 vaccines that did not confer as good protec-
tion against Omicron infections compared to past VOCs. 
As such, our results motivate for a vaccine that is better 
able to reduce Omicron virus load while minimising side 
effects.

The model has several limitations. First, we fitted our 
models to nasopharyngeal viral load measurements 
obtained post-symptom onset. Due to the lack of data 
during the early stages of infection, assumptions regard-
ing incubation period, virus production rate and unin-
fected target cell density affect estimates of infection rate 
of target cells (β). Moreover, the large number of patients 
in our dataset resulted in our inability to estimate indi-
vidual-level incubation periods during model-fitting, 
and in us assigning individual incubation periods. Sen-
sitivity analysis showed that the early stages of infection 
in our model are sensitive to the assumed distributions 
of incubation period, corroborating with findings of Ke 
et al. [52]. We observed that some vaccinated groups 
had steeper virus increase and higher peak viremia com-
pared to unvaccinated counterparts, which is likely due 

to this uncertainty in early infection dynamics and small 
numbers in some groups. As such, in the absence of 
early-stage viral load data, we are limited in our ability 
to model variations in early virus dynamics between vac-
cination regimes and age groups, with our conclusions 
pertaining to early virus dynamics remaining tentative. 
To address this issue, further studies can be conducted 
with data including measurements taken prior to symp-
tom onset.

Second, we are characterising infection in patients with 
a narrow range of symptoms. The clinical manifestations 
of disease experienced by the patients in our dataset were 
likely to be mild to moderate. Individuals in the dataset 
presented to clinics for confirmatory testing of SARS-
CoV-2 infection based on nasopharyngeal PCR swabs. 
This implies that individuals perceived their symptoms, 
but these symptoms were not sufficiently severe for indi-
viduals to present to hospitals or other forms of emer-
gency care. Hence when making inferences regarding 
differences between vaccinated and unvaccinated groups, 
and between vaccine groups, we note that we are study-
ing breakthrough infections, and that vaccine efficacy 
might differ between vaccine groups.

Third, majority of individuals in our dataset were 
swabbed once, with swabs taken earlier in the course 
of infection, closer to the date of symptom onset. As a 
result, these individuals mostly contribute to data closer 
to the time of virus peak. Individuals with longitudinal 
samples were typically elderly, unvaccinated individu-
als, or individuals vaccinated with non-mRNA vaccines 
who had multiple swabs taken as per the swab proto-
col. Sensitivity analysis by model fitting showed model 
fits without longitudinal data to have slower virus decay 
phase compared to the original model fit that included 
longitudinal data. Sampling from the posterior for these 
model fits showed similar widths of virus trajectories 
(S11 & S12 Figs). Hence in this study, it remains uncer-
tain if longitudinal samples assist in informing the virus 
decay phase, or counterintuitively bias the model towards 
having a faster virus clearance. To address this limitation, 
further modelling studies using data in which all patients 
are longitudinally sampled for similar time periods can 
be conducted.

Another limitation of this study is the simplicity of the 
model. Without measurements of the uninfected and 
infected target cell populations, and effector immune 
response, we are unable to consider more complex mod-
els of infection. For example, we could not explicitly 
model effector cell populations nor include more than 
one infection-clearing immune mechanism. Moreover, 
we are only able to consider a clearing (adaptive) immune 
response that affects either the infected cell population 
or the free virus population in our model. In addition, we 
opted to account for age by incorporating it as a modifier 
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to limit the number of parameters to be fitted in our 
model and preserving the model’s simplicity. Although 
this allowed us to clearly compare age effects for growth 
rate of immunity (ω) via the age modifier (θ), opting for 
this simpler model resulted in us being unable to capture 
age-dependent immune priming and waning.

Lastly, we assumed that the main mechanism by which 
immunity controls infection was infected cell clearance 
and did not include clearance of free virus by immunity 
in our model. As such, we are only modelling one arm 
of immunity, mainly the T-cell mechanisms for infected 
cell clearance. In our model results, we are unable to dis-
tinguish between infected cell clearance and clearance of 
free virus, as well as between clearance by immunity and 
natural clearance. We opted to model one mechanism 
for immune control of infection and fix the natural clear-
ance rate of the component being cleared. In these mod-
els, modelled adaptive immunity affects only the infected 
cell compartment or free virus compartment. However, 
regardless of the immunity-clearing forms of action used, 
observed patterns for patient subgroups should uphold 
and our study findings would remain consistent. Our 
original model was able to recreate virus dynamics simi-
lar in shape to human challenge studies and past mod-
elling work, unlike the alternate model. However, the 
alternative model’s inability to recreate viral load trajec-
tories is likely due to the lack of data on immunity-related 
components. Further studies could compare model fits 
for both models if such data is available alongside viral 
load measurements during infection.

By fitting a mathematical model of SARS-CoV-2 infec-
tion to Delta and Omicron infection data, in which infor-
mation on patients’ vaccines received, age, and time 
since last vaccine dose is available, we were able to pro-
vide insights into the age effects on immunity, immunity 
waning, the role of different levels of vaccine-induced 
protection, and VOC-specific infection dynamics of 
SARS-CoV-2. Our work highlights the importance of 
age-targeted public health policy, updating immunity 
with booster doses, and the need for vaccines better tar-
geted against Omicron infection. A possible extension 
to this work would involve the comparison of Omicron 
infections in individuals who received monovalent vac-
cines with those who received bivalent vaccines to inves-
tigate the effects of these vaccines on virus dynamics. 
Such work could consider infection with different Omi-
cron sublineages if data is available, in order to examine 
differences in virus dynamics between Omicron variants.

Abbreviations
AIC  Akaike Information Criterion
AICc  Corrected Akaike Information Criterion
BIC  Bayesian Information Criterion
LL  Log–likelihood
URT  Upper respiratory tract
VOC  Variant of concern

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12879-024-09572-x.

Supplementary Material 1

Supplementary Material 2

Acknowledgements
Data collection and collation was made possible by the Ministry of Health 
of Singapore (MOH), and made available to us through the Programme 
for Research in Epidemic Preparedness and Response (PREPARE). We thank 
Quirine Ten Bosch and Robin Thompson for fruitful discussions.

Author contributions
MWT and HEC contributed to the conception and design of the study. ATT, 
RYT and KZ curated the data. MWT processed the data, created the final 
datasets and mathematical model, analysed output data, and wrote the 
manuscript under the supervision of HEC and AJNA. HEC, AJNA and KBT 
contributed to the review and editing of the final manuscript. All authors read 
and approved the final manuscript.

Funding
This research is supported by the Ministry of Education, Singapore, under the 
Academic Research Fund Tier 1 (FY2020), and by the National University of 
Singapore Start-Up Grant to HEC, and NUS Scholarship to MWT.

Data availability
The data that support the findings of this study are available from the authors 
upon reasonable request and with the permission of MOH. Restrictions apply 
to the availability of these data, which were used under license for the current 
study, and so are not publicly available. R and Stan scripts for analyses and 
generating of figures are available at https://github.com/ID-Modelling-Lab/
Covid_withinhost.

Declarations

Ethics approval
This study was approved by the Saw Swee Hock School of Public Health 
Departmental Ethics Review Committee (SSHSPH-DERC).

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 20 February 2024 / Accepted: 27 June 2024

References
1. Lyngse FP, Mortensen LH, Denwood MJ, Christiansen LE, Møller CH, Skov 

RL, et al. Household transmission of the SARS-CoV-2 Omicron variant in 
Denmark. Nat Commun. 2022;13(1):5573.

2. Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, et al. Esti-
mated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. 
Science. 2021;372(6538):eabg3055.

3. Becker M, Dulovic A, Junker D, Ruetalo N, Kaiser PD, Pinilla YT, et al. Immune 
response to SARS-CoV-2 variants of concern in vaccinated individuals. Nat 
Commun. 2021;12(1):3109.

4. Davis C, Logan N, Tyson G, Orton R, Harvey WT, Perkins JS, et al. Reduced neu-
tralisation of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following 
vaccination. PLoS Pathog. 2021;17(12):e1010022.

5. Pooley N, Abdool Karim SS, Combadière B, Ooi EE, Harris RC, El Guerche 
Seblain C, et al. Durability of vaccine-induced and natural immunity against 
COVID-19: a narrative review. Infect Dis Ther. 2023;12(2):367–87.

https://doi.org/10.1186/s12879-024-09572-x
https://doi.org/10.1186/s12879-024-09572-x
https://github.com/ID-Modelling-Lab/Covid_withinhost
https://github.com/ID-Modelling-Lab/Covid_withinhost


Page 18 of 19Tan et al. BMC Infectious Diseases          (2024) 24:654 

6. Altarawneh HN, Chemaitelly H, Hasan MR, Ayoub HH, Qassim S, AlMukdad S, 
et al. Protection against the Omicron variant from previous SARS-CoV-2 infec-
tion. N Engl J Med. 2022;386(13):1288–90.

7. Stein C, Nassereldine H, Sorensen RJD, Amlag JO, Bisignano C, Byrne S, et 
al. Past SARS-CoV-2 infection protection against re-infection: a systematic 
review and meta-analysis. Lancet. 2023;401(10379):833–42.

8. Chen Z, Zhang Y, Wang M, Islam MS, Liao P, Hu Y, et al. Humoral and cellular 
immune responses of COVID-19 vaccines against SARS-Cov-2 Omicron vari-
ant: a systemic review. Int J Biol Sci. 2022;18(12):4629–41.

9. Peng Q, Zhou R, Wang Y, Zhao M, Liu N, Li S, et al. Waning immune responses 
against SARS-CoV-2 variants of concern among vaccinees in Hong Kong. 
eBioMedicine. 2022;77:103904.

10. Bergeri I, Whelan MG, Ware H, Subissi L, Nardone A, Lewis HC, et al. Global 
SARS-CoV-2 seroprevalence from January 2020 to April 2022: a systematic 
review and meta-analysis of standardized population-based studies. PLoS 
Med. 2022;19(11):e1004107.

11. Mueller AL, McNamara MS, Sinclair DA. Why does COVID-19 disproportion-
ately affect older people? Aging. 2020;12(10):9959–81.

12. Menegale F, Manica M, Zardini A, Guzzetta G, Marziano V, d’Andrea V, et al. 
Evaluation of waning of SARS-CoV-2 vaccine–induced immunity: a system-
atic review and meta-analysis. JAMA Netw Open. 2023;6(5):e2310650.

13. Tham D. New COVID-19 cluster in Singapore linked to imported case 
who was ‘probably reinfected’ in India. Channel News Asia. 2021 
[cited 2023 Aug 16]; https://www.channelnewsasia.com/singapore/
covid-19-cluster-reinfected-case-india-recovered-travellers-230196

14. Freunde von GISAID e.V. hCoV-19 variants dashboard. re3data.org - Registry 
of Research Data Repositories; 2012 [cited 2023 Aug 16]. VOC/VOI/VUM Rela-
tive Frequences Over Time. https://gisaid.org/hcov-19-variants-dashboard/

15. Ke R, Zitzmann C, Ho DD, Ribeiro RM, Perelson AS. In vivo kinetics of SARS-
CoV-2 infection and its relationship with a person’s infectiousness. Proceed-
ings of the National Academy of Sciences. 2021;118(49):e2111477118.

16. Néant N, Lingas G, Le Hingrat Q, Ghosn J, Engelmann I, Lepiller Q, et al. 
Modeling SARS-CoV-2 viral kinetics and association with mortality in 
hospitalized patients from the French COVID cohort. Proc Natl Acad Sci. 
2021;118(8):e2017962118.

17. Challenger JD, Foo CY, Wu Y, Yan AWC, Marjaneh MM, Liew F, et al. Model-
ling upper respiratory viral load dynamics of SARS-CoV-2. BMC Med. 
2022;20(1):25.

18. Hernandez-Vargas EA, Velasco-Hernandez JX. In-host modelling of COVID-19 
kinetics in humans. https://doi.org/10.1101/2020.03.26.20044487

19. Rowlatt CF, Chaplain MaJ, Hughes DJ, Gillespie SH, Dockrell DH, Johan-
nessen I et al. Modelling the within-host spread of SARS-CoV-2 infec-
tion, and the subsequent immune response, using a hybrid, multiscale, 
individual-based model. Part I: Macrophages. bioRxiv. 2022 [cited 2023 May 
31]:2022.05.06.490883. https://www.biorxiv.org/content/https://doi.org/10.1
101/2022.05.06.490883v1

20. Sadria M, Layton AT. Modeling within-host SARS-CoV-2 infection dynamics 
and potential treatments. Viruses. 2021;13(6):1141.

21. Ghosh I. Within host dynamics of SARS-CoV-2 in humans: modeling immune 
responses and antiviral treatments. SN Comput Sci. 2021;2(6):482.

22. Carruthers J, Xu J, Finnie T, Hall I. A within-host model of SARS-CoV-2 infec-
tion. medRxiv. 2022 [cited 2023 May 31]:2022.04.22.22274137. https://www.
medrxiv.org/content/https://doi.org/10.1101/2022.04.22.22274137v1

23. dePillis L, Caffrey R, Chen G, Dela MD, Eldevik L, McConnell J, et al. A 
mathematical model of the within-host kinetics of SARS-CoV-2 neutralizing 
antibodies following COVID-19 vaccination. J Theor Biol. 2023;556:111280.

24. Tan CY, Chiew CJ, Pang D, Lee VJ, Ong B, Lye DC, et al. Vaccine effectiveness 
against Delta, Omicron BA.1, and BA.2 in a highly vaccinated Asian setting: a 
test-negative design study. Clin Microbiol Infect. 2023;29(1):101–6.

25. Kim KS, Ejima K, Iwanami S, Fujita Y, Ohashi H, Koizumi Y, et al. A quantitative 
model used to compare within-host SARS-CoV-2, MERS-CoV, and SARS-CoV 
dynamics provides insights into the pathogenesis and treatment of SARS-
CoV-2. PLoS Biol. 2021;19(3):e3001128.

26. Wu Y, Kang L, Guo Z, Liu J, Liu M, Liang W. Incubation period of COVID-19 
caused by unique SARS-CoV-2 strains: a systematic review and meta-analysis. 
JAMA Netw Open. 2022;5(8):e2228008.

27. Lee HY, Topham DJ, Park SY, Hollenbaugh J, Treanor J, Mosmann TR, et al. 
Simulation and prediction of the adaptive immune response to influenza A 
virus infection. J Virol. 2009;83(14):7151–65.

28. Spencer H, Shorter RG. Cell turnover in pulmonary tissues. Nature. 
1962;194(4831):880–880.

29. Czuppon P, Débarre F, Gonçalves A, Tenaillon O, Perelson AS, Guedj J, et al. 
Success of prophylactic antiviral therapy for SARS-CoV-2: predicted critical 
efficacies and impact of different drug-specific mechanisms of action. PLoS 
Comput Biol. 2021;17(3):e1008752.

30. Stan Development Team. RStan: the R interface to Stan. 2022. https://mc-
stan.org/

31. Akaike H. A new look at the statistical model identification. IEEE Trans Autom 
Control. 1974;19(6):716–23.

32. Cavanaugh JE. Unifying the derivations for the Akaike and corrected Akaike 
information criteria. Stat Probab Lett. 1997;33(2):201–8.

33. Neath AA, Cavanaugh JE. The Bayesian information criterion: background, 
derivation, and applications. WIREs Comput Stat. 2012;4(2):199–203.

34. Killingley B, Mann AJ, Kalinova M, Boyers A, Goonawardane N, Zhou J, et al. 
Safety, tolerability and viral kinetics during SARS-CoV-2 human challenge in 
young adults. Nat Med. 2022;28(5):1031–41.

35. Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence 
and human vaccine immune responses. Immun Ageing. 2019;16(1):25.

36. Gustafson CE, Kim C, Weyand CM, Goronzy JJ. Influence of immune aging on 
vaccine responses. J Allergy Clin Immunol. 2020;145(5):1309–21.

37. Tizazu AM, Mengist HM, Demeke G. Aging, inflammaging and immunosenes-
cence as risk factors of severe COVID-19. Immun Ageing. 2022;19(1):53.

38. Müller L, Andrée M, Moskorz W, Drexler I, Walotka L, Grothmann R, et al. Age-
dependent immune response to the Biontech/Pfizer BNT162b2 Coronavirus 
disease 2019 vaccination. Clin Infect Dis. 2021;73(11):2065–72.

39. Romero-Olmedo AJ, Schulz AR, Hochstätter S, Das Gupta D, Virta I, Hirseland 
H, et al. Induction of robust cellular and humoral immunity against SARS-
CoV-2 after a third dose of BNT162b2 vaccine in previously unresponsive 
older adults. Nat Microbiol. 2022;7(2):195–9.

40. Kim YK, Minn D, Chang SH, Suh JS. Comparing SARS-CoV-2 antibody 
responses after various COVID-19 vaccinations in healthcare workers. Vac-
cines (Basel). 2022;10(2):193.

41. Gao F, Mallajoysula V, Arunachalam PS, Ploeg K, van der, Manohar M, Röltgen 
K, et al. Spheromers reveal robust T cell responses to the Pfizer/BioNTech 
vaccine and attenuated peripheral CD8 + T cell responses post SARS-CoV-2 
infection. Immunity. 2023;56(4):864–e8784.

42. Wheeler SE, Shurin GV, Yost M, Anderson A, Pinto L, Wells A, et al. Differential 
antibody response to mRNA COVID-19 vaccines in healthy subjects. Micro-
biol Spectr. 2021;9(1). https://doi.org/10.1128/spectrum.00341?21

43. McCormack CP, Yan AWC, Brown JC, Sukhova K, Peacock TP, Barclay WS et al. 
Modelling the viral dynamics of the SARS-CoV-2 Delta and Omicron variants 
in different cell types. bioRxiv. 2023 [cited 2023 Jun 9]:2023.03.15.529513. 
https://www.biorxiv.org/content/https://doi.org/10.1101/2023.03.15.5295
13v3

44. Woodbridge Y, Amit S, Huppert A, Kopelman NM. Viral load dynamics of 
SARS-CoV-2 Delta and Omicron variants following multiple vaccine doses 
and previous infection. Nat Commun. 2022;13(1):6706.

45. Laitman AM, Lieberman JA, Hoffman NG, Roychoudhury P, Mathias PC, 
Greninger AL. The SARS-CoV-2 omicron variant does not have higher nasal 
viral loads compared to the Delta variant in symptomatic and asymptomatic 
individuals. J Clin Microbiol. 2022;60(4):e00139–22.

46. Nunes SLP, de França CA, Rocha GD, Oliveira SA, de Freitas S, da Silva MR. 
Assessment of clinical characteristics and viral load in individuals infected by 
Delta and Omicron variants of SARS-CoV-2. Heliyon. 2023;9(8):e18994.

47. Fall A, Eldesouki RE, Sachithanandham J, Morris CP, Norton JM, Gaston DC 
et al. The displacement of the SARS-CoV-2 variant Delta with Omicron: an 
investigation of hospital admissions and upper respiratory viral loads. eBio-
Medicine. 2022 [cited 2023 Oct 19];79. https://www.thelancet.com/journals/
ebiom/article/PIIS2352-3964(22)00192-X/fulltext

48. Selvavinayagam ST, Yong YK, Joseph N, Hemashree K, Tan HY, Zhang Y et al. 
Low SARS-CoV-2 viral load among vaccinated individuals infected with Delta 
B.1.617.2 and Omicron BA.1.1.529 but not with Omicron BA.1.1 and BA.2 
variants. Frontiers in Public Health. 2022 [cited 2023 Oct 19];10. https://www.
frontiersin.org/articles/https://doi.org/10.3389/fpubh.2022.1018399

49. Russell TW, Townsley H, Abbott S, Hellewell J, Carr EJ, Chapman LAC, et al. 
Combined analyses of within-host SARS-CoV-2 viral kinetics and information 
on past exposures to the virus in a human cohort identifies intrinsic differ-
ences of Omicron and Delta variants. PLoS Biol. 2024;22(1):e3002463.

50. Yang Y, Guo L, Yuan J, Xu Z, Gu Y, Zhang J, et al. Viral and antibody dynamics 
of acute infection with SARS-CoV-2 omicron variant (B.1.1.529): a prospective 
cohort study from Shenzhen, China. Lancet Microbe. 2023;4(8):e632–41.

https://www.channelnewsasia.com/singapore/covid-19-cluster-reinfected-case-india-recovered-travellers-230196
https://www.channelnewsasia.com/singapore/covid-19-cluster-reinfected-case-india-recovered-travellers-230196
https://gisaid.org/hcov-19-variants-dashboard/
https://doi.org/10.1101/2020.03.26.20044487
https://www.biorxiv.org/content/
https://doi.org/10.1101/2022.05.06.490883v1
https://doi.org/10.1101/2022.05.06.490883v1
https://www.medrxiv.org/content/
https://www.medrxiv.org/content/
https://doi.org/10.1101/2022.04.22.22274137v1
https://mc-stan.org/
https://mc-stan.org/
https://doi.org/10.1128/spectrum.00341?21
https://www.biorxiv.org/content/
https://doi.org/10.1101/2023.03.15.529513v3
https://doi.org/10.1101/2023.03.15.529513v3
https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(22)00192-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(22)00192-X/fulltext
https://www.frontiersin.org/articles/
https://www.frontiersin.org/articles/
https://doi.org/10.3389/fpubh.2022.1018399


Page 19 of 19Tan et al. BMC Infectious Diseases          (2024) 24:654 

51. Puhach O, Adea K, Hulo N, Sattonnet P, Genecand C, Iten A, et al. Infectious 
viral load in unvaccinated and vaccinated individuals infected with ancestral, 
Delta or Omicron SARS-CoV-2. Nat Med. 2022;28(7):1491–500.

52. Ke R, Zitzmann C, Ribeiro RM, Perelson AS. Kinetics of SARS-CoV-2 infection 
in the human upper and lower respiratory tracts and their relationship with 
infectiousness. Infectious Diseases (except HIV/AIDS); 2020 [cited 2023 Nov 
7]. https://doi.org/10.1101/2020.09.25.20201772

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 

https://doi.org/10.1101/2020.09.25.20201772

	Differences in virus and immune dynamics for SARS-CoV-2 Delta and Omicron infections by age and vaccination histories
	Abstract
	Introduction
	Materials and methods
	Data and the subsequent subsets used
	Within-host model
	Parameter estimation
	Model selection procedure
	Sensitivity analyses
	Linear regression model

	Results
	Data descriptions
	Regressing URT viral load against day of symptom onset
	Mechanistic models and model selection
	Modelled components of immunity
	Differences between Delta and Omicron



