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Abstract 

Introduction  Chronic lung disease is a major cause of morbidity in African children with HIV infection; however, 
the microbial determinants of HIV-associated chronic lung disease (HCLD) remain poorly understood. We conducted 
a case–control study to investigate the prevalence and densities of respiratory microbes among pneumococcal con-
jugate vaccine (PCV)-naive children with (HCLD +) and without HCLD (HCLD-) established on antiretroviral treatment 
(ART).

Methods  Nasopharyngeal swabs collected from HCLD + (defined as forced-expiratory-volume/second < -1.0 
without reversibility postbronchodilation) and age-, site-, and duration-of-ART-matched HCLD- participants aged 
between 6–19 years enrolled in Zimbabwe and Malawi (BREATHE trial-NCT02426112) were tested for 94 pneumococ-
cal serotypes together with twelve bacteria, including Streptococcus pneumoniae (SP), Staphylococcus aureus (SA), 
Haemophilus influenzae (HI), Moraxella catarrhalis (MC), and eight viruses, including human rhinovirus (HRV), respira-
tory syncytial virus A or B, and human metapneumovirus, using nanofluidic qPCR (Standard BioTools formerly known 
as Fluidigm). Fisher’s exact test and logistic regression analysis were used for between-group comparisons and risk 
factors associated with common respiratory microbes, respectively.

Results  A total of 345 participants (287 HCLD + , 58 HCLD-; median age, 15.5 years [IQR = 12.8–18], females, 52%) 
were included in the final analysis. The prevalence of SP (40%[116/287] vs. 21%[12/58], p = 0.005) and HRV (7%[21/287] 
vs. 0%[0/58], p = 0.032) were higher in HCLD + participants compared to HCLD- participants. Of the participants 
positive for SP (116 HCLD + & 12 HCLD-), 66% [85/128] had non-PCV-13 serotypes detected. Overall, PCV-13 sero-
types (4, 19A, 19F: 16% [7/43] each) and NVT 13 and 21 (9% [8/85] each) predominated. The densities of HI (2 × 104 
genomic equivalents [GE/ml] vs. 3 × 102 GE/ml, p = 0.006) and MC (1 × 104 GE/ml vs. 1 × 103 GE/ml, p = 0.031) were 
higher in HCLD + compared to HCLD-. Bacterial codetection (≥ any 2 bacteria) was higher in the HCLD + group (36% 
[114/287] vs. (19% [11/58]), (p = 0.014), with SP and HI codetection (HCLD + : 30% [86/287] vs. HCLD-: 12% [7/58], 
p = 0.005) predominating. Viruses (predominantly HRV) were detected only in HCLD + participants. Lastly, participants 
with a history of previous tuberculosis treatment were more likely to carry SP (adjusted odds ratio (aOR): 1.9 [1.1 -3.2], 
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p = 0.021) or HI (aOR: 2.0 [1.2 – 3.3], p = 0.011), while those who used ART for ≥ 2 years were less likely to carry HI (aOR: 
0.3 [0.1 – 0.8], p = 0.005) and MC (aOR: 0.4 [0.1 – 0.9], p = 0.039).

Conclusion  Children with HCLD + were more likely to be colonized by SP and HRV and had higher HI and MC bacte-
rial loads in their nasopharynx. The role of SP, HI, and HRV in the pathogenesis of CLD, including how they influence 
the risk of acute exacerbations, should be studied further.

Trial registration  The BREATHE trial (ClinicalTrials.gov Identifier: NCT02​426112, registered date: 24 April 2015).

Keywords  S. pneumoniae, M. catarrhalis, H. influenzae, Pneumococcal serotypes, Human rhinovirus, Obliterative 
bronchiolitis, Africa

Introduction
In 2019, over 2.8 million children and adolescents were 
living with HIV globally, 90% in sub-Saharan Africa [1]. 
Respiratory infections remain the most common mani-
festation of HIV among these children and adolescents 
[2, 3]. The scale-up of antiretroviral therapy (ART) has 
increased survival so that growing numbers of children 
are entering adulthood. In addition, ART has resulted in 
a reduction in the rate of respiratory disorders, includ-
ing tuberculosis and lymphocytic interstitial pneumonitis 
[4–7]. However, studies in sub-Saharan Africa revealed 
that approximately 30% of HIV-infected older children 
experience chronic respiratory symptoms, including 
chronic cough and reduced tolerance to exercise, which 
often leads to presumptive tuberculosis treatment [8]. 
The clinical and radiological picture of this chronic lung 
disease is consistent with small airway disease, predomi-
nantly constrictive obliterative bronchiolitis [9].

The pathogenesis of this condition is incompletely 
understood. It is speculated that HIV-induced chronic 
inflammation and dysregulated immune activation 
may play a role [10–12]. A previous study of older chil-
dren with HIV-associated chronic lung disease (HCLD) 
conducted by our group demonstrated that there was 
increased inflammatory activation in children with 
HCLD (HCLD +) compared to their HIV-infected coun-
terparts without HCLD (HCLD-) [13]. In the same 
cohort, there was an association between the carriage 
of specific bacteria in the nasopharynx and HCLD [14]. 
Specifically, we observed that older children with HCLD 
were more likely to be colonized with Streptococcus 
pneumoniae (SP) and Moraxella catarrhalis (MC) than 
their HCLD- counterparts [14]. The study utilized bac-
terial culture, which is limited by viability and a narrow 
spectrum of culturable bacterial species. Although we 
observed that SP was associated with HCLD, we did not 
investigate the specific serotypes that may be involved in 
this condition, which is important to inform pneumococ-
cal immunization. Furthermore, the prevalence of respir-
atory viruses was also not studied.

Viruses facilitate bacterial infections in the host 
through various mechanisms, including damaging the 
respiratory epithelium, modifying the immune response, 
and altering cell membranes [15]. Coinfection of viruses 
and bacteria leads to increased bacterial load, thus 
making individuals more susceptible to complications 
related to upper respiratory tract infections [16]. Prior 
to COVID-19, respiratory syncytial virus, influenza virus 
and human rhinovirus (HRV) were the most common 
causative agents of upper respiratory infection and have 
been linked to exacerbations of COPD [17, 18], asthma 
development [17], and severe bronchiolitis in children 
[19–21].

To overcome these limitations, we investigated the 
prevalence of respiratory pathogens in both HCLD + and 
HCLD- participants using real-time quantitative poly-
merase chain reaction (qPCR) to detect and quantify a 
large number of bacterial and viral targets and elucidate 
common SP serotypes (94 serotypes). We also assessed 
clinical and sociodemographic factors associated with 
microbial carriage and density.

Materials and methods
Study design, population, and setting
This case–control study was nested within the BREATHE 
trial (ClinicalTrials.gov Identifier: NCT02426112, regis-
tered date: 24 April 2015) investigating whether azithro-
mycin therapy could improve lung function and reduce 
the risk of exacerbations among children with HCLD 
[22]. BREATHE was a two-site, double-blinded, placebo-
controlled, individually randomized trial conducted in 
Harare (Zimbabwe) and Blantyre (Malawi). The study 
setting, population, and trial procedures are described 
elsewhere [22–24]. Briefly, we enrolled perinatally HIV-
infected participants aged 6 – 19  years with HCLD. 
HCLD was defined as a forced expiratory volume in 1 s 
(FEV1) z score < -1, with no reversibility (< 12% improve-
ment in FEV1 after salbutamol 200  µg inhaled using a 
spacer) [22]. A group of perinatally HIV-infected chil-
dren without HCLD (FEV1 z score > 0) was also recruited 
at the same time as the enrollment of trial participants 
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using frequency matching for site, sex, age, and dura-
tion of ART to serve as a comparison group for patho-
genesis studies. Both groups were on ART for at least six 
months. All participants were most likely not vaccinated 
due to the introduction of PCV13 in 2012 in Zimbabwe 
[25] and in Malawi in 2011 [26], making them ineligible 
for vaccination at that time because of their older age. 
Swabs were collected between June 1, 2016 and Septem-
ber 31, 2019. Sociodemographic data and clinical his-
tory were recorded through an interviewer-administered 
questionnaire.

Nasopharyngeal swab collection
Nasopharyngeal swabs were collected at baseline from 
all participants using sterile flocked flexible nylon swabs 
(Copan Italia, Brescia, Italy). Swabs were immediately 
immersed in 1  mL PrimeStore® Molecular Transport 
Medium (MTM) (Longhorn Vaccines & Diagnostics 
LLC, Bethesda, USA), transported on ice and stored at 
-80  °C at the diagnostic laboratory at each site. Prime-
Store® MTM was used because it is a medium optimized 
for transporting and storing samples for molecular analy-
ses; it also inactivates potential pathogens and stabilizes 
nucleic acids [27]. The samples were batched and trans-
ported on dry ice to Cape Town, South Africa, where 
they were stored at -80 °C until further processing.

Total nucleic acid extraction
Total nucleic acid (TNA) extraction for microbial iden-
tification was conducted on NP swabs stored in Prime-
store® MTM. Briefly, the samples were thawed and 
vortexed for 10  s, and 400  µl aliquots were transferred 
into ZR BashingBead™ Lysis Tubes containing 0.5  mm 
beads (catalog no. ZR S6002–50, Zymo Research Corp., 
Irvine, CA, United States) for the mechanical lysis steps. 
Lysis was conducted on a Qiagen Tissue lyser LTTM 
(Qiagen, FRITSCH GmbH, Idar-Oberstein, Germany) 
for 5  min at 50  Hz, followed by centrifugation (Eppen-
dorf F-45–30-11, Merck KgaA, Darmstadt, Germany) 
for 1  min at 10,000  rpm (10,640  g). The supernatants 
(250  µl) were extracted using the QIAsymphony® DSP 
Virus/Pathogen Kit (Qiagen GmbH, Hilden, Germany) 
on the QIAsymphony SP/AS instrument (Qiagen GmbH, 
Hilden, Germany) following the manufacturer’s instruc-
tions. The total nucleic acid was eluted in 70 µl DNA elu-
tion buffer into the Elution Microtube (Qiagen GmbH, 
Hilden, Germany) and immediately stored at -80 °C until 
further analysis.

Real‑time qPCR using the biomark HD system (Fluidigm 
assay)
Nanofluidic qPCR testing was performed at the WITS-VIDA 
Research Unit, Witwatersrand University, Johannesburg, 

South Africa as previously described [28, 29]. Briefly, all 
extracts were tested for 94 SP serotypes together with 12 bac-
terial species (SP, HI, MC, Staphylococcus aureus [SA], Neisse-
ria lactamica, Neisseria meningitidis, Streptococcus pyogenes, 
Bordetella pertussis, Bordetella holmesii, Klebsiella pneumo-
niae, Acinetobacter baumanii and Streptococcus oralis), 6 HI 
serotypes and 8 viruses (respiratory syncytial virus A and B, 
human rhinovirus, influenza A and B, human parainfluenza 
1 and 3, and human metapneumovirus). Furthermore, all 
samples were previously cultured for SP, HI, MC and SA as 
described elsewhere [14]. These microbial targets (Table S1) 
included on the nanofluidic panel might be associated with 
HCLD and are the most frequent pathobionts in the naso-
pharynx. A detailed list of these microbial targets can be 
found in the supplementary material (Table S1). For SP, posi-
tive samples were defined as those with a Cycle of quantifi-
cation (Cq) value ≤ 36 for each serotype-specific qPCR target 
and positive for both LytA and PiaB. Negative samples were 
defined as those with Cq values ≥ 36 for each target.

The bacterial or serotype densities were determined 
following the method outlined by Downs et  al. [28]. 
Briefly, culture controls and synthetic double-stranded 
DNA (dsDNA) template gene fragments (gBlocks) were 
included in the assay as external calibrators, reported as 
copy numbers or gene equivalents, respectively. A DNA 
library was prepared for the targeted pneumococcal sero-
types or other bacterial species at an average concen-
tration ranging from 103 to 104  CFU/ml. For assay-sets 
meeting the defined efficiency criteria (90–110%), the rel-
ative quantification of bacterial density was determined 
by extrapolating using the linear equation derived from 
standard curves of the calibrators (control strains and 
gBlocks with known densities), employing the equation 
and reported as log 10 genomic equivalents/ml:

Data management and statistical analysis
Clinical and sociodemographic data were electronically 
captured using Google NexusTM tablets (Google, Moun-
tain View, CA, USA) running OpenDataKit software, 
managed on Microsoft Access databases (Microsoft, Red-
mond, WA, USA) and analyzed using Stata ((StataCorp, 
College Station, TX). Comparisons between groups were 
performed with the Student T test or Mann–Whitney 
U test for continuous data and chi-squared or Fisher’s 
exact tests for categorical data where appropriate with 
no further adjustment of multiplexity. Multivariate logis-
tic regression, adjusting for age category, duration of 
ART, site, sex, height-for-age, HIV viral suppression, his-
tory of TB treatment, Medical Research Council dysp-
nea score and ART regimen, was used to investigate the 

Density = 10
Cq−c
m x extraction volume

elution volume
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factors associated with microbial carriage and density. 
The following were excluded from the multivariate model 
because of colinearity: Enrollment BMI-for-age z score, 
weight-for-age z score, and CD4 count. A p value of less 
than 0.05 was considered statistically significant.

Results
Clinical and sociodemographic characteristics
The study included 345 participants, HCLD + (n = 287) 
and HCLD- (n = 58), with a median age [IQR] of 15.5 
(12.8 – 18.0) years and 52% (180/345)] female (Table 1). 
The median BMI-for-age-z score for the HCLD + group 
was lower compared to the HCLD- group (-1.1 vs -0.4), 
p < 0.001. A higher proportion of the participants from 
the HCLD + group were previously treated for tuber-
culosis (31% vs. 12%, p = 0.001), stunted (49% vs. 29%, 
p = 0.009) and underweight (52% vs. 14%, p < 0.001) 
compared to the HCLD- group. A higher number of 
HCLD + participants were on a second-line ART (pro-
tease inhibitor-based) regimen (25% vs. 10%, p = 0.01) 
compared to HCLD-. Ten percent of HCLD + partici-
pants compared to HLCD- (2%) participants had an 
MRC dyspnea score of 3 or above. None of the partici-
pants reported smoking.

Prevalence and densities of selected nasopharyngeal 
microbes in participants with and without HCLD
The prevalence and median densities of selected 
microbes detected in the nasopharynx of HCLD + and 
HCLD- participants are summarized in Table  2. The 
prevalence of SP colonization was significantly higher 
in the HCLD + group (40%, 116/278) compared to the 
HCLD- group (21%, 12/58; p = 0.005). However, there 
were no statistically significant differences between the 
two groups in colonization prevalence of pneumococcal 
serotypes covered by the 13-valent pneumococcal conju-
gate vaccine (PCV13 vaccine types, VT) or those not cov-
ered (non-vaccine types, NVT).

Of the 128 participants colonized with SP (116 
HCLD + , 12 HCLD-), 66% (85/128) carried NVT sero-
types, while 34% (43/128) carried PCV13 VT sero-
types (Fig.  1). A total of 150 pneumococcal serotypes 
was detected in the 128 participants colonized with SP 
including 134 serotypes from the HCLD + group and 16 
from the HCLD- group (Fig. 1). Multiple serotypes were 
detected in 14% (16/116) of HCLD + participants and 
17% (2/12) of the HCLD- participants colonized with SP.

NVT serotypes predominated over PCV13 VTs in both 
groups, accounting for 69% (93/134) in HCLD + and 81% 
(13/16) in HCLD- (Fig. 1). While not statistically signifi-
cant (p = 0.398), the prevalence of PCV13 VT serotypes 
trended higher in HCLD + (31%, 41/134) compared to 
HCLD- (19%, 3/16).

The most common PCV13 VT serotypes in both 
groups were 4 (16%, 7/44), 19F (16%, 7/44), 19A (16%, 
7/44), and 18C (14%, 6/44). The predominant NVTs were 
13 and 21 (8% each, 8/106). There were no statistically 
significant differences in serotype-specific colonization 
prevalence between HCLD + and HCLD- groups. Like-
wise, the median densities of the composite NVT and 
PCV13 VT serotypes did not differ significantly between 
the two groups (Figure S1). The overall median serotype 
density across all samples was 8.8 genomic equivalents/
ml.

There were no significant differences in the coloniza-
tion prevalence of any other bacteria tested. Despite 
there being no difference in the colonization prevalence 
for both HI and MC, the mean log density was higher 
in the HCLD + ( 2 × 104−gene equivalents [GE]/ml & 
1 × 104 GE/ml) compared to the HCLD- (3 × 102 GE/ml; 
p = 0.006 & 0.5 × 103 GE/ml; p = 0.031,) groups, respec-
tively (Table  2). There was no significant difference in 
the mean log densities between the groups for the other 
tested bacteria. There was a low prevalence of the viruses 
detected amongst the group, with HRV (7% [21/287] vs. 
0% [0/58], p = 0.032) detected in the HCLD + group only. 
The bacterial species Klebsiella pneumoniae, Neisseria 
meningitidis, Actinobacter baumanii, Bordetella pertus-
sis/holmesii, and viruses influenza A, influenza B, human 
parainfluenza type 1 & 3, and human metapneumovirus 
were not detected in any participants.

Nasopharyngeal bacterial and viral co‑colonization 
in participants with and without HCLD
Bacterial and viral co-colonization detected in HIV-
infected participants with or without HCLD is summa-
rized in Table  3 and Table  S2. Bacterial detection (any) 
was significantly higher in HCLD + (61% [175/287]) than 
in HCLD- (43.1% [25/58]) (p = 0.013). Moreover, the con-
current carriage of multiple bacterial species was higher 
in the HCLD + group (35.9% [103/287]) than in the 
HCLD- group (19% [11/58]) (p = 0.014). The most fre-
quent bacteria detected concurrently with SP included 
SP were HI (HCLD + : 30% [87/287]) vs. HCLD-: 12.1% 
[7/58], p = 0.013) and MC (HCLD + : 23.3% [67/287] vs. 
HCLD-: 12.1% [7/58], p = 0.078). Viruses were detected 
only in the HCLD + group (8% [23/287]), with viral and 
bacterial co-colonization reported in 6.6% (19/287) of 
HCLD + participants. To determine whether the con-
current detection of bacteria in HCLD + participants 
was due to a true interaction or simply by chance, we 
compared the observed and expected values based on 
marginal probabilities. The results showed that the 
co-colonization of SP with HI (Observed [86/287] vs 
Expected [50.1/287], p < 0.001); SP with MC (Observed 
[60/287] vs Expected [30.3/287]], p < 0.001) and MC with 
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Table 1  Baseline characteristics of participants in the HCLD + and HCLD- groups

Abbreviations: HCLD HIV-associated chronic lung disease, TB Tuberculosis, FEV1 Forced expiratory volume in 1 s, IQR Interquartile range, MRC Medical Research Council
a Participants with missing responses were excluded from that variable; pb, Fisher’s exact test

Characteristics HCLD + 
[% (n/N)]

HCLD- [% (n/N)] Pb

Sociodemographic
  Site Zimbabwe, % (n/N) 72% (208/287) 76% (44/58) 0.746

Malawi 28% (79/287) 24% (14/58)

  Sex Male 51% (147/287) 31% (18/58) 0.006
Female 49% (140/287) 69% (40/58)

  Age (years) Median (IQR) 15.4 (12.9 – 19.9) 15.7 (12.4 – 18.1) 0.861

  Age groups 6 – 12 years 26% (74/287) 29% (17/58) 0.373

13 – 16 years 43% (123/287) 31% (18/58)

17 – 19 years 31% (90/287) 40% (23/58)

  Currently attending school 81% (231/284) 86% (50/58) 0.454

  Same age as most children in class a 34% (79/233) 26% (13/50) 0.442

  Repeated ≥ 1 school grade, 58% (162/281) 40% (23/58) 0.014
Anthropometric:
  BMI for age-z score Median (IQR) -1.1 (-1.8, -0.2) -0.14 (-0.8, 0.7)  < 0.001
  Height for age-z score  <  − 2 (Stunted) 49% (140/287) 29% (17/58) 0.009
  Weight for age-z score  <  − 2 (Underweight) 52% (148/287) 14% (8/58)  < 0.001
Current Drugs:
  Taking cotrimoxazole prophylaxis a 91% (259/285) 87% (48/55) 0.454

  Antiretroviral Regimen NNRT-base-1st line 75% (214/287) 90% (52/58) 0.010
PI-base 2nd line 25% (73/287) 10% (6/58)

HIV Clinical parameters
  Age at HIV diagnosis (years), median (IQR) 7.9 (4.4 – 10.5) 7.1 (4.1 – 9.8) 0.377

  Age at ART initiation (years), median (IQR) 8.5 (5.9 – 11.7) 8.4 (5.0 – 11.1) 0.398

  Duration on ART (years), median (IQR) 6.4 (3.9 – 8.6) 7.3 (4.7 – 9.0) 0.219

  Duration on ART​a  > 6 months to < 2 years 9% (26/280) 3% (2/58) 0.341

2 to < 4 years 17% (48/280) 21% (12/58)

4 to < 6 years 21% (58/280) 16% (9/58)

6 years or more 53% (148/280) 60% (35/58)

  CD4 count categories (Cells/mm3)  < 200 12% (33/287) 10% (6/58) 0.687

200–500 29% (84/287) 24% (14/58)

 > 500 59% (170/287) 66% (38/58)

  Viral load (VL) suppressiona VL < 1000 copies/mL 54% (153/285) 66% (38/58) 0.191

Respiratory status
  Hospitalization for chest problems in the last 
48 weeks

2% (6/287) 0% (0/58) 0.595

  Previously treated for TBa 31% (88/286) 12% (7/58) 0.001
  Has asthmaa 3% (9/286) 0% (0/58) 0.366

  FEV1 z score Median (IQR) -1.9 (-2.46, -1.47) 0.61 (0.26 – 0.83)  < 0.001
  MRC dyspnea scorea 1 54% (156/287) 81% (46/57) 0.006

2 36% (103/287) 17% (10/57)

3 6% (18/287) 2% (1/58)

4 3% (8/287) 0% (0/57)

5 1% (2/287) 0% (0/57)
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Table 2  The prevalence and density of microbes present in the nasopharyngeal swabs of HIV-infected children with and without 
HCLD

CLD Chronic lung disease, GE Genomic Equivalents
a Fisher’s exact test; did not adjust for multiple testing
b  Mann‒Whitney U test
* Actual microbial density obtained from one participant

Microorganism Microbial prevalence Microbial density (GE/ml)

HCLD + group
(n = 287)

HCLD- group
(n = 58)

pa HCLD + group
(Median)

HCLD- group
(Median)

pb

Bacterial species
  Streptococcus pneumoniae (SP) 40% (116) 21% (12) 0.005 6 × 104 1 × 104 0.259

  Staphylococcus aureus (SA) 6% (17) 5% (3) 0.999 3 × 102 2 × 102 0.773

  Moraxella catarrhalis (MC) 26% (75) 16% (9) 0.095 1 × 104 1 × 103 0.031
  Haemophilus influenzae (HI) 43% (124) 33% (19) 0.147 2 × 104 3 × 102 0.006
  Haemophilus influenzae type B 0% (0) 2% (1) 0.999 - *1 × 103 -

  Streptococcus oralis 3% (8) 2% (1) 0.999 8 × 102 *2 × 103 0.699

  Neisseria lactamica 2% (6) 0% (0) 0.595 2 × 103 - -

  Streptococcus pyogenes 2% (5) 0% (0) 0.594 3 × 106 - -

Virus
  Respiratory syncytial virus A 0.4% (1) 0% (0) 0.999 * 3 × 102 - -

  Respiratory syncytial virus B 0.4% (1) 0% (0) 0.999 * 62 - -

  Human rhinovirus 7% (21) 0% (0) 0.032 1 × 104 - -

Fig. 1  Pneumococcal serotypes recovered from nasopharyngeal swabs of HCLD + and HCLD- participants. Abbreviations: PCV, 
polysaccharide-conjugated vaccine; n, number of swabs serotyped using the fluidigm assay from the HCLD + group (n = 116) and HCLD- group 
(n = 12). Denominator for prevalence is the total number of SP serotypes grouped into PCV 13 and non-PCV 13 serotypes. Others* HCLD + group: 
PCV13 serotype [3 (0.7%), 5 (0.7%), 6B (0.7%), 9AV (0.7%), 4 (5.2%), Others**: HCLD + group non-PCV 13 serotype [18B (0.7%), 19 atypical (0.7%), 20 
(0.7%), 23B (1.5%), 27 (0.7%), 25AF/38 (0.7%), 45 (0.7%), 29 (0.7%), 31 (0.7%), 33C (1.5%), 38 (0.7%)]; HCLD- group non-PCV13 serotype [10A (6.3%), 10B 
(6.3%), 22A (6.3%), 33B (6.3%)]. 15: HCLD + group non-PCV 13 serotype [15AF (3.7%), 15BC (2.2%), 15like (1.5%)]; HCLD- group non-PCV13 serotype 
[15like (6.3%)]. 11: HCLD + group non-PCV 13 serotype [11AD [3.7%), 11E (1.5%)]; HCLD- group non-PCV13 serotype [11E (6.3%)]
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HI (Observed [54/287] vs Expected [32.4/287], p < 0.001]) 
was a result of true interactions with HCLD (Table S3).

Factors associated with carriage of selected bacteria 
at baseline in participants with HCLD
The results of the univariate and multivariate analyses 
of the clinical and sociodemographic factors associated 
with the carriage of SP and SA are displayed in Table 4, 
while those for HI and MC are shown in Table  5. On 
multivariate analysis, participants previously treated 
for TB (adjusted odds ratio were more likely to carry SP 
(aOR): 1.9 [1.1 -3.2], p = 0.021) or HI (aOR: 2.0 [1.2 – 
3.3], p = 0.011). Participants on ART for ≥ 2  years (aOR: 
0.3 [0.1 – 0.8], p = 0.005) and living in Zimbabwe (aOR: 
0.5 [0.3 – 0.9], p = 0.026) were less likely to carry HI 
(Table 5). Similarly, MC carriage was less likely in partici-
pants who had been on ART for ≥ 2 years (aOR: 0.4 [0.1 – 
0.9], p = 0.039) (Table 5). Participants who were attending 
school were more likely to carry MC (aOR: 2.5 [1.0 -6.4], 
p = 0.050) (Table 5).

Discussion
In this study, we used quantitative PCR to determine the 
prevalence and density of bacterial and viral carriage in 
HIV-infected African children. As previously shown [14], 

microbial colonization was more frequently detected in 
HCLD + than HCLD- participants, with the former more 
likely to carry SP or HRV. Strikingly, viruses (predomi-
nantly HRV) were detected only in HCLD + children. 
Moreover, we observed that HCLD + participants had a 
higher HI and MC density than their HCLD- counter-
parts. The prevalence and densities of all SP serotypes 
tested were similar between the two groups, with more 
of the recovered SP serotypes (79%) being non-PCV 13. 
Study participants with a history of previous tuberculo-
sis treatment were more likely to carry SP or HI, while 
those who used ART for ≥ 2 years were less likely to carry 
HI and MC. Furthermore, those living in Zimbabwe were 
less likely to carry HI.

The prevalence of HI in the current study in both 
HCLD + (43%) and HCLD- (33%) participants was higher 
than that observed in our previous study of the same 
cohort by Abotsi et  al. [14] (12% and 5%, respectively). 
Similar studies conducted in India [30] and Zambia [31] 
in HIV-infected children observed similar prevalence 
(26% and 29%, respectively) to our current study (33%). 
The discrepancy in results could be attributed to the 
more sensitive PCR detection method used in our study 
compared to the culture method employed in previous 
studies as well as age and pathological differences.

Table 3  Bacterial and viral co-colonization in study participants at baseline

Other bacteria a; bacteria analyzed as one group (Klebsiella pneumoniae, Neisseria meningitidis, Acinetobacter baumanii and Bordetella pertussis/holmesii, HI type B, S. 
oralis, N. lactamia & S. pyogens); pa, Fisher’s exact test

HCLD + group
% (n/N)

HCLD—group
% (n/N)

Pa

Bacterial detection
  Single bacterial species 61% (175/287) 43.1% (25/58) 0.013
  At least 2 bacterial species 35.9% (103/287) 19% (11/58) 0.014
   > 2 bacterial species 21.3% (61/287) 12.1% (7/58) 0.147

Bacterial co-colonization
  SP & SA 2.4% (7/287) 3.4% (2/58) 0.651

  SP & HI 30% (86/287) 12.1% (7/58) 0.005
  SP & MC 20.9% (60/287) 12.1% (7/58) 0.146

  SA & HI 2.1% (6/287) 1.7% (1/58) 1.000

  SA & MC 1.1% (3/287) 3.5% (2/58) 0.198

  MC & HI 18.8% (54/287) 12.1% (7/58) 0.261

  SP & other bacterial species a 4.9% (14/287) 3.5% (2/58) 1.000

  MC & other bacterial species a 3.1% (9/287) 1.7% (1/58) 1.000

  HI & other bacterial species a 5.2% (15/287) 3.5% (2/58) 0.748

  SA & other bacterial species 3.1% (9/287) 0% (0/58) 0.366

Virus detection
  Single virus 8.0% (23/287) 0% (0/58) 0.019
   ≥ 2 viruses - - -

Viral and bacterial co-detection
  Single virus + single bacterial species 6.6% (19/287) 0% (0/58) 0.053

  Single virus + multiple bacterial species 5.6% (16/287) 0% (0/58) 0.084
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Furthermore, HCLD + participants showed a higher 
density of HI than their counterparts. Previous studies 
have associated HI carriage in participants with other 
lung diseases, including asthma [32], bronchiectasis [33, 
34] and chronic obstructive pulmonary disease [35–37]. 
HI has been identified as a biomarker for predicting the 
response to azithromycin treatment in adults with per-
sistent uncontrolled asthma [32]. It has also been asso-
ciated with negative outcomes in children suffering from 
respiratory viral infections [38], including hospitaliza-
tion among RSV-positive children [39]. The bacterium’s 
ability to invade host epithelial cells, evade host defense 
mechanisms, form biofilms and survive as an intracel-
lular pathogen contributes to its pathogenic nature [40], 
which may suggest an important role that it may play 
in HCLD + pathogenesis. However, further studies are 
needed to further elucidate this observation.

The prevalence of carriage of SA in this study 
(HCLD + [6%] and HCLD- [5%]) was markedly lower 
than that observed using bacterial culture in the same 
cohort (HCLD + [23%] and HCLD- [19%]) [14]. This dif-
ference in prevalence may be related to the efficiency of 
the nucleic acid extraction method used. The extraction 
of nucleic acids requires extended and vigorous lysis 
steps for some bacterial species (gram-positive such as 
SA) compared to others (gram-negative such as HI and 
MC) [41]; however, for this study, although we used a rig-
orous extraction protocol incorporating bead-beating, 
the inherent complexity and resilience of the SA bacte-
rial cell wall may have contributed to the low yield. This 
underscores the need for tailored approaches and ongo-
ing refinement of extraction methods to include enzy-
matic lysis alternatives such as lysostaphin or lysozyme in 
NP swabs DNA extraction for enhanced yield. Addition-
ally, carriage may have been influenced by the efficiency 
of the annealing of PCR primers [42].

High SP, HI and MC density in the nasopharynx has 
been associated with respiratory infections in children 
[43, 44]. This is consistent with our study, where a higher 
HI and MC density was observed in HCLD + participants 
than in their HCLD- counterparts. The HCLD + partici-
pants may have a chronic lung infection, as evidenced by 
the isolation of bacteria from their sputum in our pre-
vious study [14]. Microbiota dominated by Haemophi-
lus, Moraxella or Neisseria species are associated with 
chronic lung diseases, including chronic obstructive 
pulmonary disease and asthma [45–48]. Bhadriraju et al. 
[40] observed that HIV-infected children with a spu-
tum bacteriome dominated by Haemophilus, Moraxella 
or Neisseria species were 1.5 times more likely to have 
HCLD than those with Streptococcus or Prevotella spp. 
[40]. These bacterial genera were also associated with 
enhanced inflammatory effects [40]. Interestingly, we 

detected Neisseria species (N. lactamica) in HCLD + par-
ticipants only. Taken together, these findings support the 
important role of HI and MC in HCLD.

Our observation of a higher SP carriage in the 
HCLD + group than in the HCLD- group is consistent 
with our culture-based study of the same cohort [14]. 
Furthermore, SP carriage in the HCLD- participants 
(21%) is comparable to studies of HIV-infected children 
in South Africa (22.2%) [49] and Cambodia (17.6%) [42, 
50]. Nevertheless, the prevalence is higher than that 
observed in children living with HIV in Ethiopia (10.3%) 
[51] and lower than that in studies from Ghana (27.1%) 
and Tanzania (81%) [52]. The differences in SP prevalence 
observed between studies can again be related to differ-
ences in the age of participants—younger children have a 
higher carriage prevalence[31, 52], socioeconomic factors 
[53] and the geographical location of the participants.

The prevalence of PCV 13 serotypes and densities in 
both study groups (HCLD + : 30.4% and HCLD-: 16.7%) 
did not differ significantly. The most prevalent PCV-13 
serotypes were serotypes 4 (15.9%), 19F (15.9%), 19A 
(15.9%) and 18C (14%). A study of HIV-infected chil-
dren in Malawi [54] reports 19F and 6A among the most 
predominant serotypes. The relatively high prevalence 
of serotype 19A in PCV-vaccinated children has been 
suggested by Kamng’ona et  al. [54] to occur due to an 
inversion in the rmlD gene at the CPS locus. This may 
downregulate the rmlD gene on the CPS locus, causing 
an altered 19A capsule [55] that is not recognized by the 
PCV vaccine.

There was a higher prevalence of non-PCV13 serotypes 
in both the HCLD + (69% [93/134]) and HCLD- (81% 
[13/16]) compared to PCV13 serotypes. Similar findings 
were reported in Malawi [54], Nigeria [56] and Ghana 
[57]. We assume that community herd protection from 
vaccinated siblings, neighbors, and playmates may be 
responsible for the low prevalence of vaccine-type sero-
types in our cohort. Continued surveillance of SP and its 
non-PCV 13 serotypes is warranted to inform future vac-
cine formulation and roll-out strategies, especially in this 
vulnerable population.

There is evidence suggesting a relationship between SP 
and other pathogens co-colonizing the nasal and pharyn-
geal mucosae [58]. Our analysis, based on expected val-
ues, revealed a positive positive association between SP 
with HI and MC carriage in participants with CLD, which 
is consistent with previous reports by Madhi et al. [59] in 
HIV-infected South African children. A similar positive 
association between SP and HI was observed in a study of 
HIV-infected children in India (median age was 6.5 years, 
IQR [4.5 – 9]) [30]. HI modulates the expression of SP 
genes in biofilms primarily by upregulating the type IV 
pilus structural protein, which is essential for adhesion 



Page 13 of 17Mushunje et al. BMC Infectious Diseases          (2024) 24:637 	

and stability [60, 61]. Polymicrobial infections involving 
these microbes and others have been demonstrated to 
exacerbate higher disease severity and increased toler-
ance to antimicrobials [62, 63]. Further studies are war-
ranted to comprehensively understand the mechanisms 
underlying these interactions and their implications for 
CLD + pathogenesis and treatment strategies.

The major risk factors associated with the develop-
ment of pneumococcal disease are demographic (age 
and sex) and immune status (CD4 count and HIV viral 
load) [64]. We observed no association between these 
common factors and most bacterial species, including SP. 
This is supported by previous studies that reported a lack 
of association between CD4 count and the prevalence 
of pneumococcal carriage [31, 65, 66]. A longer period 
on an ART regimen (two years or more) was associated 
with reduced carriage of MC and HI. Similar results were 
obtained from a study among HIV-infected adults in Bra-
zil [67]. ART therapy could help reduce the risk of infec-
tion and carriage through immune reconstitution [67].

The presence of viruses increases bacterial adher-
ence, and the difference in the prevalence of viruses in 
HCLD + vs HCLD- children may partially explain the 
increased HI and MC densities we observed. Our find-
ings are consistent with a study by Binks et al. [44], who 
reported an increased SP and HI density during coinfec-
tion with respiratory viruses within the nasopharynx of 
Australian children with otitis media. However, no sig-
nificant difference in the bacterial load was detected in 
SP from the HCLD + and HCLD- groups. Viruses expose 
the host to bacterial infection through various mecha-
nisms, including the destruction of the respiratory epi-
thelium, modulation of innate defenses and alteration 
of cell membranes, which facilitates bacterial adher-
ence [15]. Ishizuka et  al. [68], in their in  vitro studies, 
observed increased SP adherence to epithelial cells after 
infection with HRV. They suggested that this observa-
tion may explain why pneumonia develops following an 
HRV infection [68]. Interestingly, we found no associa-
tion between any virus (HRV, RSVA and RSVB) and the 
prevalence or density of carriage of SP or other bacterial 
species tested. This contrasts with several in  vitro and 
in vivo studies that have suggested that respiratory virus 
infection increases bacterial adherence and subsequent 
bacterial superinfection within the nasopharynx [68–70]. 
This discrepancy may be explained by the few viruses we 
detected due to the limited sample size, especially in the 
HCLD- group.

HRV is responsible for most upper respiratory tract 
infections and their complications, including bronchi-
tis [15]. In a study of HIV-infected children in India 
[71], HRV was the most prevalent virus in these partici-
pants when asymptomatic. The GABRIEL multicenter 

case‒control study in Africa and Asia also found HRV 
in healthy control groups of pneumonia childhood 
studies [72]. In contrast, our study detected HRV (7%) 
in only HCLD + participants. Notably, RSV infection 
was uncommon, consistent with previous studies con-
ducted in Africa and Asia (PERCH case‒control stud-
ies [73] and DCHS case‒control studies [74]), which 
showed its infrequency except during acute respiratory 
infections.

In conclusion, our study findings indicate that 
HCLD + participants were more commonly colonized 
by any of the bacteria tested compared to HCLD- 
participants. Specifically, the HCLD + group had a 
higher prevalence of carriage of SP bacteria, as well 
as a higher density of MC and HI bacteria. Interest-
ingly, viruses, particularly HRV, were detected only in 
the HCLD + group. Moreover, our research revealed 
that previous treatment for tuberculosis was positively 
associated with the carriage of HI or SP bacteria among 
study participants. On the other hand, being a female 
participant was found to be less likely to be associ-
ated with SA carriage. Additionally, longer periods on 
the ART regimen were associated with reduced car-
riage of HI or MC bacteria. Our study sheds light on 
the quantitative information on microbial carriage and 
nasopharyngeal carriage of viruses and serotypes of HI 
and SP in children with HCLD + . The limitations of our 
study included a small sample size of HCLD partici-
pants, potentially impacting the statistical power and 
generalizability of our findings. Additionally, our sta-
tistical analysis did not correct for multiplexity. While 
one approach to address multiplexity is adjusting the 
p-value threshold to α = 0.05 divided by the number of 
tests conducted, this method may result in a consider-
able reduction in the number of statistically significant 
findings. Therefore, there is a need for more compre-
hensive studies in this population to further investigate 
the role of SP, HI, MC, and HRV in the pathogenesis of 
CLD and the underlying mechanisms behind these bac-
terial associations.
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