CASE REPORT

BMC Infectious Diseases

Malassezia restricta as an unexpected cause of infectious osteomyelitis diagnosed by metagenomic sequencing: a case report and literature review

Guoxuan Peng¹⁺, Yuan Lin^{1,2+}, Qiang Zou¹, Hongcheng Peng^{1,2}, Anyi Lei^{1,2}, Xu Zou^{1,2}, Zhe Xu^{2,3}, Hong Sun¹, Xu Ning¹ and Mingzhi Huang^{1*}

Abstract

Background *Malassezia restricta*, a lipophilic and lipodependent yeast belonging to the basidiomycetes group, is an opportunistic fungal pathogen associated with various skin diseases, including seborrheic dermatitis and dandruff. Typically, *Malassezia* infection in neonates manifests as fungemia or hematogenous dissemination to the bone or lungs. However, vertebral osteomyelitis caused by these fungi is rarely reported owing to non-specific clinical presentations and laboratory/imaging findings. The Pathogen Metagenomics Sequencing (PMseq) technique enables direct high-throughput sequencing of infected specimens, facilitating the rapid and accurate detection of all microorganisms in clinical samples through comprehensive reports.

Case presentation A 52-year-old male was admitted to our hospital on July 20, 2022 with a 3-month history of ambulatory difficulties and localized low back pain. Magnetic Resonance Imaging (MRI) examination of the spinal column revealed irregular bone destruction affecting the L2, L3, and L5 vertebral bodies. Additionally, low T1 and high T2 intensity lesions were observed at the intervertebral discs between L3 and L5. The presumptive diagnosis of tuberculous spondylitis was made based on the imaging findings, despite negative results in all mycobacterium tests. However, the patient exhibited no improvement after receiving regular anti-tuberculosis treatment for 3 months. Subsequent MRI revealed an expansive abnormal signal within the vertebral body, leading to progressive bone destruction. The absence of spinal tuberculosis or other infective microorganisms was confirmed through culture from blood and pathological tissue from the L4 vertebral body. Subsequently, PMseq was performed on the specimens, revealing *M. restricta* as the predominant pathogen with the highest relative abundance value. The pathological examination revealed the presence of fungal mycelium in the L4 vertebral body, with positive findings on periodic Schiff-methenamine and periodic acid-Schiff staining. The anti-tuberculosis treatment was discontinued, and an antifungal combination of fluconazole and voriconazole was administered. All symptoms were resolved after

[†]Guoxuan Peng and Yuan Lin contributed equally to this work.

*Correspondence: Mingzhi Huang gyhmz8013@yeah.net

Full list of author information is available at the end of the article

© The Author(s) 2024. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

7 consecutive months of treatment, and the patient was able to ambulate autonomously. Vertebral lesions were reduced on MRI during the 13-month follow-up.

Conclusions *M. restricta* is not a commonly recognized pathogen associated with infectious vertebral osteomyelitis. However, PMseq can aid in diagnosis, timely treatment, and decision making for some non-specific infectious diseases.

Keywords Malassezia. Restricta, Metagenomics, Vertebral osteomyelitis, Infection

Background

The etiology of spinal osteomyelitis encompasses a wide range of pathogens, including bacteria, viruses, fungi, *Mycobacterium tuberculosis*, and parasites [1]. Although tuberculous osteomyelitis is the most prevalent spinal infection, fungal infections of the spine, particularly in immunocompromised or critically ill patients, can also be caused by Candida, Cryptococcus, Aspergillus species, and other molds [2-4]. In the case of the other fungi, spinal involvement typically occurs owing to hematogenous or direct spread of organisms from an initial pulmonary source of infection. Moreover, involvement of the vertebral bodies can result in severe lumbar pain, impaired ambulation, vertebral compression fractures, and pronounced spinal deformity [5]. Malassezia restricta is an opportunistic fungal pathogen associated with a range of dermatological conditions, including seborrheic dermatitis and dandruff [6, 7]. To date, occurrences of vertebral infection caused by M. restricta are exceedingly uncommon. Recently, Limon et al. [8] demonstrated that *M. restricta* elicits innate inflammatory responses largely linked to the presence of an inflammatory bowel diseaseassociated polymorphism through the signaling adaptor gene of CARD9 in Crohn's disease. Owing to the nonspecific clinical manifestations and imaging characteristics of fungal vertebral osteomyelitis, accurate diagnosis is typically challenging [9]. Additionally, a minimum of 3 days of culture at temperatures ranging from 23 to 28 °C is typically required for Malassezia growth. It should be noted that false-negative results may occur in the culture, serum 1-3-β-D-glucan test, and serum galactomannan (GM) test [10].

Pathogen Metagenomics Sequencing (PMseq) involves direct high-throughput sequencing of infected specimens, followed by comparison with microbial-specific databases and intelligent algorithm analysis. This approach enables the identification of species information for suspected pathogenic microorganisms, facilitation of rapid and accurate detection of challenging and critical infections, and comprehensive and in-depth genomics analysis of total DNA [11, 12]. Moreover, PMseq demonstrates a significantly reduced turnaround time of approximately 24 h encompassing sampling, nucleic acid extraction, library sequencing, data processing, and reporting in comparison to conventional methods. Consequently, it enables prompt pathogen identification in instances of inexplicable illnesses [13]. We employed the PMseq method to successfully identify *M. restricta* as the probable causative agent of vertebral osteomyelitis in a patient who was initially diagnosed with tuberculosis (TB) but did not respond to regular anti-TB agents after 3 months of treatment. Furthermore, the implementation of antifungal therapy has demonstrated significant improvements in patient outcomes, encompassing alleviation of low back pain, restoration of ambulatory capacity, and mitigation of vertebral lesions. Herein, we present a case of fungal vertebral osteomyelitis potentially caused by *M. restricta* in an immunocompetent patient.

Case presentation

A 52-year-old male presented with a 3-month history of ambulatory difficulties and lumbar pain. Magnetic Resonance Imaging (MRI) examination of the spine revealed irregular bone destruction affecting the L2, L3, and L5 vertebral bodies. Additionally, low T1 and high T2 intensity lesions were observed at the intervertebral discs between L3 and L5 3 months earlier (Fig. 1A). The primary diagnosis was considered to be spinal TB; however, the T-SPOT.TB test and acid-fast staining of blood yielded negative results, whereas computed tomography (CT) did not reveal any signs of pulmonary tuberculosis. Therefore, the patient underwent a CT-guided percutaneous biopsy of spinal lesions owing to an unidentified diagnosis based on clinical manifestations and laboratory/imaging findings. Furthermore, both culture and pathological examination of vertebral specimens failed to find any evidence of pathogen infection. Despite the absence of conclusive evidence supporting Mycobacterium. tuberculosis infection, the potential for spinal TB remained substantial based on its imaging characteristics. Therefore, with the consent of family members, the patient underwent anti-TB treatment at a local hospital. However, despite receiving oral anti-TB medications for a duration of 3 months, there was no improvement in his symptoms; on the contrary, his back pain had notably intensified over the past month. On July 20, 2022, the patient was admitted to our hospital with recurrent severe low back pain (visual analog scale (VAS) score of 9 out of 10 points) and difficulty standing for 1

Fig. 1A CT showed an irregular bone destruction at the L2 vertebral body (a). MRI showed irregular bone destruction at the L2 vertebral body endplate (white arrow) with a T2-weighted image (c) and a lesion with low T1 (b) and high T2 intensity (c) at the L2 vertebral body and L2–L3 intervertebral disc (red arrows) on March, 2022. Fig. 1B CT showed a significant irregular bone destruction at the L2 and L3 vertebral body (a). MRI showed irregular bone destruction at the L2 and L3 vertebral body (a). MRI showed irregular bone destruction at the L2 and L3 vertebral body endplate (white arrow) with a T2-weighted image (c) and a lesion with low T1 (b) and high T2 intensity (c) at the L2 and L3 vertebral body and L2–L3 intervertebral disc (red arrows) on July, 2022

week. Laboratory investigations yielded the following results: serum C-reactive protein (CRP), 8.41 mg/L (normal value: < 5 mg/L); urine kappa-light chain (K-LC), 13.5 mg/L (normal value: 0.00-7.13 mg/L); erythrocyte sedimentation rate (ESR), 6.0 mm/h (normal value: 0-21 mm/h); Interleukin-6 (IL-6), 6.61 pg/ml (normal value: 0-7 pg/ml); procalcitonin, 0.03 ng/ml (normal value: <0.15 ng/l); serum $1-3-\beta$ -D-glucan,<37.5 pg/ml (normal value: 0-70 pg/ml); serum GM<0.008 (normal value:<0.5 S/CO); serum LAMBDA-light chain

 $(\lambda$ -LC)<3.94 mg/L (normal value: 0.00–3.94 mg/L); HIV (negative). The first–third doses of COVID-19 vaccine were administered in August, September, and October 2021, respectively. Furthermore, the patient exhibited a state of overall good health with no known allergies, other immune deficiencies, cardiovascular disorders, or diabetes mellitus. Additionally, the patient had no skin abnormality including atopic dermatitis, psoriasis, dermatophytosis, and tinea cruris. However, the patient has not received any acupuncture or moxibustion treatment

before the onset of the disease. Positron emission tomography-CT scans showed metabolically active glands and inflammatory uptake in the destructive vertebral bodies of L2, L3, and L5. Repeat MRI showed an expansive presence of abnormal signals in the vertebral body, resulting in progressive bone destruction compared to previous MRI findings (Fig. 1B). After obtaining informed consent from family members, a CT-guided percutaneous biopsy procedure was conducted to obtain specimens of the spinal lesions located at the L4 vertebra. Acid-fast staining and TB DNA and mycobacterium DNA tests yielded negative results in the aforementioned specimens. Bacterial, mycobacterial, and fungal cultures of the aforementioned specimens yielded negative results as well.

To detect all potential pathogens and confirm a diagnosis, concurrent PMSeq of the L4 lesion specimens was performed in the Wuhan BGI clinical laboratory. Specifically, the vertebral lesion sample, ranging from 0.5 to 3 mL, was collected from the patient following standardized procedures. Briefly, DNA extraction and construction were performed following the manufacturer's protocol, which involved DNA fragmentation, end-repair, adapter-ligation, and polymer chain reaction (PCR) amplification. The generation of high-quality sequencing data involved the removal of low-quality reads, followed by computational subtraction of human host sequences that were mapped to the human reference genome (hg19) using Burrows-Wheeler Alignment. After eliminating low complexity reads, the remaining data were classified by simultaneously aligning them to four Microbial Genome Databases, consisting of bacteria, fungi, viruses, and parasites. The classification reference databases were downloaded from the National Center for Biotechnology Information (NCBI) (ftp://ftp.ncbi.nlm. nih.gov/genomes/). Ultimately, the detection of pathogens was reported in accordance with the described criteria [14]. On July 25, 2022, PMseq identified M. restricta as the predominant pathogen with the highest relative abundance value (91.08%); the other pathogens identified were Cutibacterium acnes (relative abundance value: 21.22%), Kocuria palustris (relative abundance value: 5.12%), Acinetobacter junii (relative abundance value: 3.55%) and Pseudomonas monteilii (relative abundance value: 2.49%). However, M. tuberculosis complex was not identified (Table 1). Additionally, we conducted a pathological examination that revealed the presence of fungal mycelium in consecutive sections of the vertebral lesion tissue through periodic Schiff-methenamine (PASM) and periodic acid-Schiff (PAS) staining (Fig. 2). These results suggested that the fungal infection of M. restricta was implicated in vertebral body bone destruction, rather than this being a case of tuberculous spondylitis. Therefore, the anti-TB treatment was discontinued, and a combination of fluconazole and voriconazole was administered for antifungal therapy. After a 4-month course of antifungal therapy (4 weeks of oral fluconazole 400 mg/ day, then 3 months of oral voriconazole, 300 mg/day), all his symptoms resolved. At the 13-month follow-up, no significant signs of low back pain were evident (VAS score of 1 out of 10), independent walking was achieved, and the range of vertebral lesions was reduced as evidenced by MRI (Fig. 3).

Discussion and conclusions

Fungi have been widely acknowledged as an opportunistic causative agent of vertebral osteomyelitis, accounting for 0.5-1.6% of spinal infections. The most common etiological agents include *Aspergillus, Candida*, and *Mucor* [15, 16]. Patients with fungal spondylitis often present with a high-risk history of fungal infections or comorbidities such as diabetes, leukemia, tumors, and immunocompromised-related diseases [17]. The predominant clinical manifestations of fungal spinal osteomyelitis include local pain, pyrexia, muscular debility, and additional

 Table 1
 Results of high-throughput gene detection of PMseq pathogenic microorganisms

Microorganisms category	Туре	Genus	Genus		Species		Hierarchy of e evidence	
		Name Sequenc- ing reads		Name	Se- abundance quenc- ing reads			
Bacteria	-	-	-	-	-	-	Not Detected	
Fungi	-	-	-	-	-	-	Not Detected	
DNA virus	-	-	-	-	-	-	Not Detected	
Parasites	-	-	-	-	-	-	Not Detected	
Chlamydia/Mycoplasma/Rickettsia	-	-	-	-	-	-	Not Detected	
Background microorganism	G^+	Cutibac-terium	22	Cutibacerium acnes	19	21.22%	Suspected	
	G-	Pseudo-monas	10	Pseudomonas monteilii	3	2.49%	Suspected	
	G ⁻	Acineto-bacter	9	Acinetobacter junii	4	3.55%	Suspected	
	G ⁺	Kocuria	6	kocuriapalustris	6	5.12%	Suspected	
	Fungi	Malassezia	29	Malassezia restricta	27	91.08%	Suspected	

Fig. 2 PASM and PAS staining. (a) PASM staining showed that the presence of suspected fungal mycelium (black arrows) in the vertebral lesion tissue. (b) A suspected single branching hyphae (black arrows) are visible in PAS staining

Fig. 3 Imaging manifestations after treated with anti-fungal therapy. CT showed an significant reduction of bone destruction in vertebral body (a). MRI showed reduced bone destruction at the L2 and L3 vertebral body (white arrow) compared with the imaging performance on July, 2022 (b&c)

indications of spinal cord compression [18, 19]. Findings on imaging typically resemble those of spinal tuberculosis or spinal tumors, characterized by irregular osteolytic destruction of the vertebral bodies, with or without paravertebral abscesses [20]. After reviewing all English language reports of fungal osteomyelitis involving the spine since 2010, a minimum of 40 related cases were identified (Table 2). Among them, infections included 19 (47.5%) cases of *Candida* [21–37], 10 (25.0%) of *Aspergillus* [21, 22, 29, 38–44], 6 (15%) of *Cryptococcus* [45–50], 2 (5%) cases of *Blastomyces* [51, 52], and 4 (10.0%) cases involving other microorganisms [22, 53–55]. *M. restricta*, an opportunistic fungal pathogen, is implicated in various human skin disorders including tinea versicolor, seborrheic dermatitis/dandruff, atopic dermatitis, folliculitis, and psoriasis [56–58]. However, *Malassezia* has rarely been identified as a pathogen involved in spinal infections, with its main association being chronic infections such as Crohn's disease, cytokine release syndrome, and respiratory diseases except for skin disorders [7]. Upon retrospective analysis of all previous cases since 2010, we have identified only eight documented instances of *Malassezia* infection, including four patients with endocardial infection [59, 60], three patients with pulmonary

Table 2 Main characteristics of spine fungal osteomyelitis

Author	Age/sex	fungal	Clinical presentation	Diagnosis techniques	Treatment	Antifun- gal drug	Method of medication	Course of medication	Follow up	Clinical out- come
Williams et al. [21]	49/M	Candida albicans	progressive pain in the lumbosacral region	biopsy, Culture and sensitivity	L2–L3 and L3– L4 diskectomy and vertebral debridement	unclear	unclear	unclear	unclear	unclear
Williams et al. [21]	51/M	Candida	lower back pain	biopsy, histologic examination	Drug	ampho- tericin, flucon- azole	a 6-week course of intravenous amphotericin followed by oral fluconazole	unclear	5 months	lm- prove- ment
Williams et al. [21]	54/F	Aspergillus	lower back pain	biopsy, histologic examination	diskectomy and vertebral debridement of the L2–L3 and L3–L4 levels and drug	ampho- tericin.	unclear	unclear	unclear	unclear
Keerthi et al. [22]	37/M	Aspergillus	back pain	Histopatho- logical in- vestigations from intra operative	L1-2 Posterior Stabilization, Debridement & Fusion and drug	Voricon- azole	Inj.Voricon- azole 200 mg Infusion twice daily was given for 5 days and patient was discharged with oral Vori- conazole for 3 months.	3 months	3 months	Full recov- ery
Keerthi et al. [22]	75/M	Candida albicans.	back pain	Histopatho- logical in- vestigations from intra operative	Anterior & Posterior Spinal Debridement, Fusion at L2-3 and drugs	caspo- fungin, flucon- azole	Injection caspofungin was given for 7 days and patient was discharged with oral fluconazole for 6 months.	6 months	6 months	Full recov- ery
Keerthi et al. [22]	56/M	Scedospo- rium apio- spermum	back pain	Histopatho- logical in- vestigations from intra operative	D5-11 Segmen- tal Posterior Stabilization, Decompression &Fusion and drugs	Voricon- azole	Voriconazole 200 mg infu- sion over 2 h twice daily for 5 days, discharged with oral Voriconazole 200 mg twice daily	1 months	1 months	diead
Ga- gliano et al. [23]	66/M	C. glabrata	ward for lumbar pain, progressive difficulty in walking, fever	open biopsy of an abscess and culture examination	debridement and stabiliza- tion of the ver- tebrae involved and drug	anidula- fungin	anidulafungin 200 mg on the first day, followed by 100 mg daily thereafter	unclear	unclear	Full recov- ery

Author	Age/sex	fungal	Clinical presentation	Diagnosis techniques	Treatment	Antifun- gal drug	Method of medication	Course of medication	Follow up	Clinical out- come
Over- gaauw et al. [24]	78/M	C. krusei	lower back pain	Histopatho- logical investiga- tions from biopsy	operative and drugs	anidula- fungin, voricon- azole, ampho- tericin B	anidulafungin (loading dose of 200 mg IV, followed by 100 mg/ day IV) oral voriconazole (200 mg/ twice daily) amphotericin B (3 mg/kg)	9 months	9 months	lm- prove- ment
Yu et al. [25]	76/M	Candida albicans	back pain and fever	Histopatho- logical in- vestigations from intra operative	operative and drugs	flucon- azole	fluconazole intravenously for 1 month and then orally for 3 months.	4 months	12 months	lm- prove- ment
Kelesidis and Tsiodras [26]	41/M	Candida	low back pain	biopsy, histologic examination	drug	caspo- fungin	high-dose caspofungin 100 mg IV daily for 6 weeks	6 weeks	10 months	Full recov- ery
Eda et al. [27]	70/M	Candida	low back pain fever	culture ex- amination from intra operative	operative and drugs	flucon- azole	intravenous fluconazole (800 mg/day) three weeks, followed by an oral administration of fluconazole (400 mg/day)	unclear	unclear	lm- prove- ment
Cevolani et al. [28]	57/M	C. tropicalis	persistent low back and leg pain	biopsy, histologic examination	drug	flucon- azole	fluconazole (6 mg/kg/day)	unclear	12 months	lm- prove- ment
Adhikari et al. [29]	64/M	Aspergillus, C. albicans	pain in bilateral, fever	culture ex- amination from intra operative	operative and drugs	flucon- azole	fluconazole for 12months	unclear	unclear	lm- prove- ment
Wang. et al. [30]	62/F	Candida tropicalis	low back pain, fever	culture examina- tion from endoscopic discectomy operative	operative and drugs	ampho- tericin B	unclear	unclear	unclear	Recur- rence and reop- eration
Gopina- than et al. [31]	19/F	Candida tropicalis	back pain	culture examina- tion from endoscopic discectomy operative	operative and drugs	ampho- tericin B	Inj Ampho- tericin B for 14 days followed by oral fluco- nazole 2 for three months.	3 months	unclear	lm- prove- ment
Gopina- than et al. [31]	64/M	Candida tropicalis	back pain	culture examina- tion from endoscopic discectomy operative	operative and drugs	flucon- azole	oral flucon- azole twice a day and then continued with flucon- azole once daily for 6 weeks	6 weeks	6 months	lm- prove- ment

Author	Age/sex	fungal	Clinical presentation	Diagnosis techniques	Treatment	Antifun- gal drug	Method of medication	Course of medication	Follow up	Clinical out- come
Yamada et al. [32]	74/M	Candia albicans	low back pain, right leg pain and gait disturbance	Histopatho- logical in- vestigations from intra operative	operative and drugs	flucon- azole	fluconazole intravenously per day, for 2 weeks, later changed to fluconazole	3 months	9 months	Full recov- ery
Tan et al. [33]	47/M	Candida glabrata	back pain	unclear	drug	fluco- nazole, caspo- fungin, posacon- azole	unclear	unclear	unclear	lm- prove- ment
Nahra et al. [34]	31/F	Candida albicans	back pain	culture examina- tion from biopsy	operative and drugs	mica- fungin, flucon- azole	fluconazole 400 mg for 6 months	6 months	12 months	lm- prove- ment
Kulches- ki et al. [35]	39/M	Candida albicans	paralyzed	culture examination	operative and drugs	flucon- azole and Cipro- floxacin	unclear	unclear	unclear	lm- prove- ment
Koehler et al. [36]	56/M	Candida	back pain	culture ex- amination from bi- opsy, assay measuring Candida reactive CD4+ T cells	operative and drugs	caspo- fungin	caspofungin 70/50 mg was initiated for 8 weeks	unclear	unclear	Full recov- ery
Huang et al. [37]	32/M	Candida albicans	progressive limited cervi- cal range of motion, neck pain, bilateral upper extremity weakness, and paresthesias	culture examina- tion from operative	operative and drugs	flucon- azole	6–12 months of 400 mg fluconazole	6–12 months	3 months	lm- prove- ment
Shashid- har et al. [38].	33/F	Aspergillus fumigatu	low back pain	culture ex- amination from intra operative	operative and drugs	voricon- azole	i.v. voricon- azole 200 mg twice daily for one week fol- lowed by oral voriconazole 200 mg twice daily for 11 weeks.	3 months	12 months	Full recov- ery
Karthik et al. [39]	13/M	aspergillus	gradual onset paraplegia	Histopatho- logical in- vestigations from intra operative	operative and drugs	ampho- tericin B, voricon- azole	intravenous amphotericin B intravenous voriconazole for 2 months followed by oral voriconazole	24months	24months	lm- prove- ment

Author	Age/sex	fungal	Clinical presentation	Diagnosis techniques	Treatment	Antifun- gal drug	Method of medication	Course of medication	Follow up	Clinical out- come
Jiang et al. [40]	40/F	Aspergillus nidulans	back pain, numbness and weakness of both lower limbs, A CT- guided needle biopsy of the paravertebral lesion, fungal culture and PCR analysis	culture examina- tion from operative	operative and drugs	flucon- azole	voriconazole every 12 h as a loading dose on day 1, followed by voriconazole twice daily, voriconazole every 12 h administered orally for 6 months	6 months	28 months	Full recov- ery
Sohn .et al. [41]	12/F	Aspergillus terreus	back pain	biopsy, histologic examination	drug	voricon- azole	IV voricon- azole (5 mg/ kg, q12hr) for 4 and 8 weeks, oral voriconazole (200 mg [5 mg/kg/ dose], bid) for 9 months.	9 months	23 months	lm- prove- ment
Yoon and Kim [42].	53/M	Aspergillus	back pain	Histopatho- logical in- vestigations from intra operative	operative and drugs	ampho- tericin B	unclear	unclear	unclear	lm- prove- ment
Li et al. [43]	51/M	Aspergillus	cough, fever, and low back pain	Histopatho- logical in- vestigations from intra operative	operative and drugs	voricon- azole	a loading dose of 6 mg/kg of body weight on the 1st day followed by 4 mg/kg, every 12 h intravenously	3 months	3 months	lm- prove- ment
Al-Taw- fiq et al. [44]	17/M	Aspergillus	back and neck pain, fever	biopsy of an abscess and culture examination	operative and drugs	ampho- tericin-B, itracon- azole, voricon- azole. et.al.	unclear	more than 24 months	more than 5 years	lm- prove- ment
Lai et al. [45]	25/M	cryptococ- cal	back pain	Histopatho- logical in- vestigations from intra operative	operative and drugs	ampho- tericin B	4 weeks of intravenous amphotericin B and then 8 weeks of oral amphoteri- cin B	3 months	9 months	lm- prove- ment
Zhong et al. [46]	37/M	Cryptococ- cus neofor- mans,	progressive low-back and sacrococcygeal- pain	biopsy of an abscess and culture examination	drug	flucon- azole	4 weeks of in- travenous flu- conazole, then 8 weeks of oral fluconazole	3 months	8 months	Full recov- ery

Author	Age/sex	fungal	Clinical presentation	Diagnosis techniques	Treatment	Antifun- gal drug	Method of medication	Course of medication	Follow up	Clinical out- come
Adsu et al. [47]	45/F	cryptococ- cal	back pain	Histopatho- logical in- vestigations from intra operative	operative and drugs	fluco- nazole, ampho- tericin B	amphotericin B ntravenously for 3 months, oral flucon- azole 400 mg once a day for 5 months.	8 months	unclear	lm- prove- ment
Li .et al. [48]	17/F	cryptococ- cal	back pain, fever, scoliosis	Histopatho- logical in- vestigations from intra operative	operative and drugs	flucon- azole	fluconazole for 3months	3 months	unclear	lm- prove- ment
Pereira- Duarte et al. [49]	65/M	cryptoco- cosis	back pain	biopsy, histologic examination	operative and drugs	fluco- nazole, ampho- tericin B	unclear	12 months	12 months	lm- prove- ment
Nankeu et al. [50]	29/M	cryptococ- cosis	back pain, fever,	biopsy, histologic examination	drug	ampho- tericin B, flucy- tosine, flucon- azole	amphotericin B and flucyto- sine for 4 weeks followed by fluconazole for 18 months	19 months	unclear	lm- prove- ment
Eldaa- bossi et al. [51]	24/M	Blastomy- ces	superficial abscess, dry cough, fatigue, and profuse sweating	Histological cytol- ogy after multiple biopsies	Abscess drain- age and drug	itracon- azole	itraconazole 200 mg orally twice daily for 12 months	12 months	12 months	Full recov- ery
Sapra et al. [52]	42/M	Blastomy- ces	knee pain	culture examina- tion from operative	drug	ampho- tericin B, itracon- azole	a four-week course of IV amphotericin B and then start on a six- month regi- men of oral itraconazole	6 months	6 months	lm- prove- ment
Alva- renga et al. [53]	68/M	Paracoc- cidioides brasiliensis	low-back pain	percutane- ous biopsy	Drug	itracon- azole- sulfa- methoxa- zole and trime- thoprim	Treatment with itracon- azole (200 mg/ day) resulted in adverse reactions and switching to sulfamethoxa- zole and trimethoprim (20 mg/kg) for 36 months	36 months	36 months	Im- prove- ment
Blecher et al. [54]	67/M	unclear	back pain	Histopatho- logical in- vestigations from intra operative	operative and drugs	flucon- azole	unclear	unclear	unclear	lm- prove- ment

Author	Age/sex	fungal	Clinical presentation	Diagnosis techniques	Treatment	Antifun- gal drug	Method of medication	Course of medication	Follow up	Clinical out- come
Shimizu et al. [55]	45/M	S. apio- spermum	back pain	culture examina- tion from endoscopic discectomy operative	operative and drugs	itracon- azole	200 mg of itraconazole intravenously administered once daily for 8 weeks, oral dose of 100 mg of itraconazole was given for 12 months	14 months	20 months	Full recov- ery

Table 3	Main	characteristics	of spine	fugal	osteomyelitis
					,

Infected site	Clinical symptoms	Past history	Detection method	Bacteria of infection	Treatment
Endocarditis [59]	febrile, and cardiac auscultation noted a soft holosystolic murmur	injection drug use, surgi- cal history	Fungiculture and Blood cultures	Malassezia furfur	Voriconazole (Recovery)
Endocarditis [60]	Acute cardiac failure	Itching cutaneous lesions and undergone car- diac valvular prosthesis implantation	GrocottGomori, Staining Autoimmu- nohisto-chemistry,18–26 S-rDNA and ITS PCRs	Malassezia restricta	None (death in heart failure)
Endocarditis [60]	Acute cardiac failure Multiple septic emboli	Itching cutaneous lesions and undergone car- diac valvular prosthesis implantation	GrocottGomori, Staining Autoimmu- nohisto-chemistry,18–26 S-rDNA and ITS PCRs	Malassezia restricta	Caspofungin(death in iterative nondocu- mented sepsis)
Endocarditis [60]	Acute cardiac failure and Multiple septic emboli	Itching cutaneous lesions and undergone car- diac valvular prosthesis implantation	Grocott-Gomori, Staining Auto-immu- nohisto-chemistry,18–26 S-rDNA and ITS PCRs	Malassezia restricta	Amphotericin B fluoro- cytosin and flucon- azole (Recovery)
Fungemia infec- tion and lung emboli [61]	Cough, Lung Nodules, Fever, and Eosinophilia	Unknown	blood culture for plating on olive oil, Giemsa stain and DNA sequencing	Malassezia sympodialis	liposomal amphoteri- cin B (Recovery)
Pneumonia [62]	fever	double-lung transplant	PAS staining and PCR 18 S-sequencing	Malassezia restricta	Voriconazole(Recovery)
Pneumonia [<mark>62</mark>]	pulmonary nodule	kidney transplant	PAS and Grocott staining and PCR 18 S-sequencing	Malassezia restricta	Itraconazole(Recovery)
Hepatic Abscess [63]	fever and a liver mass	Neonate	Gram stain, aerobic and anaerobic bac- terial culture, and acid-fast bacilli stain and culture and Calcofluor white stain	Unknown	amphotericin B(Recovery)
Arthritis [64]	pain, swelling, ery- thema and fever	total knee arthroplasty surgeryskin disease	Gram-staining	Unknown	amphotericin B, fluconazole and Voriconazole(Recovery)

infection [61, 62], one patient with liver infection [63], and one patient with synovial infection [64] (Table 3). However, no reports of spinal infections caused by *Malassezia* were found.

In the aforementioned literature review, fungal spondylitis is typically diagnosed through positive cultures and histologic examination of infectious lesion specimens in conjunction with clinical symptoms, laboratory findings, and radiological features. However, our patient was a middle-aged man without any underlying medical conditions or history of abnormal immune function and belonging to an unsusceptible population. The diagnosis of spinal TB is primarily based on the involvement of multiple vertebral bodies, resulting in destruction of the spinal structure observed on CT imaging; however, in this case, evidence from skin, blood tests, or tissue cultures was insufficient to definitively support the presence of infection. The initial pathological examination, including hematoxylin & eosin staining and tissue culture, did not detect any pathogens. Furthermore, the subsequent treatment of anti-TB medication was deemed ineffective. However, it is worth noting that the puncture biopsy under the guidance of CT is recognized as a critical method of diagnosis in cases of unknown etiology of vertebral body destruction [65]. Therefore, PMseq of specimens of the L4 vertebral lesion was performed concurrently to detect all possible pathogens. The results indicated that a fungal infection caused by *M. restricta* may be responsible for the patient's vertebral body destruction, rather than being a case of tuberculous spondylitis. Metagenomic sequencing, as an innovative culture-independent approach, possesses the capacity for rapid, sensitive, and accurate identification of pathogens. Numerous recent studies have demonstrated that metagenomic sequencing plays a pivotal role in successful pathogen recognition for infections characterized by atypical clinical symptoms that are unidentifiable through traditional etiological detection methods or caused by unknown pathogens [66, 67]. These findings underscore the pivotal role of metagenomic sequencing in guiding drug administration and enhancing clinical outcomes for patients with spinal infection, particularly when conventional methods fail to identify the pathogen [68]. In this study, the pathological examination revealed the presence of fungal mycelium in serial sections of the vertebral lesion tissue, as indicated by positive results of PASM and PAS staining. Consequently, the anti-TB treatment was replaced with a combination of ketoconazole and itraconazole as antifungal therapy, which is widely acknowledged as essential and efficacious for managing fungal osteomyelitis [69]. In our review, a favorable outcome was observed in 9 out of 40 cases (22.5%) who received prolonged treatment with antifungal agents. Notably, early identification and sustained administration of appropriate antifungal drugs such as fluconazole, voriconazole, etc., significantly enhanced the prognosis for patients with M. infection. Fortunately, the patient's symptoms of impaired ambulation and lumbago were successfully alleviated based on the VAS score, whereas the extent of vertebral lesions demonstrated a reduction on MRI. Although no precise pathogen evidence was detected through blood tests and tissue culture, the therapy was proved effective for the patient following guidance from PMseq of infected tissue. Furthermore, confirmation of Malassezia infection may be achieved through a combination of pathology, blood cultures, and other methods involving selective pathological examination and PCR testing [70]. However, this study is limited by the absence of definitive evidence to ascertain the causative pathogen responsible for the infection in the tissue culture. Additionally, we did not rule out whether the injection of COVID-19 vaccine could be a risk factor for this infection because the time of onset of illness was within 6 months after the injection of the COVID-19 vaccine. Nevertheless, the PMseq results combined with suspected fungal presence were further supported by fungal mycelium observation from PASM and PAS staining, CT imaging, and the efficacy of antifungal treatment. These findings provide additional confirmation to the speculation that *M. restricta* is recognized as the most predominant pathogen.

In summary, we present the first reported case of spondylitis caused by *Malassezia* and provide a comprehensive review of 40 published cases of fungal spondylomyelitis as well as eight cases of systemic organ infection caused by *Malassezia*. Given the atypical clinical symptoms and imaging findings observed in fungal spondylitis, along with the high rates of negative diagnosis for *Malassezia*, a single diagnostic method may not be sufficient to accurately diagnose *Malassezia* spondylitis. Therefore, employing PMseq from affected tissue could serve as a rapid and precise approach to guide drug management and clinical treatment for certain non-specific infectious diseases.

Abbreviations

ΤB Tuberculosis Restricta, Malassezia. Restricta Μ PMseq Pathogen Metagenomics Sequencing MRI Magnetic Resonance Imaging PASM Periodic-acid silver methenamine PAS Periodic acid shiff VAS Visual Analogue Scale CT Computed Tomography

Acknowledgements

The authors would like to express their gratitude to Dr. Lifen Xu, for the Department of Pathology, Affiliated Hospital of Guizhou Medical University, for her generous assistance and guidance of pathological examination.

Author contributions

PGX, HMZ, ZQ and NX diagnosed and treated the patient, reviewed the literature, and drafted the manuscript. HMZ, PGX and LY performed the surgery and helped in drafting the manuscript. HMZ carried out the pathological diagnosis and helped in drafting the manuscript. NX and SH participated in the clinical diagnosis and treatment, and helped in drafting the manuscript. NX gave suggestions and helped in drafting the manuscript. PGX critically revised the manuscript. PGX, LY, PHC, LAY, XZ and ZX participated in the whole follow-up and result record. Guoxuan Peng and Yuan Lin contributed equally to this work and should be considered co-frst authors. All the authors read and approved the final manuscript.

Funding

This study was supported by the National Natural Science Foundation of China (82360420), Doctor Start-up Fund of Affiliated Hospital of Guizhou Medical University (gyfybskj-2023-07), Guizhou Provincial Science and Technology Projects (QKH-ZK [2023]387, QKH-ZK [2024]322, QKH-ZK [2024]222), the Science and Technology Fund of Guizhou Provincial Department of Health (GZWKJ2024-158, GZWKJ2023-174), the NSFC Cultivation Project of Guizhou Medical University (GYFYNSFC-2022-36), .

Data availability

The datasets generated and analyzed during the present study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

This study was conducted in accordance with the Declaration of Helsinki and national and institutional standards. The patient provided written informed consent for the anonymous collection and use of her data for research purposes.

Consent for publication

The patient signed the consent form and provided consent for publication of this report; a copy of the written consent is available for perusal. All data published here are under the consent for publication.

Competing interests

The authors declare no competing interests.

Author details

¹Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, Guizhou, China ²School of Clinical Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, Guizhou, China ³Guihang Guiyang Hospital, Guiyang 550006, Guizhou, China

Received: 18 January 2024 / Accepted: 13 June 2024 Published online: 26 June 2024

References

- Katz JN, Zimmerman ZE, Mass H, et al. Diagnosis and management of lumbar spinal stenosis: a review. JAMA. 2022;327(17):1688–99.
- Leowattana W, Leowattana P, Leowattana T. Tuberculosis of the spine. World J Orthop. 2023;14(5):275–93.
- Nagashima H, Tanishima S, Tanida A. Diagnosis and management of spinal infections. J Orthop Sci. 2018;23(1):8–13.
- Ganesh D, Gottlieb J, Chan S, et al. Fungal infections of the spine. Spine (Phila Pa 1976). 2015;40(12):E719–28.
- Tsantes AG, Papadopoulos DV, Vrioni G, et al. Spinal infections: an update. Microorganisms. 2020;8(4):476.
- Clavaud C, Jourdain R, Bar-Hen A, et al. Dandruff is associated with disequilibrium in the proportion of the major bacterial and fungal populations colonizing the scalp. PLoS ONE. 2013;8(3):e58203.
- Abdillah A, Ranque S. Chronic diseases Associated with Malassezia Yeast. J Fungi (Basel). 2021;7(10):855.
- Limon JJ, Tang J, Li D, et al. Malassezia is Associated with Crohn's Disease and exacerbates colitis in mouse models. Cell Host Microbe. 2019;25(3):377–88.
- Gamaletsou MN, Walsh TJ, Sipsas NV. Epidemiology of Fungal Osteomyelitis. Curr Fungal Infect Rep. 2014;8:262–70.
- 10. Du B, Meenu M, Liu H, et al. A concise review on the Molecular structure and function relationship of β -Glucan. Int J Mol Sci. 2019;20(16):4032.
- Purushothaman S, Meola M, Egli A. Combination of whole genome sequencing and Metagenomics for Microbiological Diagnostics. Int J Mol Sci. 2022;23(17):9834.
- Deurenberg RH, Bathoorn E, Chlebowicz MA, et al. Application of next generation sequencing in clinical microbiology and infection prevention. J Biotechnol. 2017;243:16–24.
- Pan L, Pan XH, Xu JK, et al. Misdiagnosed tuberculosis being corrected as Nocardia farcinica infection by metagenomic sequencing: a case report. BMC Infect Dis. 2021;21(1):754.
- 14. Gu W, Deng X, Lee M, et al. Rapid pathogen detection by metagenomic nextgeneration sequencing of infected body fluids. Nat Med. 2021;27(1):115–24.
- Saeed K, Esposito S, Ascione T, et al. Hot topics on vertebral osteomyelitis from the International Society of Antimicrobial Chemotherapy. Int J Antimicrob Agents. 2019;54(2):125–33.
- Asperges E, Albi G, Truffelli F, et al. Fungal osteomyelitis: a systematic review of reported cases. Microorganisms. 2023;11(7):1828.
- 17. Jenks JD, Aneke CI, Al-Obaidi MM, et al. Race and ethnicity: risk factors for fungal infections? PLoS Pathog. 2023;19(1):e1011025.
- Thurnher MM, Olatunji RB. Infections of the spine and spinal cord. Handb Clin Neurol. 2016;136:717–31.
- 19. Sohrab Pahlavan, Nitin N. Bhatia, Fungal spine. Seminars in Spine Surgery, 2015, 28(3): 163–172.

Page 13 of 14

- Compagnone D, Cecchinato R, Pezzi A, et al. Diagnostic Approach and differences between Spinal Infections and Tumors. Diagnostics (Basel). 2023;13(17):2737.
- Williams RL, Fukui MB, Meltzer CC, Swarnkar A, Johnson DW, Welch W. Fungal spinal osteomyelitis in the immunocompromised patient: MR findings in three cases. AJNR Am J Neuroradiol. 1999;20(3):381–5.
- 22. Keerthi Cl, Bhat S, Mulki SS, Bhat KA. Fungal infections of spine: Case series during the COVID times. Indian J Med Microbiol. 2022;40(4):605–7.
- Gagliano M, Marchiani C, Bandini G, et al. A rare case of Candida Glabrata spondylodiscitis: case report and literature review. Int J Infect Dis. 2018;68:31–5.
- 24. Overgaauw AJC, de Leeuw DC, Stoof SP, van Dijk K, Bot JCJ, Hendriks EJ. Case report: Candida krusei spondylitis in an immunocompromised patient. BMC Infect Dis. 2020;20(1):739.
- Yu LD, Feng ZY, Wang XW, Ling ZH, Lin XJ. Fungal spondylodiscitis in a patient recovered from H7N9 virus infection: a case study and a literature review of the differences between Candida and Aspergillus Spondylodiscitis. J Zhejiang Univ Sci B. 2016;17(11):874–81.
- 26. Kelesidis T, Tsiodras S. Successful treatment of azole-resistant Candida spondylodiscitis with high-dose caspofungin monotherapy. Rheumatol Int. 2012;32(9):2957–8.
- Eda Y, Funayama T, Tatsumura M, Koda M, Yamazaki M. Candida Spondylitis considered as Microbial Substitution after multiple surgeries for postoperative lumbar spine infection. Cureus. 2021;13(5):e14995.
- 28. Cevolani L, Facchini G, Pasini S, Bianchi G. Fungal spondylodiscitis: imaging findings and brief review of the literature. BMJ Case Rep. 2021;14(9):e242515.
- 29. Adhikari P, Pokharel N, Khadka S, et al. Surgical treatment of Candida albicans spondylodiscitis. Ann Med Surg (Lond). 2023;85(9):4575–80.
- Wang C, Zhang L, Zhang H, Xu D, Ma X. Sequential endoscopic and robotassisted surgical solutions for a rare fungal spondylodiscitis, secondary lumbar spinal stenosis, and subsequent discal pseudocyst causing acute cauda equina syndrome: a case report. BMC Surg. 2022;22(1):34.
- Gopinathan A, Kumar A, Rao SN, Kumar K, Karim S. Candidal Vertebral osteomyelitis in the Midst of Renal disorders. J Clin Diagn Res. 2016;10(4):DD03–5.
- Yamada T, Shindo S, Otani K, Nakai O. Candia albicans lumbar spondylodiscitis contiguous to infected abdominal aortic aneurysm in an intravenous drug user. BMJ Case Rep. 2021;14(4):e241493.
- Tan AC, Parker N, Arnold M. Candida Glabrata vertebral osteomyelitis in an immunosuppressed patient. Int J Rheum Dis. 2014;17(2):229–31.
- Nahra R, Hoedt C, Jagga S, Ren S, Kim TWB. Candida albicans Sacral Osteomyelitis causing necrosis of a sacral nerve Root: a Case Report. JBJS Case Connect. 2017;7(3):e48.
- Kulcheski ÁL, Graells XS, Benato ML, Santoro PG, Sebben AL. Fungal spondylodiscitis due to Candida albicans: an atypical case and review of the literature. Rev Bras Ortop. 2015;50(6):739–42.
- Koehler FC, Cornely OA, Wisplinghoff H, Chang DH, Richter A, Koehler P. Candida-reactive T cells for the diagnosis of invasive Candida infection of the lumbar vertebral spine. Mycoses. 2018;61(1):48–52.
- Huang S, Kappel AD, Peterson C, Chamiraju P, Rajah GB, Moisi MD. Cervical spondylodiscitis caused by Candida albicans in a non-immunocompromised patient: a case report and review of literature. Surg Neurol Int. 2019;10:151.
- Shashidhar N, Tripathy SK, Balasubramanian S, Dhanakodi N, Venkataramaiah S. Aspergillus spondylodiscitis in an immunocompetent patient following spinal anesthesia. Orthop Surg. 2014;6(1):72–7.
- Karthik K, Shetty AP, Rajasekaran S. Spontaneous cord transection due to invasive aspergillus spondylitis in an immunocompetent child. Eur Spine J. 2011;20(Suppl 2):S188–92.
- Jiang Z, Wang Y, Jiang Y, Xu Y, Meng B. Vertebral osteomyelitis and epidural abscess due to aspergillus nidulans resulting in spinal cord compression: case report and literature review. J Int Med Res. 2013;41(2):502–10.
- 41. Sohn YJ, Yun JH, Yun KW, et al. Aspergillus Terreus Spondylodiscitis in an immunocompromised child. Pediatr Infect Dis J. 2019;38(2):161–3.
- Yoon KW, Kim YJ. Lumbar aspergillus osteomyelitis mimicking pyogenic osteomyelitis in an immunocompetent adult. Br J Neurosurg. 2015;29(2):277–9.
- Li Y, Cen Y, Luo Y, Zhu Z, Min S, Chen X. Aspergillus vertebral osteomyelitis complicating Pulmonary Granuloma in an Immunocompetent Adult. Med Princ Pract. 2016;25(4):394–6.
- 44. Al-Tawfiq JA, Al-Abdely HM. Vertebral osteomyelitis due to aspergillus fumigatus in a patient with chronic granulomatous disease successfully treated with antifungal agents and interferon-gamma. Med Mycol. 2010;48(3):537–41.

- 45. Lai Q, Liu Y, Yu X, et al. Diagnosis and treatment of nonadjacent cryptococcal infections at the L1 and S1 vertebrae. Diagnose und Behandlung Von Nichtbenachbarten Kryptokokkeninfektionen an den Wirbeln L1 und S1. Orthopade. 2017;46(1):85–9.
- Zhong Y, Huang Y, Zhang D, Chen Z, Liu Z, Ye Y. Isolated cryptococcal osteomyelitis of the sacrum in an immunocompetent patient: a case report and literature review. BMC Infect Dis. 2023;23(1):116.
- 47. Adsul N, Kalra KL, Jain N, et al. Thoracic cryptococcal osteomyelitis mimicking tuberculosis: a case report. Surg Neurol Int. 2019;10:81.
- Li Z, Liang J, Shen J, Qiu G, Weng X. Thoracolumbar Scoliosis due to Cryptococcal osteomyelitis: a Case Report and Review of the literature. Med (Baltim). 2016;95(5):e2613.
- Pereira-Duarte M, Camino G, Estefan M, Kido G, Solá C, Gruenberg M. Criptococosis vertebral. Comunicación De Un caso y revisión bibliográfica [Vertebral cryptococosis. Case report and literature review]. Rev Chil Infectol. 2019;36(5):656–62.
- Nankeu S, Djaha JM, Saint Marcoux B, Kaci R, Debandt M. Disseminated cryptococcosis revealed by vertebral osteomyelitis in an immunocompetent patient. Joint Bone Spine. 2012;79(6):629–31.
- Eldaabossi S, Saad M, Aljawad H, Almuhainy B. A rare presentation of blastomycosis as a multi-focal infection involving the spine, pleura, lungs, and psoas muscles in a Saudi male patient: a case report. BMC Infect Dis. 2022;22(1):228.
- 52. Sapra A, Pham D, Ranjit E, Baig MQ, Hui J. A curious case of Blastomyces Osteomyelitis. Cureus. 2020;12(3):e7417.
- Alvarenga JA, Martins DE, Kanas M, et al. Paracoccidioidomycosis in the spine: case report and review of the literature. Sao Paulo Med J. 2016;134(3):263–7.
- 54. Blecher R, Yilmaz E, Moisi M, Oskouian RJ, Chapman J. Extreme lateral Interbody Fusion complicated by Fungal Osteomyelitis: Case Report and Quick Review of the literature. Cureus. 2018;10(5):e2719.
- Shimizu J, Yoshimoto M, Takebayashi T, Ida K, Tanimoto K, Yamashita T. Atypical fungal vertebral osteomyelitis in a tsunami survivor of the Great East Japan Earthquake. Spine (Phila Pa 1976). 2014;39(12):E739–42.
- 56. Cho YJ, Kim T, Croll D, et al. Genome of Malassezia arunalokei and its distribution on facial skin. Microbiol Spectr. 2022;10(3):e0050622.
- 57. Rhimi W, Theelen B, Boekhout T, Otranto D, Cafarchia C. Malassezia spp. Yeasts of emerging concern in Fungemia. Front Cell Infect Microbiol. 2020;10:370.
- Gaitanis G, Magiatis P, Hantschke M, Bassukas ID, Velegraki A. The Malassezia genus in skin and systemic diseases. Clin Microbiol Rev. 2012;25(1):106–41.

- Houhamdi Hammou L, Benito Y, Boibieux A, et al. Malassezia restricta: an underdiagnosed Causative Agent of Blood Culture-negative infective endocarditis. Clin Infect Dis. 2021;73(7):1223–30.
- 60. Granok AB. Successful treatment of Malassezia Furfur Endocarditis. Open Forum Infect Dis. 2020;7(8):ofaa029.
- 61. Patron RL. A 34-Year-old Man with Cough, Lung nodules, Fever, and Eosinophilia. Clin Infect Dis. 2016;63(11):1525–6.
- Mularoni A, Graziano E, Medaglia AA, et al. Malassezia restricta pneumonia in solid organ transplant recipients: First Report of two cases. J Fungi (Basel). 2021;7(12):1057.
- 63. Cantey JB, Dallas SD, Cigarroa FG, Quinn AF. Malassezia hepatic abscess in a neonate. Pediatr Infect Dis J. 2020;39(11):1043–4.
- 64. Leylabadlo HE, Zeinalzadeh E, Akbari NA, Kafil HS. Malassezia species infection of the synovium after total knee arthroplasty surgery. GMS Hyg Infect Control. 2016;11:Doc19.
- 65. Zakaria Mohamad Z, Rahim A. Diagnostic accuracy and adequacy of computed Tomography Versus Fluoroscopy-guided percutaneous transpedicular biopsy of spinal lesions. Cureus. 2022;14(1):e20889.
- Liu Y, Zhang J, Han B, et al. Case Report: diagnostic value of Metagenomics Next Generation sequencing in intracranial infection caused by Mucor. Front Med (Lausanne). 2021;8:682758.
- Li N, Cai Q, Miao Q, Song Z, Fang Y, Hu B. High-throughput metagenomics for identification of pathogens in the clinical settings. Small Methods. 2021;5(1):2000792.
- Zhang Y, Chen J, Yi X, et al. Evaluation of the metagenomic next-generation sequencing performance in pathogenic detection in patients with spinal infection. Front Cell Infect Microbiol. 2022;12:967584.
- Mishra A, Juneja D. Fungal arthritis: a challenging clinical entity. World J Orthop. 2023;14(2):55–63.
- Fritz JM, McDonald JR. Osteomyelitis: approach to diagnosis and treatment. Phys Sportsmed. 2008;36(1):116823.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.