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Abstract
Background  Blood-based transcriptional gene signatures for tuberculosis (TB) have been developed with potential 
use to diagnose disease. However, an unresolved issue is whether gene set enrichment analysis of the signature 
transcripts alone is sufficient for prediction and differentiation or whether it is necessary to use the original model 
created when the signature was derived. Intra-method comparison is complicated by the unavailability of original 
training data and missing details about the original trained model. To facilitate the utilization of these signatures in TB 
research, comparisons between gene set scoring methods cross-data validation of original model implementations 
are needed.

Methods  We compared the performance of 19 TB gene signatures across 24 transcriptomic datasets using both 
rrebuilt original models and gene set scoring methods. Existing gene set scoring methods, including ssGSEA, GSVA, 
PLAGE, Singscore, and Zscore, were used as alternative approaches to obtain the profile scores. The area under the 
ROC curve (AUC) value was computed to measure performance. Correlation analysis and Wilcoxon paired tests were 
used to compare the performance of enrichment methods with the original models.

Results  For many signatures, the predictions from gene set scoring methods were highly correlated and statistically 
equivalent to the results given by the original models. In some cases, PLAGE outperformed the original models when 
considering signatures’ weighted mean AUC values and the AUC results within individual studies.

Conclusion  Gene set enrichment scoring of existing gene sets can distinguish patients with active TB disease from 
other clinical conditions with equivalent or improved accuracy compared to the original methods and models. These 
data justify using gene set scoring methods of published TB gene signatures for predicting TB risk and treatment 
outcomes, especially when original models are difficult to apply or implement.
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Introduction
Tuberculosis (TB) is the leading infectious cause of 
death worldwide [1, 2]. Approximately 10  million peo-
ple develop TB, and 1.4 million die from the disease [1]. 
Current microbiological diagnostic tests for TB disease 
include sputum acid-fast bacilli (AFB) smear microscopy, 
rapid molecular tests, and culture-based technologies [1]. 
With the advent and widespread availability of nucleic 
acid amplification tests (Xpert MTB/RIF), some cases of 
pulmonary TB can be diagnosed quickly and accurately. 
Paucibacillary TB diagnosis (smear-negative pulmonary, 
extrapulmonary, and pediatric TB) [3–6] and predict-
ing treatment success/failure remain difficult challenges. 
Furthermore, there are gaps in identifying individuals 
with slow-growing quiescent or percolating disease, and 
utilizing based technologies would facilitate diagnosis 
for individuals unable to produce sputum (e.g., children). 
There is therefore an urgent need for additional technol-
ogies that ensure high-quality, timely, effective testing for 
people living with TB [1, 7].

Multiple blood-based biomarkers have been devel-
oped for TB over the past ten years. These signatures can 
distinguish active TB disease from latent TB infection 
(LTBI) [8, 9], distinguish TB from other diseases [10–12], 
predict progression from LTBI to active TB [13, 14]. They 
may meet target product profiles proposed by the World 
Health Organization for point-of-care testing [13–16]. 
However, more research must be done to establish the 
efficacy and reproducibility of using blood-based signa-
tures in the field, as shown by the CORTIS trial, where 
the gene expression profile fails to predict downstream 
treatment/outcome of TB [17].

In the case of existing TB signatures, the replicability of 
these biomarkers is inadequate, meaning that many of the 
original publications did not give enough detail to repli-
cate the published models. Some of these original models 
further lacked reproducibility of the accuracy of TB gene 
signatures—meaning that the signatures were overfit and 
thus experienced significant reductions in performance 
in later observations [10, 18, 19]. Several research teams 
have attempted to address these issues, either by rebuild-
ing the original classification models [7, 18] or by using 
methods such as gene set enrichment analysis (GSEA) 
[20, 21].

Our team has recently released TBSignatureProfiler 
software, which provides a compilation of TB gene sets 
used from published biomarkers and provides meth-
ods [20] to evaluate the performance of these gene sets 
[22]. However, while alternative methods, such as gene 
set scoring, are simpler to use than the original models, 
these methods have not been established as reasonable 
approximations original model performance. To address 
the issues of reproducibility in reconstructing the discov-
ery set, our study uniformly evaluated the performance 

of 19  TB gene signatures across 24 datasets using both 
original models and gene set scoring methods. We also 
curated the datasets used in this study and included the 
corresponding discovery model for each gene signature 
in the TBSignatureProfiler R package, enabling the repro-
ducibility of all results.

Methods
TB gene signatures and gene set scoring methods
Nineteen existing TB gene signatures were selected for 
this study based on the results of Warsinske et al. to make 
a fair comparison of the performance of these signatures 
(Table  1) [10, 12–14, 23–32]. Additional details on the 
gene signatures and original diagnostic models used for 
comparison are provided in the online data supplement. 
Five gene set scoring methods, single sample GSEA 
(ssGSEA) [33], gene set variation analysis (GSVA) [22], 
pathway level analysis of gene expression (PLAGE) [34], 
Zscore [35], and Singscore (unidirectional and bidirec-
tional versions) [36], were selected to evaluate the accu-
racy of TB gene signatures that distinguish active TB 
from other clinical conditions across 24 studies. Details 
on the datasets used for comparison can be found in the 
online data supplement. Moreover, the ‘biomarker split-
ting’ strategy for gene signatures was proposed to over-
come the limitations of using methods including GSVA, 
ssGSEA, and Singscore, where the signatures were eval-
uated based on their upregulated and downregulated 
subsets (see the online data supplement for details on 
biomarker splitting strategy).

Statistical analysis
The AUC value for each TB gene signature (sample scores 
against disease subtypes) was calculated for each dataset. 
The sample-size-weighted mean AUC (weighted AUCs) 
was used to assess the overall performance of each 
gene set across all studies while excluding the discovery 
dataset(s) used to train the corresponding signature [18].

Several metrics were used to compare the performance 
of gene signatures as assessed by different gene set scor-
ing methods and their original models. For each TB gene 
signature, Spearman’s rank correlation (ρ ) was computed 
to measure the strength of association of the prediction 
scores from a signature’s original model and the different 
gene set scoring methods. We then summarized the cor-
relation results by computing the weighted Spearman’s 
rank correlation (ρw ), as outlined in Eq. 1, where ni is the 
number of observations corresponding to study i .

	
ρw =

∑k
i=1ρi*ni∑k
i=1ni

� (1)
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Moreover, we determined the absolute difference in 
AUC ( |∆AUC| ) between the original model and various 
gene set scoring methods, as showed in Eq. 2.1 for each 
selected dataset. The weighted absolute AUC difference 
|∆AUC|w  was the calculated to represent the overall 
distribution pattern across all selected studies (Eq.  2.2). 
Additionally, the Szymkiewicz–Simpson coefficient [37], 
also known as the overlap coefficient (oc ; Eq.  3) was 
applied to evaluate the similarity of studies based on the 
results given by each gene set scoring and original model 
for each biomarker.

	 |∆AUCi| = |AUCGSEA,i − AUCoriginal model,i| � (2.1)

	
|∆AUC|w =

∑k
i=1 |∆AUCi| ∗ ni∑k

i=1ni

� (2.2)

	
oc =

#of common datasets

min (nGSEA, noriginal model)
� (3)

Finally, code for the analyses from this paper can 
be found at: https://github.com/xutao-wang/
Comparison-of-existing-tuberculosis-gene-signatures.

Results
Evaluation of gene signatures using discovery studies
The list of TB gene signatures and information on their 
training data are presented in Table  1 and online data 
supplement. The AUC values for our reconstructed 
models were nearly identical to the results of the origi-
nal publications, suggesting that the training models 
were accurately reconstructed (Table S1). Several gene 
signatures including Sweeney_OD_3, Maertzdorf_15, 
Leong_24, Kaforou_27, Anderson_42, and Berry_393, 
when evaluated by ssGSEA, had estimated AUC values 
above 0.9 (Table S1). These results suggest that ssGSEA 
is a comparable signature profiling method, producing 
accurate results for some TB signatures in differentiating 
TB disease states.

Performance of original models and gene set scoring 
methods
When TB gene signatures were evaluated by their origi-
nal diagnostic model, thirteen of 16 signatures had AUCs 
greater than 0.9 from their discovery dataset(s) (Fig.  1). 
Notably, Kaforou_OD_53, Kaforou_27, Maertzdorf_15, 
and Sweeney_OD_3 had consistently high AUC val-
ues across different studies (> 0.8 weighted AUCs for all 
four gene sets; Table  2). In contrast, Verhagen_10 had 
a weighted AUCs of 0.61 (Table  2), performing well in 
some datasets (> 0.9 AUC in GSE81746, GSE41055, and 

Table 1  Summary of TB gene signatures compared in the study (see supplementary materials for detailed dataset descriptions)
Signature Name Gene 

Number
Comparison Datasets Original Model Description

Sweeney_OD_3 3 Active tuberculosis vs. (LTBI & HCs 
& OD)

GSE19491 & 
GSE42834 & 
GSE37250

Difference of geometric means between up and down-
regulated genes

Jacobsen_3 3 Active tuberculosis vs. LTBI GSE19491 Linear Discriminant Analysis
LauxdaCosta_OD_3 3 Active tuberculosis vs. OD GSE42834 Random Forest
Maertzdorf_4 4 Active tuberculosis vs. HCs GSE74092 Random Forest
Sambarey_HIV_10 10 Active tuberculosis vs. OD GSE37250 Linear Discriminant Analysis
Verhagen_10 10 Active tuberculosis vs. (LTBI & HCs) GSE41055 Random Forest
Maertzdorf_15 15 Active tuberculosis vs. HCs GSE74092 Random Forest
Leong_24 24 Active tuberculosis vs. LTBI GSE10175 Ridge Logistic Regression
Kaforou_27 27 Active tuberculosis vs. OD GSE19491 Difference of arithmetic means between up and down-

regulated genes
Anderson_42 42 Active tuberculosis vs. LTBI GSE39940 Difference of sums between up and downregulated genes
Kaforou_OD_44 44 Active tuberculosis vs. OD GSE19491 Difference of arithmetic means between up and down-

regulated genes
Anderson_OD_51 51 Active tuberculosis vs. OD GSE39940 Difference of sums between up and downregulated genes
Kaforou_OD_53 53 Active tuberculosis vs. OD GSE19491 Difference of arithmetic means between up and down-

regulated genes
Berry_OD_86 86 Active tuberculosis vs. OD GSE19491 K-nearest neighbors algorithm
Bloom_OD_144 144 Active tuberculosis vs. (HCs & OD) GSE42834 Support Vector Machines
Berry_393 393 Active tuberculosis vs. (LTBI & HCs) GSE19491 K-nearest neighbors algorithm
Suliman_RISK_4 4 Incipient tuberculosis vs. HCs GSE94438 Support Vector Machines (linear kernel, using paired ratio)
Zak_RISK_16 16 Incipient tuberculosis vs. HCs GSE79362 Support Vector Machines (linear kernel)
Leong_RISK_29 29 Incipient tuberculosis vs. HCs GSE79362 Lasso Logistic Regression

https://github.com/xutao-wang/Comparison-of-existing-tuberculosis-gene-signatures
https://github.com/xutao-wang/Comparison-of-existing-tuberculosis-gene-signatures
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GSE29536) but with poor performance in most of the 
remaining studies (< 0.65 AUC in 16 out of 24 studies; 
Fig.  1). Additionally, Zak_RISK_16, Suliman_RISK_4, 
and Leong_RISK_29 also performed poorly in these com-
parisons, but these are signatures of disease progression 
(Fig. 1).

The weighted AUCs for Anderson_OD_51 com-
puted by gene scoring methods surpassed that of its 
original model, although none of the results were sta-
tistically significant after adjusting for multiple testing 
(p-value > 0.01; Table  2). For Berry_393, the weighted 
AUCs computed from its original model underperformed 
all five gene scoring methods; specifically, the AUC com-
puted by PLAGE was 0.79 (95% CI: 0.75–0.84), which 
was significantly higher (p-value < = 0.01) than that of the 
original model which had an AUC of 0.70 (95% CI: 0.66–
0.74). The results from Zak_RISK_16 given by its original 
model also underperformed five gene scoring methods, 
and all the superior weighted AUCs were significant 
(p-value < = 1e-04) (Table  2). The outperformance of the 
weighted AUCs given by PLAGE was consistent in most 
of the gene signatures asides from Sambarey_HIV_10 and 

Anderson_42 (Fig. 2A). Except PLAGE (p-value < = 0.01), 
the results from the remaining gene scoring methods 
were statistically equivalent to the weighted AUCs given 
by the original model (p-value > 0.05; Fig. 2A).

Accounting for gene expression direction
Following the implementation of the biomarker split-
ting strategy for gene signatures containing ten or 
more genes, we noted significant improvements in the 
weighted AUCs for the upregulated subsets of Berry_
OD_86. Specifically, based on ssGSEA, the AUC was 
0.78 (95% CI:0.75–0.82), while using GSVA resulted in an 
AUC of 0.80 (95% CI: 0.76–0.84). These values represent 
notable improvements compared to the original model 
(p-value < = 1e-04 for both methods; Table  3). Similar 
improvement was observed for the upregulated subsets 
of Berry_393 (p-value < = 0.01 for both methods; Table 3). 
Furthermore,  the performance of Berry signatures, as 
evaluated by Singscore bidirectional scoring, surpassed 
that of their original models (p-value < = 1e-03 for both 
gene sets; Table  3). Interestingly, Anderson_OD_51 is 
the only gene signature for which the weighted AUCs 

Fig. 1  Heatmap of AUC distribution for each signature across 24 studies using the original model. Grids with black borders indicated the discovery sets 
for each TB gene signature. Each row represented one signature. Signatures were clustered into different categories according to the TB subtypes they 
identified. The column of the heatmap corresponded to the studies used in this paper. The datasets were rearranged in decreasing order based on their 
mean AUC values across all TB gene signatures
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from GSVA outperformed its original model for both its 
upregulated and downregulated subsets (AUC > = 0.77 
and p-value < 0.05 for both subsets; Table 3). Overall, the 
weighted AUCs from all methods were statistically equiv-
alent to the results given by the original model, except for 
the results computed from the signatures’ downregulated 
subset using ssGSEA (p-value = 0.036; Fig. 2B).

Gene set scoring methods versus original models
Figure S3A-E showed the performance of gene signa-
tures across multiple datasets after filtering some data-
sets. Detailed information regarding the criteria used to 
filter datasets is provided in the online data supplement. 

Generally, Verhagen_10 had poor performance when 
evaluated using its original model, Zscore, and Sing-
score (Figure S3). Similar mediocre performance was 
observed for Suliman_RISK_4, where no studies were 
selected using GSVA and Zscore, and GSE107994 was 
the only study selected by ssGSEA and its original model 
( |∆AUC|  = 0.061; ρ  = 0.7; Figure S3A; Figure S3C-D). 
Additionally, no studies had AUCs greater than 0.8 for 
Leong_RISK_29 when evaluated using ssGSEA, GSVA, 
and Zscore (Figure S3A; Figure S3C-D). When com-
paring the performance between ssGSEA and original 
model, Kaforou_27, Maertzdorf_15, and Sweeney_OD_3 
showed high diagnostic accuracy in similar studies (oc  

Table 2  Weighted mean AUC and 95% CI for 19 gene signatures using the original model and gene set scoring methods (ssGSEA, 
GSVA, PLAGE, Zscore, and Singscore) across 24 studies
Signature Warsinske 

et al.
TBSignature-
Profiler (Origi-
nal Model)

TBSigna-
tureProfiler 
(ssGSEA)

TBSignature-
Profiler (GSVA)

TBSigna-
tureProfiler 
(PLAGE)

TBSigna-
tureProfiler 
(Zscore)

TBSigna-
tureProfiler 
(Singscore)

LauxdaCosta_OD_3 0.76 
(0.45–1.00)

0.80 (0.76–0.83) 0.82 (0.76–0.86) 0.79 (0.74–0.83) 0.83* (0.79–0.86) 0.78 (0.74–0.80) 0.82 (0.75–0.86)

Jacobsen_3 0.83 
(0.69–0.98)

0.76† (0.71–0.80) 0.72 (0.68–0.76) 0.69 (0.64–0.73) 0.78 (0.75–0.81) 0.69 (0.65–0.73) 0.71 (0.67–0.75)

Sweeney_OD_3 0.85 
(0.72–0.99)

0.81 (0.76–0.85) 0.82 (0.77–0.86) 0.75 (0.69–0.80) 0.82 (0.78–0.85) 0.77 (0.71–0.82) 0.82 (0.77–0.86)

Maertzdorf_4 0.79 
(0.64–0.95)

0.80 (0.77–0.83) 0.70* (0.65–0.75) 0.73** (0.69–0.78) 0.81 (0.78–0.85) 0.72** (0.68–0.76) 0.66* (0.62–0.72)

Verhagen_10 0.54 
(0.41–0.68)

0.61‡ (0.57–0.66) 0.57 (0.55–0.60) 0.59 (0.56–0.64) 0.65 (0.59–0.71) 0.62 (0.57–0.68) 0.58 (0.55–0.61)

Sambarey_HIV_10 0.82 
(0.57–1.00)

0.83 (0.76–0.87) 0.80 (0.76–0.84) 0.80 (0.76–0.84) 0.76 (0.70–0.83) 0.75 (0.70–0.81) 0.79 (0.75–0.83)

Maertzdorf_15 0.79 
(0.66–0.92)

0.82 (0.79–0.85) 0.83 (0.79–0.87) 0.82 (0.78–0.86) 0.83 (0.80–0.86) 0.79 (0.75–0.82) 0.79 (0.75–0.84)

Leong_24 0.75 
(0.54–0.95)

0.72 (0.67–0.78) 0.73 (0.70–0.77) 0.61 (0.58–0.65) 0.73 (0.67–0.79) 0.61 (0.58–0.65) 0.73 (0.69–0.78)

Kaforou_27 0.83 
(0.64–1.00)

0.81 (0.77–0.85) 0.82 (0.78–0.85) 0.79 (0.76–0.82) 0.83 (0.79–0.87) 0.79 (0.76–0.82) 0.78 (0.73–0.82)

Anderson_42 0.82 
(0.66–0.97)

0.78 (0.73–0.83) 0.61** (0.58–0.66) 0.60** (0.58–0.64) 0.76 (0.70–0.82) 0.65** (0.59–0.73) 0.57** (0.53–
0.61)

Kaforou_OD_44 0.78 
(0.56–1.00)

0.76 (0.69–0.81) 0.67 (0.63–0.71) 0.72 (0.68–0.74) 0.80 (0.72–0.86) 0.70 (0.67–0.74) 0.70 (0.67–0.74)

Anderson_OD_51 0.58 
(0.33–0.82)

0.71‡ (0.64–0.78) 0.75 (0.71–0.80) 0.81 (0.77–0.84) 0.79 (0.72–0.85) 0.75 (0.66–0.82) 0.77 (0.73–0.80)

Kaforou_OD_53 0.84 
(0.70–0.99)

0.83 (0.78–0.87) 0.70** (0.66–0.75) 0.77** (0.74–0.80) 0.84 (0.80–0.87) 0.77** (0.73–0.80) 0.77** (0.73–
0.81)

Berry_OD_86 0.69 
(0.36–1.00)

0.69 (0.66–0.72) 0.71 (0.68–0.76) 0.74 (0.70–0.78) 0.75* (0.72–0.80) 0.73 (0.69–0.78) 0.73 (0.68–0.78)

Bloom_OD_144 0.74 
(0.52–0.96)

0.70 (0.66–0.74) 0.77 (0.72–0.81) 0.76 (0.71–0.81) 0.71 (0.66–0.78) 0.70 (0.63–0.77) 0.76 (0.71–0.81)

Berry_393 0.71 
(0.43–0.99)

0.70 (0.66–0.74) 0.78 (0.74–0.82) 0.77 (0.73–0.81) 0.79* (0.75–0.84) 0.77 (0.73–0.81) 0.79 (0.74–0.84)

Suliman_RISK_4 NA 0.62 (0.57–0.69) 0.62 (0.58–0.68) 0.55 (0.53–0.58) 0.74** (0.70–0.79) 0.60 (0.55–0.66) 0.61 (0.56–0.66)
Zak_RISK_16 NA 0.62 (0.56–0.70) 0.85*** (0.81–0.88) 0.84*** (0.80–0.88) 0.83*** (0.80–0.86) 0.83*** (0.79–0.86) 0.84*** (0.80–

0.88)
Leong_RISK_29 NA 0.68 (0.65–0.73) 0.58* (0.56–0.61) 0.59* (0.56–0.61) 0.75 (0.70–0.80) 0.60 (0.56–0.64) 0.61* (0.57–0.65)
*: p-value < = 0.01, **: p-value < = 0.001, ***: p-value < = 0.0001 derived from Wilcoxon signed-rank test between the original model and corresponding gene set 
scoring methods; †: the original model results underperformed the Warsinske et al. by more than 0.05 units; ‡: the original model results outperformed the Warsiske 
et al. by more than 0.05 units
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for Kaforou_27 and Maertzdorf_15: = 1.00, oc  for Swee-
ney_OD_3: = 0.86; Figure S3A). Significantly positive 
Spearman’s rank correlations of the predicted scores were 
observed for Kaforou_27 (ρw  = 0.78) and Sweeney_OD_3 
(ρw  = 0.86), while significantly negative correlations were 
shown for Maertzdorf_15 (ρw  = -0.81; p-value < = 1e-04 
for three signatures; Figure S3A).

Furthermore, Kaforou_27, Kaforou_OD_53, and 
LauxdaCosta_OD_3 had significantly negative Spear-
man’s rank correlations for the predicted results given 
by PLAGE and their original models (-0.92 < ρw  < -0.82; 
p-value < 1e-04; |∆AUC|w  < 0.03 for all three gene sets; 
Figure S3B). Conversely, two Maertzdorf signatures dem-
onstrated strong positive Spearman’s rank correlations of 

the prediction scores and small AUC differences (p-value 
for Maertzdorf_4: = 0.06, p-value for Maertzdorf_15: 
= 0.02), with ρw  of 0.88 for Maertzdorf_4 and 0.94 for 
Maertzdorf_15 (p-value < 1e-05; Figure S3B).

When comparing the results given by GSVA and sig-
natures’ original models, Anderson_OD_51, Berry_393, 
Berry_OD_86, Bloom_OD_144, and Zak_RISK_16 
showed distinct prediction patterns (0.11 <= ρw  <= 
0.47, |∆AUC|w  > 0.05 for all five gene sets; Figure 
S3C). Similar to that of ssGSEA, the resulting scores 
from Maertzdorf_15 (ρw  = -0.78, |∆AUC|w  = 0.043) 
and Maertzdorf_4 (ρw  = -0.63, |∆AUC|w  = 0.051) were 
negatively correlated with the results from the signatures’ 

Fig. 2  Differences in the weighted mean AUC values between the original model and the gene set scoring methods. Each grid showed the difference 
in the weighted mean AUC value between the corresponding gene set scoring methods (ssGSEA, GSVA, PLAGE, and Singscore) and the original models. 
The results from the original model were used as the baseline. For all 19 TB gene signatures, the weighted mean AUC results for ssGSEA, Singscore, GSVA, 
and Zscore were statistically equivalent to the results given by the original model (A). The weighted mean AUC results for ssGSEA and GSVA for the up-
regulated subsets of the gene signatures, and by Singscore (bidirectional scoring) and GSVA for the downregulated subsets of the gene signatures, were 
statistically equivalent to the results given by the original model (B). Red: the weighted mean AUC for gene scoring method outperformed the original 
model. Blue: the weighted mean AUC for gene scoring method underperformed the original model. *: p-value < 0.05 derived from the Wilcoxon signed-
rank test. **: p-value < 0.01 derived from the same test
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original model, with a study overlap coefficient of 1.00 for 
both gene signatures (Figure S3C).

Based on the results from Zscore, the performance of 
Anderson_OD_51, Berry_393, Berry_OD_86, Bloom_
OD_144, and Zak_RISK_16 were different when com-
pared to the results from their original models (-0.0037 
<= ρw  <= 0.65, |∆AUC|w  > 0.05 for all five gene sets; 
Figure S3D). Similarly, Maertzdorf_15 (ρw  = -0.85, 
|∆AUC|w  = 0.044) and Maertzdorf_4 (ρw  = -0.74, 
|∆AUC|w  = 0.084) had negatively correlated prediction 
scores given using Zscore and their respective original 
models (Figure S3D).

With Singscore unidirectional scoring, although more 
studies with high AUCs were selected when assessing 
Anderson_OD_51, Berry_393, Berry_OD_86, Bloom_
OD_144, and Zak_RISK_16, the results from these sig-
natures had weak to moderate weighted Spearman’s rank 
correlation (0.16 <= ρw  <= 0.55) and a large AUC differ-
ence ( |∆AUC|w  >= 0.11 for all five gene sets; Figure S3E). 
Sweeney_OD_3 (ρw  = 0.85, p-value < 1e-04; |∆AUC|w  
= 0.031, p-value = 0.75) was the only gene set for which 
the results from the Singscore could act as a proxy for its 
original models, except for study GSE34608 (Figure S3E).

When assessing gene signatures based on their upregu-
lated subset, all selected studies had positive Spearman’s 
rank correlations between the predicted scores given by 
ssGSEA and original models (Figure S4A). The results 
from subsets of Kaforou_27 and Kaforou_OD_53 showed 
similar diagnostic features for ssGSEA and their original 
models (for both gene sets: ρw  > 0.80; p-value < = 1e-04; 
|∆AUC|w  < 0.030; oc  = 1.00; Figure S4A). When gene 
signatures were evaluated using their downregulated 
subsets, only Maertzdorf_15 had an absolute Spear-
man’s rank correlation greater than 0.80 (ρw  = -0.89, 
p-value < = 1e-05), a small AUC difference ( |∆AUC|w  

= 0.033, p-value = 0.010), and a study overlap coeffi-
cient of 1.00 (Figure S4B). Among the signatures,  only 
Berry_393 (ρw  = -0.62), Leong_24 (ρw  = -0.64), and Ver-
hagen_10 (ρw  = 0.60) had more studies with high AUCs 
using ssGSEA compared to their original models (0.052 < 
|∆AUC|w  < 0.191; Figure S4B).

For the evaluation of signatures’ upregulated sub-
sets, the predicted scores given by GSVA and original 
models were positively correlated for most of the signa-
tures across datasets, except GSE34608 (Figure S4C). 
Kaforou_27 demonstrated the highest weighted Spear-
man’s rank correlation (ρw  = 0.90, p-value < 1e-05) 
and the smallest AUC difference ( |∆AUC|w  = 0.020, 
p-value = 0.68) among the 12 gene sets, which presented 
an equivalent prediction pattern compared to its origi-
nal model (Figure S4C). Conversely,  the upregulated 
subset of Maertzdorf_15 was the only gene set where 
the original model outperformed GSVA, presenting a 
greater number of studies with high AUCs from its origi-
nal method (ρw  = 0.68, |∆AUC|w  = 0.094; Figure S4C). 
When gene signatures were evaluated with their down-
regulated subsets using GSVA, nine out of 13 gene sets 
had a greater number of studies with high AUCs based 
on the results from their original model (Figure S4D). The 
results from Maertzdorf_15, similar to those for the ssG-
SEA method, had the highest absolute weighted Spear-
man’s rank correlation (ρw  = -0.88, p-value < = 1e-05) and 
the smallest absolute AUC difference ( |∆AUC|w  = 0.03, 
p-value = 0.20; Figure S4D).

Finally, most of the selected studies had positive corre-
lations for the predicted scores given by Singscore bidi-
rectional scoring and their original methods, except study 
GSE62525 from Bloom_OD_144 and GSE101705 from 
Verhagen_10 (Figure S4E). Both Kaforou_27 and Kafo-
rou_OD_53 had a weighted Spearman’s rank correlation 

Table 3  Weighted mean AUC and 95% CI results for the upregulated and downregulated subsets of gene signatures using ssGSEA, 
GSVA, and Singscore bidirectional scoring methods
Signature TBSignaturePro-

filer (Original 
Model)

TBSignature-
Profiler (ssGSEA: 
upregulated)

TBSignature-
Profiler (ssGSEA: 
downregulated)

TBSignature-
Profiler (GSVA: 
upregulated)

TBSignature-
Profiler (GSVA: 
downregulated)

TBSigna-
tureProfiler 
(Singscore)

Verhagen_10 0.61 (0.57–0.66) 0.55 (0.54–0.58) 0.57 (0.55–0.62) 0.56 (0.53–0.60) 0.62 (0.58–0.67) 0.56 (0.54–0.59)
Sambarey_HIV_10 0.83 (0.76–0.87) 0.82 (0.78–0.85) 0.68 (0.64–0.73) 0.82 (0.78–0.85) 0.71 (0.65–0.76) 0.67* (0.62–0.74)
Maertzdorf_15 0.82 (0.79–0.85) 0.71* (0.67–0.76) 0.85 (0.81–0.88) 0.71** (0.68–0.75) 0.84 (0.80–0.88) 0.80 (0.77–0.84)
Leong_24 0.72 (0.67–0.78) 0.80 (0.76–0.85) 0.73 (0.69–0.77) 0.76 (0.71–0.80) 0.73 (0.69–0.77) 0.80 (0.76–0.84)
Kaforou_27 0.81 (0.77–0.85) 0.84 (0.81–0.88) 0.72*** (0.68–0.76) 0.83 (0.80–0.87) 0.71*** (0.67–0.75) 0.82 (0.78–0.86)
Anderson_42 0.78 (0.73–0.83) 0.82 (0.78–0.86) 0.73* (0.69–0.78) 0.81 (0.78–0.84) 0.72* (0.68–0.76) 0.81 (0.77–0.85)
Kaforou_OD_44 0.76 (0.69–0.81) 0.81 (0.75–0.84) 0.65 (0.59–0.71) 0.80(0.74–0.84) 0.64 (0.59–0.70) 0.74 (0.67–0.80)
Anderson_OD_51 0.71 (0.64–0.78) 0.75 (0.70–0.80) 0.73 (0.70–0.76) 0.81 (0.78–0.84) 0.77 (0.71–0.82) 0.65* (0.62–0.70)
Kaforou_OD_53 0.83 (0.78–0.87) 0.85 (0.81–0.88) 0.75*** (0.70–0.80) 0.84 (0.81–0.87) 0.76*** (0.70–0.80) 0.82 (0.78–0.86)
Berry_OD_86 0.69 (0.66–0.72) 0.78*** (0.75–0.82) 0.63 (0.60–0.68) 0.80*** (0.76–0.84) 0.70 (0.66–0.75) 0.78** (0.74–0.82)
Bloom_OD_144 0.70 (0.66–0.74) 0.78 (0.74–0.83) 0.64 (0.60–0.68) 0.78 (0.73–0.83) 0.64*** (0.61–0.68) 0.77 (0.73–0.81)
Berry_393 0.70 (0.66–0.74) 0.80* (0.76–0.85) 0.74 (0.70–0.79) 0.79* (0.76–0.84) 0.74 (0.70–0.79) 0.79** (0.75–0.84)
Leong_RISK_29 0.68 (0.65–0.73) 0.72 (0.69–0.77) 0.69 (0.64–0.75) 0.76 (0.72–0.80) 0.71 (0.66–0.75) 0.73** (0.70–0.77)
*: p-value < = 0.01, **: p-value < = 0.001, ***: p-value < = 0.0001 derived from Wilcoxon signed-rank test
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greater than 0.85 (p-value < 1e-05), an absolute AUC dif-
ference smaller than 0.020 (p-value > 0.05), and a study 
overlap coefficient of 1.00. These findings suggest that 
results for these gene signatures given by Singscore bidi-
rectional scoring could act as a proxy for the results given 
by their original models (Figure S4E).

Discussion
TB diagnostics are moving toward using blood-based 
biomarkers, but serious gaps remain in the analyses of 
these data. Here, we evaluated the performance of 19 TB 
gene signatures in distinguishing active TB from other 
clinical conditions using the original published model 
and five different gene set scoring methods across 24 
transcriptomic studies. These datasets represent real-
world heterogeneity concerning geographic regions, host 
and pathogen genetics, and clinical context [18]. Our 
results suggested that an original gene signature model’s 
predictive ability can be improved or recaptured using 
some gene set scoring methods.

The five gene set scoring methods used here belong to 
a class of methods that compute a gene set enrichment 
score for each sample using only the genes from a signa-
ture. However, some differences between methods are 
present. Gene set scoring methods, including ssGSEA, 
GSVA, and Singscore, are single-sample methods that 
rank genes in each sample individually by comparing the 
ranks of the signature genes with the ranks of non-signa-
ture genes in the sample. Additionally, the original mod-
els for the gene signatures Sweeney_OD_3, Kaforou_27, 
Kaforou_OD_44, Kaforou_OD_53, Anderson_42, and 
Anderson_OD_51 could also be characterized as single 
sample methods, which rely on the expression of upreg-
ulated and downregulated subsets of genes within gene 
sets (Table  1). These single-sample methods were more 
likely to produce robust scores for individual subjects, 
especially in studies with small sample sizes or hetero-
geneous disease subtypes. In contrast, PLAGE belongs 
to the class of multi-sample methods, which implements 
singular value decomposition (SVD) on the standard-
ized gene expression profile of all subjects in the dataset 
[33, 34, 36]. Multi-sample methods (e.g., PLAGE, ran-
dom forest, etc.) were susceptible to changes in sample 
composition. The results given by multi-sample meth-
ods may be irreproducible if the size of samples for dif-
ferent disease subtypes changes [36], which is known 
as “test set bias” [38]. In our study, PLAGE consistently 
outperformed other gene ser scoring methods for most 
signatures (Table 2; Fig. 2A). This superior performance 
is attributed to the selection of biologically meaningful 
genes based on prior knowledge, combined with SVD-
like analysis, which together ensure high sensitivity and 
effective prioritization [39].

The weighted AUCs given by these single-sample meth-
ods were sometimes lower than the AUC from the origi-
nal model for some signatures (Table 3). For these cases, 
the biomarker splitting strategy improved the signatures’ 
diagnostic ability, consistent with existing publications 
in other fields [33, 40]. Moreover, the improvement of 
weighted AUCs based on the upregulated subsets was 
more dominant when compared to the results from the 
downregulated subset (Table  3). This is likely because 
upregulated genes are usually immune-related, such as 
FCGR1A/B, GBP5/6, C1QB, SEPTIN4, and ANDKRD22 
[20], which generate a clear signal in active TB and are 
features of the immune response to the disease [41]. 
The weighted AUCs from Zak_RISK_16 were consis-
tently greater than 0.80 for five gene set scoring methods 
(Table  2), mainly due to the overexpression of all genes 
within Zak_RISK_16 relative to its discovery dataset, 
with a large number of genes being highly differentially 
expressed from the recent Leicester clinical phenotype 
groups [41].

The data preprocessing and training procedures are 
specialized and intractable for most TB gene signature 
discovery cases, which contributes to low generaliz-
ability in some biomarkers when evaluating their per-
formance on independent datasets by implementing 
the original model. Both Berry_393 and Berry_OD_86 
used the K-nearest neighbor (KNN) algorithm, which 
demonstrated high classification ability in their discov-
ery studies but had poor results across multiple studies 
(Fig. 1). KNN clustering worked well when gene expres-
sion values were normalized to the median of each con-
trol group [10]; however, performing such normalization 
for transcriptomic datasets originating from different 
clinical conditions or different platforms is unrealis-
tic. KNN classification also assumes that similar inputs 
share similar labels; however, data points tend to be close 
together in high-dimensional spaces [42]. Furthermore, 
the performance of Verhagen_10 was poor across inde-
pendent studies based on the results given by its original 
diagnostic model but had AUC values equal to 1.00 in 
datasets GSE81746 and GSE41055 (Fig. 1). This is a sign 
of overfitting, a common problem using random forest, 
which relies on optimizing the tuning parameters [43]. In 
these and many other ways, a gene signature’s diagnostic 
accuracy may be underestimated by evaluating its perfor-
mance using its original model.

For Kaforou_27, the results given by both PLAGE and 
ssGSEA were highly correlated (ρw  from PLAGE: = -0.92, 
ρw  from ssGSEA: = 0.78), with a small AUC difference 
( |∆AUC|w  from PLAGE: = 0.030, |∆AUC|w  from ssG-
SEA: = 0.032), and it had a study overlap coefficient of 
1.00 when compared to its original model (Figure S3A-
B). This is primarily because of the presence of 21 over-
expressed genes within the Kaforou_27 gene set, which 
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dominates the performance of the gene signatures (Fig-
ure S4A). We identified a similar situation for Maertz-
dorf_15, which had 12 downregulated genes within its 
gene set. Maertzdorf_15 and its downregulated subsets 
had consistently high negative Spearman’s rank corre-
lations (-0.89 <= ρw  <= -0.78) for the prediction scores 
given by its original model and gene set scoring methods, 
except for PLAGE (ρw  = 0.94) and Singscore bidirectional 
scoring (ρw  = 0.86; Figure S3; Figure S4B, D-E).

Our study has several limitations. We only compared 
the performance of active TB disease versus all other dis-
ease states regardless of how TB was diagnosed, and we 
did not perform subgroup analysis stratified by different 
clinical conditions, such as age, region, or comorbidi-
ties. Additionally, some gene sets were trained on small 
datasets, and the reconstructed models may differ from 
those in the original publication, as some studies did not 
provide sufficient details to recreate the original train-
ing model. Instead, we followed the details outlined in 
the previously published comparison of Warsinske et al. 
[18]. Due to different naming sequencing platforms for 
transcripts, some genes within signatures were miss-
ing across multiple studies, and we could not accurately 
evaluate the biomarkers’ diagnostic ability in those cases. 
Although KNN imputation (see details in the online data 
supplement) was used to estimate the expression val-
ues for those missing genes in the validation study, the 
imputation process may have potentially led to bias. Our 
comparison would still be valid if we followed similar 
procedures to handle missing values across independent 
studies.

In conclusion, we showed that gene set scoring meth-
ods are effective for evaluating gene signature accuracy 
for comparing active TB disease versus other clinical 
conditions. In some cases, PLAGE outperformed the 
original models when considering signatures’ weighted 
AUCs. The ssGSEA, GSVA, and Singscore methods can 
also capture the diagnostic accuracy of gene signatures 
by taking the gene directional information within gene 
sets into account. Given the challenges associated with 
rebuilding or re-evaluating the signatures’ original bio-
marker model(s), gene set scoring methods could serve 
as a reliable alternative computational methodology to 
apply or perform comparisons of TB biomarkers.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12879-024-09457-z.

Supplementary Material 1

Supplementary Material 2

Acknowledgements
Not Applicable.

Author contributions
W.E.J. and P.P. conceived the study. X.W. conducted the comparisons and 
analysis of TB signatures and generated the figures. X.W., A.V., A.R.O., J.J.E., 
N.S.H., P.S., P.P., and W.E.J. contributed to the study design and guided the 
interpretation of the results. X.W., P.P., and W.E.J. wrote the manuscript and 
generated figures and results. All the authors have read and approved the final 
manuscript.

Funding
This work was supported by funds from the NIH (R01GM127430 and 
R21AI154387).

Data availability
The datasets generated and/or analyzed during the current study are available 
at:
https://bioconductor.org/packages/release/data/experiment/html/
curatedTBData.html.

Declarations

Ethics approval and consent to participate
Not Applicable.

Consent for publication
Not Applicable.

Competing interests
The authors declare no competing interests.

Received: 29 July 2023 / Accepted: 31 May 2024

References
1.	 World Health Organization. Global tuberculosis Report 2022. World Health 

Organization; 2022.
2.	 Pai M, Behr MA, Dowdy D, Dheda K, Divangahi M, Boehme CC, et al. Tubercu-

losis Nat Rev Dis Primers. 2016;2:16076.
3.	 Park JH, Choe J, Bae M, Choi S, Jung KH, Kim MJ, et al. Clinical characteristics 

and radiologic features of immunocompromised patients with Pauci-Bacillary 
Pulmonary Tuberculosis receiving delayed diagnosis and treatment. Open 
Forum Infect Dis. 2019;6:ofz002.

4.	 Swaminathan S, Ramachandran G. Challenges in childhood tuberculosis. Clin 
Pharmacol Ther. 2015;98:240–4.

5.	 Sharma SK, Ryan H, Khaparde S, Sachdeva KS, Singh AD, Mohan A, et al. 
Index-TB guidelines: guidelines on extrapulmonary tuberculosis for India. 
Indian J Med Res. 2017;145:448–63.

6.	 Gaur M, Singh A, Sharma V, Tandon G, Bothra A, Vasudeva A, et al. Diagnostic 
performance of non-invasive, stool-based molecular assays in patients with 
paucibacillary tuberculosis. Sci Rep. 2020;10:7102.

7.	 Gupta RK, Turner CT, Venturini C, Esmail H, Rangaka MX, Copas A, et al. 
Concise whole blood transcriptional signatures for incipient tuberculosis: a 
systematic review and patient-level pooled meta-analysis. Lancet Respir Med. 
2020;8:395–406.

8.	 Sloot R, van der Schim MF, van Zwet EW, Haks MC, Keizer ST, Scholing M, et 
al. Biomarkers can identify pulmonary tuberculosis in HIV-infected drug users 
months prior to clinical diagnosis. EBioMedicine. 2015;2:172–9.

9.	 Esmail H, Lai RP, Lesosky M, Wilkinson KA, Graham CM, Horswell S, et al. Com-
plement pathway gene activation and rising circulating immune complexes 
characterize early disease in HIV-associated tuberculosis. Proc Natl Acad Sci U 
S A. 2018;115:E964–73.

10.	 Berry MPR, Graham CM, McNab FW, Xu Z, Bloch SAA, Oni T, et al. An inter-
feron-inducible neutrophil-driven blood transcriptional signature in human 
tuberculosis. Nature. 2010;466:973–7.

11.	 Walter ND, Miller MA, Vasquez J, Weiner M, Chapman A, Engle M, et al. Blood 
transcriptional biomarkers for active tuberculosis among patients in the 
United States: a case-control study with systematic cross-classifier evaluation. 
J Clin Microbiol. 2016;54:274–82.

12.	 Kaforou M, Wright VJ, Oni T, French N, Anderson ST, Bangani N, et al. Detec-
tion of tuberculosis in HIV-infected and -uninfected African adults using 

https://doi.org/10.1186/s12879-024-09457-z
https://doi.org/10.1186/s12879-024-09457-z
https://bioconductor.org/packages/release/data/experiment/html/curatedTBData.html
https://bioconductor.org/packages/release/data/experiment/html/curatedTBData.html


Page 10 of 10Wang et al. BMC Infectious Diseases          (2024) 24:610 

whole blood RNA expression signatures: a case-control study. PLoS Med. 
2013;10:e1001538.

13.	 Suliman S, Thompson EG, Sutherland J, Weiner J 3rd, Ota MOC, Shankar S, et 
al. Four-gene pan-african blood signature predicts progression to tuberculo-
sis. Am J Respir Crit Care Med. 2018;197:1198–208.

14.	 Zak DE, Penn-Nicholson A, Scriba TJ, Thompson E, Suliman S, Amon LM, et 
al. A blood RNA signature for tuberculosis disease risk: a prospective cohort 
study. Lancet. 2016;387:2312–22.

15.	 Singhania A, Verma R, Graham CM, Lee J, Tran T, Richardson M, et al. A modu-
lar transcriptional signature identifies phenotypic heterogeneity of human 
tuberculosis infection. Nat Commun. 2018;9:2308.

16.	 Roe J, Venturini C, Gupta RK, Gurry C, Chain BM, Sun Y, et al. Blood transcrip-
tomic stratification of short-term risk in contacts of tuberculosis. Clin Infect 
Dis. 2020;70:731–7.

17.	 Scriba TJ, Fiore-Gartland A, Penn-Nicholson A, Mulenga H, Kimbung Mbandi 
S, Borate B, et al. Biomarker-guided tuberculosis preventive therapy (CORTIS): 
a randomised controlled trial. Lancet Infect Dis. 2021;21:354–65.

18.	 Warsinske H, Vashisht R, Khatri P. Host-response-based gene signatures for 
tuberculosis diagnosis: a systematic comparison of 16 signatures. PLoS Med. 
2019;16:e1002786.

19.	 Noble WS. What is a support vector machine? Nat Biotechnol. 
2006;24:1565–7.

20.	 Johnson WE, Odom A, Cintron C, Muthaiah M, Knudsen S, Joseph N, Babu 
S, Lakshminarayanan S, Jenkins DF, Zhao Y, Nankya E, Horsburgh CR, Roy G, 
Ellner JJ, Sarkar S, Salgame P, Hochberg NS. Comparing tuberculosis gene 
signatures in malnourished individuals using the TBSignatureProfiler. BMC 
Infect Dis. 2020.

21.	 Domaszewska T, Zyla J, Otto R, Kaufmann SHE, Weiner J. Gene set enrich-
ment analysis reveals individual variability in host responses in tuberculosis 
patients. Front Immunol. 2021;12:694680.

22.	 Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for 
microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7.

23.	 Sweeney TE, Braviak L, Tato CM, Khatri P. Genome-wide expression for diagno-
sis of pulmonary tuberculosis: a multicohort analysis. Lancet Respir Med. 
2016;4:213–24.

24.	 Anderson ST, Kaforou M, Brent AJ, Wright VJ, Banwell CM, Chagaluka G, et 
al. Diagnosis of childhood tuberculosis and host RNA expression in Africa. N 
Engl J Med. 2014;370:1712–23.

25.	 Bloom CI, Graham CM, Berry MPR, Rozakeas F, Redford PS, Wang Y, et al. Tran-
scriptional blood signatures distinguish pulmonary tuberculosis, pulmonary 
sarcoidosis, pneumonias and lung cancers. PLoS ONE. 2013;8:e70630.

26.	 Laux da Costa L, Delcroix M, Dalla Costa ER, Prestes IV, Milano M, Francis SS, et 
al. A real-time PCR signature to discriminate between tuberculosis and other 
pulmonary diseases. Tuberculosis. 2015;95:421–5.

27.	 Jacobsen M, Repsilber D, Gutschmidt A, Neher A, Feldmann K, Mollenkopf HJ, 
et al. Candidate biomarkers for discrimination between infection and disease 
caused by Mycobacterium tuberculosis. J Mol Med. 2007;85:613–21.

28.	 Leong S, Zhao Y, Joseph NM, Hochberg NS, Sarkar S, Pleskunas J, et al. Existing 
blood transcriptional classifiers accurately discriminate active tubercu-
losis from latent infection in individuals from south India. Tuberculosis. 
2018;109:41–51.

29.	 Maertzdorf J, McEwen G, Weiner J 3rd, Tian S, Lader E, Schriek U, et al. Concise 
gene signature for point-of-care classification of tuberculosis. EMBO Mol 
Med. 2016;8:86–95.

30.	 Sambarey A, Devaprasad A, Mohan A, Ahmed A, Nayak S, Swaminathan 
S, et al. Unbiased identification of blood-based biomarkers for pulmonary 
tuberculosis by modeling and Mining Molecular Interaction Networks. EBio-
Medicine. 2017;15:112–26.

31.	 Verhagen LM, Zomer A, Maes M, Villalba JA, Del Nogal B, Eleveld M, et al. A 
predictive signature gene set for discriminating active from latent tuberculo-
sis in Warao Amerindian children. BMC Genomics. 2013;14:74.

32.	 Leong S, Zhao Y, Ribeiro-Rodrigues R, Jones-López EC, Acuña-Villaorduña 
C, Rodrigues PM, Palaci M, Alland D, Dietze R, Ellner JJ, Johnson WE. 
Cross-validation of existing signatures and derivation of a novel 29-gene 
transcriptomic signature predictive of progression to TB in a Brazilian cohort 
of household contacts of pulmonary TB. Tuberculosis. 2020;120:101898.

33.	 Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, 
et al. Gene set enrichment analysis: a knowledge-based approach for 
interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 
2005;102:15545–50.

34.	 Tomfohr J, Lu J, Kepler TB. Pathway level analysis of gene expression using 
singular value decomposition. BMC Bioinformatics. 2005;6:225.

35.	 Lee E, Chuang H-Y, Kim J-W, Ideker T, Lee D. Inferring pathway activity toward 
precise disease classification. PLoS Comput Biol. 2008;4:e1000217.

36.	 Foroutan M, Bhuva DD, Lyu R, Horan K, Cursons J, Davis MJ. Single sample 
scoring of molecular phenotypes. BMC Bioinformatics. 2018;19:404.

37.	 M.k V, K K. A survey on similarity measures in text mining. Mach Learn Appl 
Int J. 2016;3:19–28.

38.	 Patil P, Bachant-Winner P-O, Haibe-Kains B, Leek JT. Test set bias affects repro-
ducibility of gene signatures. Bioinformatics. 2015;31:2318–23.

39.	 Tarca AL, Bhatti G, Romero R. A comparison of gene set analysis methods in 
terms of sensitivity, prioritization and specificity. PLoS ONE. 2013;8:e79217.

40.	 Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al. Systematic 
RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. 
Nature. 2009;462:108–12.

41.	 Tabone O, Verma R, Singhania A, Chakravarty P, Branchett WJ, Graham 
CM et al. Blood transcriptomics reveal the evolution and resolution of the 
immune response in tuberculosis. J Exp Med [Internet]. 2021;218. https://doi.
org/10.1084/jem.20210915.

42.	 Tran TN, Wehrens R, Buydens LMC. KNN-kernel density-based clustering for 
high-dimensional multivariate data [Internet]. Computational Statistics & 
Data Analysis. 2006. pp. 513–25. https://doi.org/10.1016/j.csda.2005.10.001.

43.	 Lulli A, Oneto L, Anguita D. Mining big data with random forests. Cognit 
Comput. 2019;11:294–316.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://doi.org/10.1084/jem.20210915
https://doi.org/10.1084/jem.20210915
https://doi.org/10.1016/j.csda.2005.10.001

	﻿Comparison of gene set scoring methods for reproducible evaluation of tuberculosis gene signatures
	﻿Abstract
	﻿Introduction
	﻿Methods
	﻿TB gene signatures and gene set scoring methods
	﻿Statistical analysis

	﻿Results
	﻿Evaluation of gene signatures using discovery studies
	﻿Performance of original models and gene set scoring methods
	﻿Accounting for gene expression direction
	﻿Gene set scoring methods versus original models

	﻿Discussion
	﻿References


