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Abstract 

Background  Estimation of the SARS-CoV-2 incubation time distribution is hampered by incomplete data 
about infection. We discuss two biases that may result from incorrect handling of such data. 

Notified cases may recall recent exposures more precisely (differential recall). This creates bias if the analysis 
is restricted to observations with well-defined exposures, as longer incubation times are more likely to be excluded. 

Another bias occurred in the initial estimates based on data concerning travellers from Wuhan. Only individuals who 
developed symptoms after their departure were included, leading to under-representation of cases with shorter incu-
bation times (left truncation). This issue was not addressed in the analyses performed in the literature.

Methods  We performed simulations and provide a literature review to investigate the amount of bias in estimated 
percentiles of the SARS-CoV-2 incubation time distribution.

Results  Depending on the rate of differential recall, restricting the analysis to a subset of narrow exposure windows 
resulted in underestimation in the median and even more in the 95th percentile. Failing to account for left truncation 
led to an overestimation of multiple days in both the median and the 95th percentile.

Conclusion  We examined two overlooked sources of bias concerning exposure information that the researcher 
engaged in incubation time estimation needs to be aware of.
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Background
Incubation time is the period from infection to symp-
tom onset. Knowing its distribution is relevant to make 
decisions about public health measures as well as to 
parameterize mathematical models for disease spread. 

For the SARS-CoV-2 virus, the right tail of the distribu-
tion played a crucial role in determining the appropri-
ate duration of quarantine. Estimation of the incubation 
time distribution of an infectious disease is hampered by 
incomplete data about infection. While time of symp-
tom onset is usually known, the time origin is not. Typi-
cally, the only information available is a range of potential 
exposure times, yielding data with interval censored time 
origins. Insights into transmission are primarily obtained 
via contact tracing, where individuals with confirmed 
infection are asked about potential sources of transmis-
sion. As such, infectors and infectees can be traced.

While methods to estimate a distribution based 
on interval censored endpoints are well established, 
estimation with interval censored time origins is less 
straightforward. A commonly made assumption in 
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SARS-CoV-2 incubation time estimation is that the 
infection time is uniformly distributed within the 
exposure window  [29]. Then the likelihood with inter-
val censored time origins can be written as the likeli-
hood for interval censored endpoints. In an earlier 
study, we quantified the bias introduced when the 
uniform assumption is violated by means of a simula-
tion study  [1]. We found that the incubation time is 
overestimated if the infection risk increases rather 
than remains constant within an exposure window, as 
happens during the initial outbreak phase of a novel 
pathogen. To limit bias, analysis is often restricted to 
observations with narrow and well-defined exposure 
windows [18]. For instance, from the 255 first PCR con-
firmed cases of mpox in Italy, only 30 observations were 
used to estimate incubation time  [11]. These obser-
vations were chosen because both a narrow period of 
exposure and symptom onset could be identified. This 
would not be a problem, had the observation been a 
random subset of the data. However, this selection of 
observations may introduce another bias, due to the 
presence of differential recall.

In order to inform policy makers with respect to pre-
vention measures at the start of an outbreak, a rapid 
assessment of the incubation time distribution is needed. 
For SARS-CoV-2, these estimates were based on data 
from individuals who became infected in Wuhan, trav-
elled from Wuhan right before the lockdown started, 
and developed symptoms after departure [2]. This means 
that their exposure window ended on the day of travel. 
Such data may be subject to two forms of length biased 
sampling. Right truncation occurs when individuals are 
omitted due to their ongoing incubation at the time of 
data collection, leading to under-representation of longer 
incubation times  [17]. Left truncation occurs because 
data from Wuhan travellers only included individuals 
who developed symptoms after departure, leading to an 
under-representation of shorter incubation times. To the 
best of our knowledge, occurrence of left truncation in 
this context has not been described elsewhere.

This paper explores two biases that have been over-
looked in the estimation of the incubation time for 
SARS-CoV-2: differential recall and left truncation. The 
structure of the paper is as follows. “Likelihood and 
commonly made assumptions”  section introduces the 
likelihood and commonly made assumptions. “Litera-
ture” section discusses the literature on differential recall 
and left truncation in the presence of interval censored 
time origin. “Simulation setup” and “Results”  sections 
present the simulation scenarios and results. The paper 
ends with a discussion where findings and their implica-
tions are presented. Practical recommendations for incu-
bation time estimation are provided.

Likelihood and commonly made assumptions
Denote by E the time of infection. Typically, the knowl-
edge about E is limited to an exposure period within 
which the infection took place, or only the end of the 
exposure period is known. We denote the start and end 
of the exposure window by El (left) and Er (right) respec-
tively, with El possibly missing. The onset of symptoms 
(S) is usually known up to the precise day. We denote 
these events by upper case letters (E and S) and their 
realizations (e and s) by lower case; all given with respect 
to calendar time. An observation of incubation time con-
sists of (eil , eir , si) (see Fig. 1). Let gi(·|eil , eir) represent the 
individual-specific density of the infection time, having 
[eil , eir] as support. Denote by f (·) and F(·) the density 
and the cumulative distribution function of the incuba-
tion time T = S − E , and let h(·, ·) denote the density of 
the observation points that define the start and end of the 
exposure window.

Three assumptions are commonly made: 

a)	 The start and end of the exposure window are inde-
pendent of the incubation time, i.e. (Eil ,Eir) ⊥ Ti.

b)	 The individual’s risk of infection is constant within 
the exposure window, i.e. Ei|(eil , eir) ∼ Unif(eil, eir).

c)	 The distribution of the incubation time follows a par-
ametric distribution, such as gamma, lognormal and 
Weibull.

Under assumption (a), the contribution to the likeli-
hood for individual i is given by:

Note that although Eil , Eir and Si are commonly 
observed up to a specific day, this discretization is not 
accounted for in the likelihood.

It is challenging to verify the validity of assumption (a) 
since the moment of infection, and hence also the incu-
bation time, are typically not precisely observed. We 
therefore rely on reasoning why (a) is valid. Observa-
tions of incubation time are usually collected retrospec-
tively through interviews with diagnosed individuals. 
Suppose that at the beginning of an outbreak, individu-
als who developed symptoms are interviewed on the day 
of symptom onset (S). Then, a person with a long incu-
bation time needs to recall an exposure that occurred 
longer ago compared to a person with a short incubation 
time. Assumption (a) is violated if some individual char-
acteristics that on average increase incubation time and 
decrease recall ability are present. However, if the abil-
ity to recall possible exposure decays over time before 
symptom onset similarly for all individuals, assumption 

(1)

l(eil , eir , si) = h(eil , eir)
eir

eil

gi(u|eil , eir)f (si − u)du.
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(a) still holds. We provide further details in “Differential 
recall” section.

Assumption (b) is convenient because it makes the like-
lihood proportional to a likelihood for interval censored 
end points

Standard estimation approaches and software are avail-
able with such interval censored end points. Assumption 
(b) is violated during the epidemic growth phase, leading 
to moderate bias in the estimates [1]. The amount of bias 
depends on the width of the exposure windows. Wider 
intervals do not necessarily result in greater bias. Specifi-
cally, individuals with very wide exposure windows that 
end at the time of symptom onset, do not provide any 
information. Individuals with a narrow exposure window 
contribute more to the estimate.

Assumption (c) is unrealistic. Historically, a lognormal 
distribution was commonly assumed, but the validity of 
the rationale behind this choice is nowadays considered 
questionable  [21]. Whether this choice is problematic 
depends on the quantity of interest. The mean or median 
value will often be little affected by an incorrect choice 
of the parametric distribution of the incubation time. 
If the focus is on the estimation of a tail percentile, it 
becomes crucial to consider more flexibility in the choice 
of distribution. Coronaviruses are known to have an 

(2)l(eil , eir , si) ∝ F(si − eil)− F(si − eir).

incubation time distribution with a long tail [35]. Hence, 
the gamma, lognormal or Weibull distribution may not 
adequately capture the true shape of the tail  [35]. This 
issue can be partially overcome by using a semiparamet-
ric approach [1].

Literature
Differential recall
When collecting exposure information retrospectively 
through interviews with diagnosed individuals, it is 
important to keep in mind that our memory is not flaw-
less. Recall bias is a term encompassing all sorts of biases 
that arise from differences in recall among participants 
in retrospective studies. A well-known example of recall 
bias is observed in case-control studies and retrospective 
cohort studies when estimating the risk associated with 
an exposure [20]. Cases tend to remember exposure sta-
tus more accurately than controls. This misclassification 
inflates odds ratios and can lead to erroneous associa-
tions  [14, 28]. However, differential recall is not limited 
to case-control studies but may occur in all observational 
data [20].

Several papers on estimating SARS-CoV-2 incubation 
time highlight recall bias as a problem  [3, 36]. A sys-
tematic review and meta-analysis based on 42 studies 
where the aim was to determine the incubation period of 
COVID-19, showed that 78.6% (N = 33) of the estimates 

Fig. 1  Illustration of memory decay. Graphical representation of incubation time and differential recall for two individuals I and II, both infected 
at the same party. During an interview conducted three days after symptom onset, both individuals were asked to recall their risk exposures. 
Individual I had a shorter incubation time (infection to symptom onset S) than individual II and therefore was exposed closer to symptom onset. 
In the simulation setup, decay of memories was mimicked by generating daily monitoring times (vertical tick lines) that may be forgotten 
(crosses) with certain probability as explained in the text. The observed exposure window consists of the last monitoring time before infection ( El ) 
and the first monitoring time after infection ( Er ) that are not forgotten
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were potentially affected by recall bias  [7]. Note that 
recall bias may occur in these studies as these typically 
rely on data obtained by backward tracing of potential 
infectors  [4], e.g. tracing potential infectors. Recall bias 
is less likely to occur in data collected by forward trac-
ing, e.g. tracing contacts that a notified case might have 
infected, but this practice is less common.

Memory of an event is worse if it happened longer ago 
(this phenomenon inspired the game “Match the Mem-
ory”). This has been observed for exposures in cases of 
foodborne Hepatitis A  [25] and prion disease  [31], that 
tend to have a long incubation time.

It may also be, that the timing of the event is remem-
bered without systematic bias, but with less precision 
when it occurred further in the past. In the context of 
estimating the incubation time distribution, individuals 
with confirmed infection are asked by public health offi-
cials to report their potential past exposures at the time 
of the interview. Typically, individuals recall recent expo-
sures more accurately than those that occurred further 
in the past, leading to a broader exposure window being 
reported. We call this differential recall.

The two definitions are provided here:
Recall bias Umbrella term encompassing various biases 

that arise from differences in recall ability among partici-
pants in retrospective studies.

Differential recall The phenomenon that individuals 
exhibit less precise recollection of the timing of an event 
if the event occurred further in the past. In the context of 
incubation time estimation, this event typically refers to 
potential risk exposure.

Differential recall does not necessarily introduce bias. 
It becomes problematic if researchers choose to restrict 
the analysis only to observations with “well-defined” 
exposure  [18], where well-defined means that the expo-
sure is either observed exactly or it falls within a narrow 
exposure window. Reasons for this choice are ample, 
such as: considering these observations to be more relia-
ble; attempting to limit bias if a constant risk of infection 
over time is assumed  [1]; or simplifying the analysis by 
treating exposures as exact rather than interval censored 
observations. When there is differential recall, restricting 
the analysis to observations with well-defined exposure 
may introduce bias, because observations with shorter 
incubation times tend to have shorter exposure windows 
and therefore are more likely to be included.

There is no differential recall if the exposure windows 
are based on test results. One example is estimation of 
the HIV incubation time distribution based on data from 
cohort studies in which individuals are tested for HIV 
infection at each visit [10].

Literature on memory decay and differential recall 
is scarce, and studies typically do not concern the 

infectious disease context. Most studied the strength 
of memory decay. Literature in experimental psychol-
ogy suggests that memory decays exponentially with 
time  [33]. Two studies found that the recall of inju-
ries declined if they happened longer before the inter-
view  [13, 19]. Since these studies did not consider 
respiratory infection and considered recall aggregated 
by month, results cannot necessarily be extrapolated to 
the SARS-CoV-2 setting. In elderly, the recalled fall rate 
showed a decline of 9% in a one-year compared to a 
quarterly survey [37]. Two studies describe differential 
recall of age at menarche [32, 34]. Their data include a 
combination of observations with exact event times and 
current status data, where the age at menarche is left- 
or right-censored. The probability of recall, i.e. exactly 
observing the age at menarche, is assumed to depend 
on the time between menarche and the moment of 
recall, and it is modeled with a piecewise function.

One study focused on the mechanisms of differ-
ential recall, and discusses methods to improve the 
responses  [33]. Note that their conceptualization dif-
fers from differential recall as we stated in our defini-
tion. In the analysis of the impact of memory decay on 
responses in surveys, the authors propose a model for 
the effect of time on memory in survey interviews. This 
model consists of two components: forgetting an expo-
sure entirely or placing it more recently than it actu-
ally occurred, which is known as forward telescoping. 
The latter was observed to occur more frequently than 
misplacing the exposure in the opposite time direction 
(backward telescoping). In survey research, Weber’s 
law  [12] describes the error in time perception due to 
telescoping as a function of the logarithm of the time 
period.

Other directions to mitigate bias due to differential 
recall relate to the interview process  [33]. The following 
techniques may be beneficial for memory responses: 

a)	 Use of records: this involves providing records of 
event details.

b)	 Aided control: by providing specific cues, such as 
using pictures or lists of possible exposure locations 
or using aided recall questions like “Did you visit a 
grocery store, and if so, when?”;

c)	 Bounded recall: conducting a series of interviews 
covering bounded time periods (e.g. biweekly, focus-
ing on the last two weeks).

Additionally, they discussed how interview character-
istics can influence recall bias. These factors include 
whether it is self-administered or face-to-face, the posi-
tioning of questions, and the type of questions (open or 
closed).
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McAloon et  al. warn that the subset of observations 
with well-characterized exposures for SARS-CoV-2 may 
be biased toward more severe cases  [18], thus violat-
ing assumption (a). If severe cases tend to have shorter 
incubation periods  [15], the estimates may be biased 
downward.

Determining the presence of differential recall in the 
data is challenging due to the unknown exact moment 
of infection. Ideally, one would assess the correlation 
between the width of the exposure window and the incu-
bation time to quantify the extent of differential recall. 
As an approximation, the interval between the end of 
exposure and the interview date can be used instead of 
the incubation time. If a strong positive correlation is 
identified between the exposure window width and this 
interval, it serves as an indication of the presence of dif-
ferential recall in the collection of exposure information.

Left truncation
The initial studies using data from Wuhan only included 
individuals who left Wuhan before the lockdown started 
(January 23, 2020) and were free of symptoms until the 
day they left Wuhan. Consequently, individuals with 
shorter incubation times were more likely to be excluded.

Apart from E and S as the calendar time of infection 
and onset of symptoms respectively, we additionally 
denote V as the calendar time of leaving Wuhan. The 
observed data for individual i are (eil , eir , vi, si) where 
individual i is included in the analysis because vi < si . 
For many individuals eir = vi . In the likelihood specifi-
cation, this leads to a denominator term that quantifies 
the probability to be free of symptoms at the time of leav-
ing Wuhan. Let h′(el , er , v) denote the joint density of the 
observation points around the moment of infection and 
the time of leaving Wuhan.

Then the likelihood provided in (1) is replaced by

Currently, there is no suitable R package available for 
this specific type of survival data. Pak et  al. consider a 
similar type of data structure. They postulate a distribu-
tion for the time from infection to enrollment V − E with 
density k [23]. Assuming that V − E and T are independ-
ent, the following likelihood is obtained

They applied the data to a cohort study on HIV infec-
tion, allowing for right censored data with respect to 
symptom onset.

(3)l(eil , eir , vi , si|vi < si) =
h′(eil , eir , vi)

∫ eir
eil

gi(u|eil , eir )f (si − u)du∫ eir
eil

gi(u|eil , eir )[1− F(vi − u)]du
.

l(eil , eir , vi , si|vi < si) =
h(eil , eir )

∫ vi−eil
vi−eir

k(u)f (u+ si − vi)du∫ vi−eil
vi−eir

k(u)[1− F(u)]du
.

Qin et  al. rightly acknowledge that the sampling 
mechanism of traveler data from Wuhan introduces 
length biased sampling [26]. They treated the incubation 
period as a renewal time and the duration from depar-
ture to symptom onset as forward time in a renewal 
process. This approach it is not suitable for our specific 
context [1].

Simulation setup
We performed a simulation study to investigate the 
effects of differential recall and the presence of left trun-
cated data. To examine differential recall, we varied: the 
strength of differential recall; whether the complete data 
or a subset was used in the analysis. To investigate how 
the presence of left truncated data affects the results, the 
following aspects were changed: the width of the expo-
sure window; the distribution of infection risk: constant, 
increasing, or decreasing; whether to account for the 
presence of left truncation.

Data generation
In the following sections, we provide details about how 
the data were generated to study the effect of differ-
ential recall and the presence of left truncated data, on 
the estimate of the incubation time distribution. In each 
scenario, the incubation time (T) was generated from a 
Weibull distribution with parameter values based on esti-
mates for SARS-CoV-2 during the early stages of the pan-
demic (median 5.4 days, 95th percentile 9.8 days)  [16]. 
Since we were not interested in the bias due to an incor-
rect parametric model, a Weibull distribution was 
assumed for estimation as well. One thousand data sets 
were generated in each scenario.

Differential recall
The basic idea of the data generation is sketched in Fig. 1. 
For each individual i, we first generated a sequence of 
daily monitoring times, spanning from 1 to 20 days 
before the onset of symptoms (indicated by vertical tick 
marks). This approach builds upon the work of Dejardin 
and Lessaffre [5]. These monitoring times act as observa-
tion points concerning infection status. They are forgot-
ten with a certain probability (represented by crosses). 
As we remove observation times, we end up with a new, 
wider, exposure window. This means that we cannot 
employ the data generation approach used in our previ-
ous work, where we initially generated infection times 
uniformly within an exposure window and then gener-
ated an incubation time [1]. Instead, we generated times 
from symptom onset backwards to infection time as indi-
cated by the arrow in Fig. 1. This process allowed us to 
directly create interval censored time-to-event data, and 
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we do not need to assume a constant infection risk within 
the exposure window.

Regarding incomplete memory, we assumed that for-
getfulness increases as individuals have to look further 
back in time. The probability of missing a monitoring 
time increases as the exposure time moved further away 
from symptom onset. More specifically, the probability 
varies with the timing of the monitoring moment, but 
remains the same across individuals. Additionally, we 
generated a subset of individuals (10%) with perfect recall 
of the time of infection, to guarantee that the models we 
fit later on are identifiable.

The probability to remember was modeled as e−�d , 
where the parameter � represents the differential recall 
rate and d the number of days that elapsed since the 
monitoring time at the interview day. Different values 
for the strength of � were used. We explored two estima-
tion approaches: one that uses the complete data set (N 
= 500), while the other restricts the analysis to exposure 
windows narrower than 5 days, which we will refer to as 
the “subset” approach.

We describe how we obtained exposure information in 
the simulations using Fig.  1, which illustrates the time-
lines of two individuals. Both individuals are infected 
(indicated by balloon) at the same event but individual 
I develops symptoms (indicated by thermometer) soon 
after infection, while individual II has a much longer 
incubation period. Upon diagnosis, both are asked to 
recall their risk exposure. Individual I was exposed more 
recently at the time of interview (indicated by thinking 
cloud).

We generated daily monitoring times represented by 
vertical tick lines. Memory decay is incorporated by con-
sidering a probability of omission (indicated by crosses) 
that increases as the monitoring times are longer ago. 
The observed exposure window consists of the two mem-
orised monitoring times closest to the moment of infec-
tion ( El and Er ). In the example in Fig.  1, the exposure 
window of individual II is wider than of individual I.

Left truncation
We generated data in a similar way as in our earlier 
paper  [1], but with a different selection of exposure 
windows. Ten per cent had the moment of infection (E) 
observed exactly and they travelled on the day of infec-
tion, while the remaining 90% all had the same width of 
the exposure window (0 to Er where Er represents the 
preset width). This choice was made to guarantee that 
the models we fit later on are identifiable and to mimic 
the realistic scenario that some individuals were exposed 
during their travel day only (interpreted as exact obser-
vations for simplicity)  [6]. We varied the width of the 
exposure window among scenarios. Next, we generated 

the time of infection (E) within the exposure window, 
an incubation time (T) and a time of symptom onset 
( S = E + T  ). This generation process made three dif-
ferent assumptions with respect to the time of infection 
within the exposure window: 

a)	 A constant risk of infection ( g(t) ∼ U(El ,Er));
b)	 Exponential growth with a five-day doubling time of 

the incidence ( g(t) ∝ e0.14t ), which reflects the initial 
phase of the outbreak in Wuhan [8];

c)	 A declining infection risk ( g(t) ∝ p(1− p)t−1 where 
p = 0.2 on the interval [El ,Er] ), which may represent 
household transmission.

We only included individuals who experienced symp-
tom onset after the end of the exposure window, i.c. after 
leaving Wuhan ( S > Er = V  ). This leads to left truncated 
data as illustrated in Fig. 2. In the figure, individual I had 
a shorter incubation time than individual II. Individual I 
developed symptoms (indicated by thermometer) before 
their scheduled departure from Wuhan (indicated by 
train), and remained in Wuhan. In contrast, individual 
II traveled while incubating and developed symptoms 
later. Individuals with T < Er − E were discarded. In this 
example, it means that individual I is excluded from the 
data, while individual II is included, i.e. observed in the 
data.

For each data set, we initially generated 50,000 obser-
vations, and then a random sample of 500 observations 
was selected satisfying the condition S > Er.

Estimation
The method used for data with differential recall yields 
data sets containing exact, interval censored and right 
censored observations. Observations are right censored 
when there is no memorised monitoring before infec-
tion, which may occur because we limited the maximum 
number of monitoring points to 20. The R package sur-
vival was used to fit the appropriate models to these 
data sets, assuming a Weibull distribution.

For the simulations with left truncated data, we use 
the reversed time scale, which assumes a constant risk 
of infection. We also assume that the time of infection 
is known for the truncated part of the likelihood, which 
is not the case in practice. Hence instead of Eq.  (3), we 
maximized the “oracle” likelihood based on

This is somewhat artificial and merely serves to illus-
trate the problem with left truncated data, rather than 
to provide an actual solution. As the survival pack-
age does not incorporate the combination of interval 

(4)l′(eil , eir , si|eir < si) =
F(si − eil)− F(si − eir)

1− F(eir − ei)
.
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censoring and left truncation, the R package Mixtur-
eRegLTIC was used to fit a time-to-event model (accel-
erated failure time model, AFT) to the data. The latter 
uses the extended generalized gamma (EGG) distribu-
tion, which was introduced by Farewell and Prentice [9] 
and includes the Weibull distribution as a special case.

Performance measures
The performance of the model across 1000 estimates of 
the median and 95% percentile of the incubation time 
distribution per scenario is summarized by the bias (i.e. 
the average) and the interquartile range (p25 and p75) of 
the deviations between true and estimated value. Addi-
tionally, for the simulations concerning left truncated 
data, the mean proportion of exact observations in the 
resulting data sets is provided.

While all runs for the data sets with differential recall 
provided a model fit, for the scenarios concerning left 
truncated data, the model did not converge for some 
of the runs. This issue is due to an artifact inherent in 
the simulation setup. Specifically, it may occur that an 
observation has a late entry time that exceeds the lower 
bound of the interval censored incubation time, i.e. 
si − eir < eir − ei in Eq.  (4). The MixtureRegLTIC 
software package was designed for observations with 
exactly observed time origin, interval censored endpoints 
and left truncation with respect to the endpoint. The 
percentage of invalid runs is shown in Supplement 2 and 
indicated by ‘Inv.’.

Software
All analyses were performed in R version 4.1.1  [27] and 
R Studio version 2021.09.20 (“GhostOrchid”)  [30] soft-
ware environment, using the computing resources from 
the Academic Leiden Interdisciplinary Cluster Environ-
ment (ALICE) provided by Leiden University. The analy-
sis code can be accessed via www.​github.​com/​vharn​tzen/​
TwoBi​asesE​xposu​re.

Results
All performance measures can be found in the tables in 
Supplement 1 and 2.

Differential recall
Figure 3a visualizes the bias (y-axis) resulting from mem-
ory decay for different percentiles (upper row: median; 
lower row: 95th percentile) and approaches (columns). 
These approaches include analyzing all observations (left 
panels) and analyzing a selection (right panels).

Estimates of the median and 95th percentile are unbi-
ased, meaning that the average difference between the 
true and estimated number of days is close to zero, when 
all data is analyzed (Fig. 3a, left panel). This holds regard-
less of the rate of memory decay, since the distribution 
of non-omitted observation times is independent of the 
incubation time.

Using only observations with well-defined exposure 
(window width ≤ 5 days, on average 39% of the obser-
vations for a differential recall rate of 0.3, for both sce-
narios) gives a similar downward bias (Fig.  3a, right 

Fig. 2  Illustration of left truncation. Two individuals were infected on the same day during the outbreak in Wuhan. Individual I had a shorter 
incubation time (infection to symptom onset, E to S) than individual II. Individual I and II planned to leave Wuhan at the same calendar date. 
However, individual I developed symptoms before the travel day; individual II developed symptoms after leaving Wuhan. Individual II is included 
in the data concerning travellers from Wuhan, with a left truncation time (interval) from infection (E) to travel day ( Er ). Individual I is excluded 
from the data

http://www.github.com/vharntzen/TwoBiasesExposure
http://www.github.com/vharntzen/TwoBiasesExposure


Page 8 of 12Arntzen et al. BMC Infectious Diseases          (2024) 24:555 

panel). Individuals with longer incubation times tend to 
have wider exposure windows. Therefore, restricting to 
narrow windows selectively includes those with shorter 
incubation times. The magnitude of this bias increases 
with more extreme levels of differential recall.

Left truncation
The bias, i.e. the average difference between true and 
estimated, when we corrected for left truncation in the 
analysis is shown in the left panel of Fig. 4, while the bias 
resulting from leaving truncation uncorrected is shown 
in the right panel. The figure visualises the results for 
different exposure window widths (x-axis), percentiles 
(upper panel: median; lower panel: 95th percentile), and 
true infection risk distributions (line type).

When the risk of infection is constant on the exposure 
window (solid line) and left truncation is accounted for 
in the analysis (left panel), estimates are unbiased regard-
less of the exposure window width (x-axis). However, 
when left truncation is neglected (right panel), estimates 
exhibit an upward bias. This bias initially increases with 
exposure window width, followed by a decline until it 
appears to stabilize.

Under a decreasing risk of infection within the expo-
sure window (represented by the dashed line), the 
bias approaches zero as the exposure window width 
increases. This is because only the non-truncated, exact 

observations remain for the analysis (travel on day of 
infection). The rationale behind this is as follows: infec-
tion is most likely to occur at the beginning of an indi-
vidual’s exposure window. The wider the window, the 
less likely it is for symptoms to develop after the end of 
the exposure window rather than within it. Hence, with 
the left truncation mechanism in place, it is less likely for 
such an observation to be included. Note that the abso-
lute bias in the right panel of Fig. 4 is smaller than in the 
left panel and it operates in the opposite direction. This 
difference is because the two components of bias in the 
right panel partially cancel each other out. There is an 
upward bias when left truncation is not accounted for 
and a downward bias due to the violation of constant 
risk of infection (assumption (b) in “Likelihood and com-
monly made assumptions”  section). In the left panel of 
Fig. 4, only the latter component of bias is present (result-
ing in downward bias).

At the beginning of an outbreak, the cumulative 
infection incidence and, consequently, the risk of infec-
tion grows exponentially. When the risk is increasing, 
an upward bias is observed (as indicated by the dot-
ted line in Fig.  4), regardless of whether we corrected 
for truncation (left panel) or not (right panel). This 
bias increases with window width as the constant risk 
assumption is more strongly violated. In contrast to a 

Fig. 3  Results of simulations concerning differential recall. The bias (y-axis) is presented, based on 1000 generated data sets, for the estimated 
medians (upper panel) and 95th percentiles (lower panel) under different strengths of differential recall (x-axis). Two analysis approaches are 
considered: one using all observations (left panel) and the other using a selection of narrow exposure windows (window width ≤ 5 days, right 
panel). The recall probability per monitoring time, as depicted in Fig. 1, depends on backward time from symptom onset
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decreasing risk (dashed line), both components of the 
bias point in the same upward direction. Without cor-
rection for truncation (right panel), the bias is larger 
than when left truncation is addressed in the analysis 
(left panel). Since infection is most likely to occur right 
before the end of the exposure window, a substantial 
portion of the data is used for analysis even when the 
exposure window width is large, preventing the bias 
from vanishing. Moreover, as exposure windows get 
wide, the bias plateaus rather than vanishes. Note that 
the bias remaining after correction for left truncation 

(left panel) is the same bias as observed in previous 
work [1].

Discussion
Incubation time plays a critical role in informing policy 
makers during the early stages of an outbreak. However, 
accurate estimation is challenging due to limitations 
in the data, which is typically collected retrospectively 
through interviews with infected individuals regarding 
their exposure. In this study, we investigated the impact 
of two phenomena in SARS-CoV-2 contact tracing data 
that have been neglected in estimation: differential recall 

Fig. 4  Simulation results concerning left truncation. a The bias (y-axis) is presented, based on 1000 generated data sets, for the estimated medians 
(upper panel) and 95th percentiles (lower panel) across various exposure window widths (x-axis; not applicable to the initial 10% of observations 
with exactly observed moment of infection). Three different scenarios for the risk of infection within the exposure window are considered: constant 
(solid lines); increasing (dotted line) or decreasing (dashed line). The analysis is performed with truncation incorporated (left panel) or without (right 
panel). b The mean proportion of exact observations (y-axis) in the data set used for analysis, for different exposure window widths (x-axis). The 
infection risk distributions (constant, increasing, decreasing) on the exposure window domain are represented by different line types
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of exposure and left truncation. Our simulations revealed 
that, under the plausible scenario where the start- and 
endpoints of the exposure windows are independent of 
incubation time differential recall does not introduce bias 
in the estimates when analyzing the complete data set. 
However, when the analysis is restricted to individuals 
with well-defined exposure which is often the case when 
observations are considered recall-biased, incubation 
time tends to be underestimated. Neglecting left trunca-
tion in the analysis consistently leads to overestimation.

The value of our study lies in recognizing the sources 
of bias involved in incubation time estimation. The phe-
nomenon of differential recall may also occur in other 
contexts where time-to-event data is observed, such as 
environmental or work-related exposure to toxic agents 
and the subsequent development of health conditions.

Although right truncation has been mentioned in pre-
vious papers on SARS-CoV-2 incubation time estima-
tion  [17], left truncation has mostly been overlooked. 
Qin and Deng did consider left truncation in their anal-
ysis of the Wuhan data  [6, 26]. However, we found that 
the method they proposed was not suitable for this par-
ticular context  [1]. Since the exact moment of infection 
is not observed for most individuals, the same holds for 
the time from infection to entry into the study (i.c. leav-
ing Wuhan). It is possible to adjust the likelihood to 
account for this specific problem by integrating over all 
possible infection moments within the exposure window. 
We explored the method proposed by Pak et al.  [24] and 
the corresponding R software that they provided upon 
request, but did not include it because it assumes a distri-
bution for the time between infection and travel.

The concept of differential recall of time-to-event data 
has received little attention in the literature. Our simu-
lations show that neglecting this phenomenon does not 
introduce any bias when the distribution of observation 
points (i.e., start and end of exposure) is unrelated to the 
time-to-event distribution and we use the full data set. 
While we consider this independence assumption plau-
sible in the context of retrospectively collected contact 
information, verifying it in reality is difficult since the 
moment of infection is interval censored at best. Future 
research is needed to develop an algorithm capable of 
distinguishing whether this holds in real data. Note 
that in fact, window width may depend on the number 
of reported risk contacts as well. For example, while 
increased uncertainty in recall of an exposure leads to a 
wider exposure window, failing to memorize a specific 
contact may yield a narrower window instead. This issue 
about recording a specific contact was beyond the scope 
of our study, however it would be an interesting and use-
ful future research direction. Our simulations revealed 
that restricting the analysis to narrow exposure windows 

introduces bias. It is important to note that the analysis is 
usually restricted to observations with narrow exposure 
windows for a valid reason, specifically to mitigate bias 
resulting from the violation of the constant risk assump-
tion, particularly during the exponential growth phase 
of an outbreak. Apart from preventing bias due to dif-
ferential recall, also including the individuals with wider 
intervals increases the size of the typically small data set, 
thereby increasing statistical power and narrowing the 
width of the confidence intervals.

Verifying the presence of phenomena as differen-
tial recall or an over-representation of long incubation 
times in real-world scenarios can be a challenging task; 
let alone to know the extent to which such factors bias 
the estimates when these are unaddressed in the analy-
sis. Our second simulation study was motivated an over-
looked source of bias in the analyses of the data from 
Wuhan in the beginning of the SARS-CoV-2 pandemic; 
however, the set of relevant phenomena differs per data 
set. A useful next step would be to examine ways to rec-
ognize those in real data. Moreover, different biases may 
cancel each other up to some extent. Further research is 
needed into how the different biases compare in terms of 
direction and size. Depending on the purpose of the esti-
mate, underestimation of incubation time may be more 
harmful than overestimation that provides a conservative 
estimate.

A concern is that individuals with narrow exposure 
windows may not be representative of the entire popula-
tion, but over-represent a group with shared character-
istics such as a certain age, health status or attending a 
certain event with high transmission rates [18, 35]. If the 
incubation time distribution depends on such a charac-
teristic, the resulting estimate is not representative for the 
entire population. An example is age, which was found 
to be related to memory in survey questions  [33]. In 
that scenario, even analyzing all data would yield biased 
estimates as we saw in sensitivity analyses (not shown). 
Software for analyzing data with an interval censored 
time origin rather than endpoint, where a more realis-
tic distribution of the infection risk within the exposure 
window can be used using a population-wide estimate 
of the infection incidence, would circumvent the need to 
assume a constant risk of infection. This would eliminate 
the need to restrict the analysis to a well-defined subset.

Our study offers practical recommendations for 
researchers involved in estimation of incubation time. 
Firstly, caution is warranted when restricting the anal-
ysis to observations with narrow exposure windows. 
While this reduces bias resulting from the potential 
violation of the constant risk assumption, it may lead 
to underestimation of the incubation time distribu-
tion due to differential recall. If there is doubt whether 
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differential recall plays a role, a sensitivity analysis com-
paring results with and without wide exposure windows 
is recommended. Secondly, researchers need to be 
aware that left truncation may be present in the data. 
We gave the specific example of data on SARS-CoV-2 
infection based on individuals that left Wuhan. A sce-
nario other than traveller data in which this may occur, 
is when infected individuals experience a high case 
fatality rate, and are ascertained by screening. Indi-
viduals with a short incubation time may tend to have 
deceased already, such that exposure information can-
not be obtained anymore via retrospective interviews.

In a more general context, obtaining optimal esti-
mates of the incubation time distribution requires com-
prehensive retrieval of exposure information. Typically, 
this information is obtained through retrospective 
interviews with detected cases, and these interviews 
should cover a sufficiently long period to capture all 
potential risk exposures. If the period is too short, the 
true infection may not fall within the given exposure 
window. Additionally, when the case definition assumes 
only a narrow range of potential incubation periods, 
implying a limited exposure period, longer incuba-
tion periods may go unnoticed. To prevent the latter 
problem from occurring, the incubation time could be 
excluded from the case definition, but this increases 
the risk of misdiagnoses. In other words, a less specific 
case definition complicates diagnosis. For example, 
in the case of influenza and corona viruses, for which 
the clinical presentation shows strong similarities, 
including the incubation period in the case definition 
is useful for distinguishing between these respiratory 
infections [22].

Our study discusses two overlooked sources of bias in 
incubation time estimation, acknowledging that resolv-
ing them in practice may not be straightforward. We 
provide practical recommendations for researchers 
engaged in estimating incubation time.
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