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Abstract
Background  Leishmaniasis, an illness caused by protozoa, accounts for a substantial number of human fatalities 
globally, thereby emerging as one of the most fatal parasitic diseases. The conventional methods employed for 
detecting the Leishmania parasite through microscopy are not only time-consuming but also susceptible to errors. 
Therefore, the main objective of this study is to develop a model based on deep learning, a subfield of artificial 
intelligence, that could facilitate automated diagnosis of leishmaniasis.

Methods  In this research, we introduce LeishFuNet, a deep learning framework designed for detecting Leishmania 
parasites in microscopic images. To enhance the performance of our model through same-domain transfer learning, 
we initially train four distinct models: VGG19, ResNet50, MobileNetV2, and DenseNet 169 on a dataset related to 
another infectious disease, COVID-19. These trained models are then utilized as new pre-trained models and fine-
tuned on a set of 292 self-collected high-resolution microscopic images, consisting of 138 positive cases and 154 
negative cases. The final prediction is generated through the fusion of information analyzed by these pre-trained 
models. Grad-CAM, an explainable artificial intelligence technique, is implemented to demonstrate the model’s 
interpretability.

Results  The final results of utilizing our model for detecting amastigotes in microscopic images are as follows: 
accuracy of 98.95 1.4%, specificity of 98 2.67%, sensitivity of 100%, precision of 97.91 2.77%, F1-score of 98.92 1.43%, 
and Area Under Receiver Operating Characteristic Curve of 99 1.33.

Conclusion  The newly devised system is precise, swift, user-friendly, and economical, thus indicating the potential of 
deep learning as a substitute for the prevailing leishmanial diagnostic techniques.
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Background
Neglected tropical diseases (NTDs) that affect about 
1.7  billion people in tropical countries are a group of 
20 diseases, including leishmaniasis [1], which is the 
main focus of this article. It seems that NTDs are largely 
related to socioeconomic conditions and they are more 
prevalent in tropical countries with low income, the 
causes of which can be pointed to the impact of people’s 
poverty in limiting their access to health care, education, 
housing, and proper nutrition, which causes the continu-
ation of this cycle of disease and poverty [2, 3]. Despite 
numerous efforts to eradicate these diseases, according to 
reports, their incidence has increased between 2006 and 
2016 [4]. On the other hand, during the past few decades, 
more than half of the forest areas have been destroyed in 
the direction of the development of the urban industry 
and agricultural pastures [5]. These changes along with 
the recent climate changes lead to the expansion of suit-
able habitats for the vectors and reservoirs of these dis-
eases [6], all of which can create a significant challenge in 
public health shortly.

Leishmaniasis, which is a zoonotic disease, is caused 
by an intracellular single-celled parasite called Leishma-
nia. It has a complex life cycle that alternates between the 
vector and the host. Its vector is the phlebotomus female 
mosquito, which injects flagellated promastigotes (motile 
form) into the host’s body with its bite while feeding on 
their blood, and these promastigotes become amastigotes 
(non-motile form) in the host’s body [7]. Their hosts are 
often vertebrate mammals such as domestic animals, syl-
vatic, and humans [8, 9]. Leishmania parasites include 
about 20 species, which, based on the type of pathogen 
and the host’s immune response, lead to different forms 
of this disease, and finally, in a general classification, they 
are divided into four main categories, including cutane-
ous leishmaniasis (CL), mucocutaneous leishmaniasis 
(MCL), visceral leishmaniasis (VL), and post-kala-azar 
dermal leishmaniasis (PKDL) [10]. The symptoms caused 
by each of these groups can include a range of mild 
symptoms, in the form of destructive skin lesions (in CL) 
that have a psychosocial burden for the patient and affect 
the quality of life, to severe symptoms, including anemia, 
weight loss, hepatosplenomegaly, and bleeding, which 
can lead to death [11, 12].

Despite the introduction of new and advanced meth-
ods for diagnosis in recent years, such as advanced 
molecular techniques, flow cytometry, nanodiagnostics, 
and proteomics, traditional methods (including molecu-
lar, immunological, and parasitological methods) are still 
the gold standard diagnostic method, which is based on 
microscopic observation of stained culture of tissue or 
parasite to look for Leishman-Donovan bodies [13, 14], 
but its specificity and sensitivity are limited because it 
depends on the parasite load and the operator’s skills 

[15]. Currently, the treatment includes antimonials, milt-
efosine, pentamidine, amphotericin B, paromomycin, 
and combined treatment with these medications, and 
the mentioned treatments can lead to problems such as 
serious complications in some patients, drug resistance, 
and toxicity [16]. Because the treatment of these patients 
is somewhat challenging and vital, as well as the undeni-
able role of failure and delay in diagnosis in increasing 
the mortality rate in endemic areas, it is obvious that the 
attention of researchers is directed toward the correct 
and timely diagnosis of the disease. Accurate diagnosis 
of leishmaniasis requires the identification of the parasite 
in tissue samples, which is typically done by microscopic 
examination. However, microscopy can be time-con-
suming and requires specialized expertise and adequate 
facilities. However, these resources are not accessible in 
prospective endemic regions.

Telemedicine, the use of telecommunication and 
information technologies to provide healthcare ser-
vices remotely [17], can have a noteworthy impact on 
managing CL outbreaks. A crucial aspect of intelligent 
telemedicine is the integration of machine learning and 
deep learning techniques, which have seen extensive 
application in medical research in recent years. While 
these techniques have been widely used for diagnos-
ing protozoan parasites like Plasmodium [18–20] and 
Trypanosoma [21, 22], their application in diagnosing 
leishmaniasis has been comparatively limited. Gorriz 
et al. [23] developed U-Net [24] using 45 self-collected 
leishmaniasis microscopic images to segment them and 
classify different segments into various objects like pro-
mastigote and amastigote. Arce-Lopera et al. [25], uti-
lized transfer learning by fine-tuning the VGG19 model 
[26] with a dataset of 2022 images of CL, melanoma, 
and other diseases frequently mistaken for CL. Larios et 
al. [27], employed algorithms such as Principal Compo-
nent Analysis (PCA), K-Nearest Neighbor (KNN), Sup-
port Vector Machine (SVM), and discriminant analysis to 
classify blood samples from 48 dogs, 20 of which tested 
positive for Leishmania. Mainye et al. [28] trained a deep 
model, ResNet18 [29], using 401 microscopic images 
from blood samples of 15 mice to classify images into 
Leishmania, Trypanosoma, and Plasmodium categories. 
Zare et al. [30], presented a Leishmania parasite detec-
tion system based on the analysis of 300 self-collected 
images from 50 slides, 25 of which were positive for 
Leishmania. This system utilized the AdaBoost technique 
for final image classification after extracting crucial fea-
tures from the input data.

In this study, we introduce LeishFuNet, a deep learn-
ing model designed for the detection of Leishmania 
patients from their microscopic images. Leveraging 
transfer learning, specifically employing a feature fusion 
technique known to be beneficial for models trained on 
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small-sized datasets [31–33], our model demonstrates 
promising capabilities in this domain. The key contribu-
tions of our research are as follows:

 	• Development of LeishFuNet: We developed 
LeishFuNet, a deep learning model to detect 
Leishmania in a patient-level analysis (i.e., 
identifying Leishmania -infected patients). To our 
knowledge, this is the first study to undertake such 
research, as previous studies mainly focused on 
slide-level analysis (i.e., detecting Leishmania slides, 
where each patient can contribute multiple slides to 
the dataset).

 	• Introduction of a Novel Public Dataset: We offer 
a novel and publicly accessible dataset comprising 
Leishmania microscopic images. A significant 
challenge in the field of developing deep learning 
techniques for Leishmania -related studies is the 
limited accessibility to public datasets, as most 
previous studies relied on private datasets and did 
not share their data publicly. Our new dataset can 
assist researchers in the field in developing new 
techniques for Leishmania detection.

 	• Implementation of Grad-CAM for Model 
Interpretability: We integrated Grad-CAM, an 
explainable artificial intelligence (XAI) technique, 
to enhance the interpretability and trustworthiness 
of our model. This study stands out as one of the 
pioneering efforts to apply XAI techniques to 
deep learning models developed for Leishmania 
detection. By incorporating Grad-CAM, we ensure 
that our model’s predictions align closely with those 
of clinicians, thereby enhancing its reliability for 
practical use.

In the subsequent sections of this paper, we begin by 
presenting detailed information about the dataset intro-
duced in this study, along with the preprocessing steps 
undertaken, and an overview of the LeishFuNet archi-
tecture in the ‘Materials and Methods’ section. Follow-
ing this, in the ‘Results’ section, we present the outcomes 
obtained by evaluating the proposed model on both our 
dataset and a related dataset. Additionally, we include 
the results of implementing Grad-CAM on the LeishFu-
Net predictions. Moving on to the ‘Discussion’ section, 
we elaborate on and compare our proposed model with 
existing models, assessing its advantages and limitations. 
Finally, in the ‘Conclusion’ section, we summarize the 
study and draw conclusions based on our findings.

Materials and methods
Data acquisition
This study involved the examination of 292 patients sus-
pected of having CL, who referred to the Leishmaniasis 

Regional Diagnostic Laboratory (LRDL), Sari, Mazanda-
ran, northern Iran. Skin scraping samples were obtained 
from the lesions of these patients and were subsequently 
stained with Giemsa for the purpose of enhancing the 
visibility of any Leishmania parasites present. Out of 
the 292 patients, 138 were determined to be positive for 
leishmaniasis based on the identification of Leishmania 
parasites in their samples, while the remaining 154 were 
negative. An image of each of the samples were captured 
using a digital microscope (Olympus-CX23-TR-Japan) at 
a magnification of 100x.

Data preprocessing
To prepare the microscopic images for use in our pro-
posed deep learning model, several preprocessing steps 
were undertaken. Firstly, all images were resized to a 
standard size of 224 × 224 pixels. This standardization 
ensures uniformity in the input data for the model, as 
each image in the raw dataset may initially have had vary-
ing dimensions. Secondly, the pixel values of all images 
were rescaled to fall within the range of 0 to 1. This res-
caling was achieved by dividing each pixel’s original value 
by 255. By doing so, we normalize the pixel intensities, 
facilitating better convergence and training efficiency for 
LeishFuNet.

The data is then split into testing and initial training 
sets at a ratio of 20:80. The testing set consists of 57 ran-
domly chosen samples, comprising 27 Leishmania posi-
tive and 30 Leishmania negative instances. This random 
selection ensures unbiased representation in each subset 
of the data [34]. Meanwhile, the initial training dataset 
contains 239 images, including 138 Leishmania positive 
and 154 Leishmania negative samples. It is crucial to 
emphasize that the ratio of Leishmania positive to neg-
ative samples is balanced in both the testing and initial 
training sets. This approach maintains consistency and 
fairness during model training and evaluation.

To expand the pool of images for training LeishFuNet, 
we augmented the size of the initial training set using 
data augmentation techniques. In this process, all sam-
ples in the initial training set were randomly rotated up 
to 0.4π radians in both clockwise and counterclockwise 
directions, creating a rotated set. Additionally, images in 
the initial training set were zoomed in and out up to 20% 
in both the vertical and horizontal directions to generate 
a zoomed set. By incorporating the rotated and zoomed 
sets into the initial training set, we created an augmented 
training dataset, which was utilized for the final training 
of LeishFuNet. It’s important to note that data augmenta-
tion was exclusively applied to the training samples, and 
the test set remained unaffected by these transforma-
tions. Table 1 illustrates the sample counts in each of the 
aforementioned datasets, while Fig. 1 visually depicts the 
entire preprocessing pipeline.
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Transfer learning
Medical imaging studies often encounter small size data-
sets and a shortage of data availability, which poses sig-
nificant challenges for machine learning algorithms. One 
of the primary reasons for this issue is the strict privacy 
regulations surrounding medical data, which prohibit the 
sharing of data between institutions without proper con-
sent [35]. Additionally, accessing medical imaging data 
can be difficult as it requires secure data systems and 
specialized medical imaging software [36]. Furthermore, 
manual annotation of medical images for segmentation 
and classification can be time-consuming and resource-
intensive, further hindering the availability of large data-
sets [37]. These factors make it difficult for machine 
learning algorithms to be trained and tested on sufficient 

data, making it challenging to achieve high-performance 
results. Therefore, novel techniques such as transfer 
learning play an important role in addressing the lack of 
data availability [38].

Transfer learning is the process of leveraging pre-
trained models and their learned knowledge from large 
datasets to solve new tasks with small data size [38]. This 
is particularly useful in scenarios that gathering large 
amounts of data to train is challenging, time-consuming 
or costly (as in medical imaging). Fine-tuning a pre-
trained model can save a significant amount of training 
time and resources without sacrificing performance. This 
is because the pre-trained models have already learned 
general features from a vast amount of relevant data, 
making them a powerful tool in training new models with 

Table 1  Number of Leishmania samples in testing and training datasets. The ratio of Leishmania positive samples to Leishmania 
negative samples is equal in both the testing set and training set (both initial and augmented)

Raw dataset Testing set Initial training set Zoomed set Rotated set Augmented training set
Leishmania positive 138 27 111 111 111 333
Leishmania negative 154 30 124 124 124 372
Total 292 57 235 235 235 705

Fig. 1  The entire preprocessing pipeline applied to the microscopic images utilized in this study. The initial training set is expanded through random 
zooming and random rotation of the images within it
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less data [38, 39]. Transfer learning has been successfully 
used in various fields, including computer vision [40–42] 
and natural language processing [43, 44], allowing for the 
development of more efficient and accurate models.

In this study, we utilized four different pre-trained 
models: VGG19 [26], ResNet50 [29], MobileNetV2 
[45], and DenseNet 169 [46]. These models were origi-
nally developed to analyze 224 × 224 RGB images from 
the ImageNet dataset [47] and classify them into 1000 
classes. However, studies have shown that employ-
ing pre-trained models trained on same domains can 
improve transfer learning techniques [48, 49]. To lever-
age this fact, we first fine-tuned these models on data-
sets comprising COVID19 negative and positive CT 
images obtained from [50] and [51] respectively. These 
datasets are large enough and contain images relevant to 
COVID19, which shares similarities with leishmaniasis as 
an infectious disease. By training on such medically rele-
vant data, we aimed to create pre-trained models tailored 
for medical image analysis tasks, including the classifica-
tion of Leishmania images.

The training process for the VGG19 [26], ResNet50 
[29], MobileNetV2 [45], and DenseNet 169 [46] on 
COVID19 datasets follows a standardized approach. 
Initially, we substitute the original classification head of 

these models, which is designed for classifying objects 
into 1000 classes, with a new head suitable for binary 
classification (see Fig.  2). All the layers, including con-
volutional and dense layers are set to be trainable. 
Binary cross-entropy serves as the loss function, opti-
mized using the Adam optimizer [52] with a consis-
tent learning rate of 10− 5. The training process spans 10 
epochs. Hereafter, in this paper, we denote these models 
trained on COVID-19 data as medical models (medical-
VGG19, medical-ResNet50, medical-MobileNetV2, and 
medical-DenseNet169).

LeishFuNet
In this section, we present the architecture of LeishFuNet 
and its approach to processing input data for detecting 
Leishmania in microscopic images. Figure 3 depicts the 
general structure of the model, showcasing its utilization 
of information from four distinct medical pre-trained 
models. The final prediction is based on the fusion of 
these analyzed pieces of information. Notably, the head 
of each medical model is removed, leaving only the con-
volutional parts frozen to retain the features extracted by 
each of them.

Let X ∈ R224×224×3  represent the preprocessed input 
data to LeishFuNet. Each medical pre-trained model 
analyzes X  and generates a feature vector. These vectors 
are then concatenated and fed into subsequent layers of 
LeishFuNet for further analysis.

	H1 = G1 (X) , H2 = G2 (X) , H3 = G3 (X) , H4 = G4 (X) , � (1)

	 Hfu = (H1| |H2| |H3| |H4) � (2)

Where G1, G2,G3,G4 denote the functions of the convo-
lutional part of the medical-VGG19, medical-ResNet50, 
medical-MobileNetV2, and medical-DenseNet169 
models, respectively. Correspondingly H1 ∈ R7×7×512

, H2 ∈ R7×7×2048, H3 ∈ R7×7×1280, H4 ∈ R7×7×1664 rep-
resent the output vectors of these models containing 
the extracted features from the input data analysis. The 

Fig. 3  The architecture of LeishFuNet, leveraging the fusion of information extracted by four medical pre-trained models

 

Fig. 2  Integration of a new head across four diverse pretrained models, 
replacing their original heads, for binary classification tasks classifying CT 
scans into COVID-19 and normal classifications
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concatenation operator, || , combines these feature vec-
tors, resulting in Hfu ∈ R7×7×5504  which is a single vector 
composed of the concatenated features extracted from 
the medical pre-trained models.

Upon concatenating the extracted features, Hfu pro-
ceeds through two distinct pathways. In the first path-
way, the ReLU activation function is applied alongside a 
convolutional layer to enhance the model’s non-linearity. 
In contrast, the second pathway employs only a convo-
lutional layer to prevent potential data loss caused by 
the ReLU activation function [53]. This ensures uninter-
rupted flow of data to subsequent layers of LeishFuNet, 
as depicted in Fig. 3.

To address over fitting, we integrated a dropout layer 
with a drop rate of 0.25 into our model. This layer sys-
tematically removes 25% of neurons from its preceding 
layer during each step of the training process (one neu-
ron at a time within LeishFuNet). By introducing ran-
domness, dropout enhances the model’s resilience to 
new, unseen data and reduces the risk of over fitting [54]. 
Importantly, this dropout layer is active solely during the 
training phase; during testing, it does not alter the mod-
el’s architecture. Finally, aided by a single neuron with a 
sigmoid activation function, the model performs the final 
classification, categorizing microscopic images into two 
groups: leishmania-infected and non-infected.

Results
Training process
In this section, the focus will be on providing an expla-
nation of the hyperparameters chosen and optimization 
techniques used during the training process of the model. 
Hyperparameters play an essential role in determin-
ing the accuracy and efficiency of a trained model, and 
selecting the right values for hyperparameters is critical 
[55].

In this study, the selection of the loss function was 
based on the consideration that the objective was binary 
classification, wherein each sample was classified into 
one of two categories. Accordingly, the binary cross 
entropy was determined as loss function. Additionally, 
multiple optimization methods were evaluated, including 
Adam [52], RMSProp [56], and SGD, to determine the 
optimizer that would achieve the best performance. The 
results indicated that the model performed the best while 
utilizing Adam, thus it was selected as the final optimizer 
for the training process. The model was trained over 40 
epochs with a batch size of 32. The entire training process 
was conducted using TensorFlow [57] on a Kaggle kernel 
with a GPU100 accelerator.

The training process follows a 5-fold cross-validation 
methodology, a widely recognized technique in machine 
learning employed to assess both the accuracy and gen-
eralization performance of a model. In this method, the 

original dataset is divided into five equal-sized subsam-
ples, or folds. Four of these folds are used for training the 
model, while the remaining fold is used for testing the 
model. This process is repeated for each of the five folds, 
with each fold being used as the test data once. By uti-
lizing different folds of the data for training and testing, 
the model is exposed to a variety of test datasets and this 
helps to ensure that the model is not over fitting. In addi-
tion, 5-fold cross validation can help in selecting the best 
model from a set of models. By evaluating each model on 
different folds of the data, the performance of each model 
can be easily compared and most optimal model will be 
selected.

The entire training process incorporates a learning rate 
scheduler. Initially, the learning rate is set to 10− 3 and 
gradually decreases as training progresses, culminating in 
a value of 10− 5 for the final epoch of training.

Assessment metrics
A deep learning model’s performance can be evaluated by 
several metrics depending on the objective of the model. 
For image classification tasks, such as our study, some 
commonly used performance evaluation metrics include: 
accuracy, precision, recall or sensitivity, specificity, and 
f1-score. There are 4 terms by using which these metrics 
calculate a model’s performance. These terms are:

 	• True Positive (TP): positive samples classified 
correctly by model.

 	• True Negative (TN): Negative samples classified 
correctly by model.

 	• False Positive (FP): Negative samples classified 
incorrectly as positive by model.

 	• False Negative (FN) Positive samples classified 
incorrectly as negative by model.

With these terms in hand, metrics are described below:

	
Accuracy =

TP + TN

TP + TN + FP + FN
� (3)

	
Precision =

TP

TP + FP
� (4)

	
Recall or Sensitivity =

TP

TP + FN
� (5)

	
Specificity =

TN

TN + FP
� (6)

	
F1− Score =

2× Precision×Recall

Precision+ Recall
� (7)
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Apart from these metrics, Area Under the Curve (AUC) 
is another metric commonly used in machine learn-
ing and binary classification problems to measure how 
well a model can distinguish between positive and neg-
ative classes. It is represented as a value between 0 and 
1, where 0.5 means the model is not effective at distin-
guishing between the positive and negative classes, and 1 
means it is perfect. The higher the AUC value, the better 
the model’s performance.

LeishFuNet performance
We developed LeishFuNet using the augmented train-
ing set generated during the preprocessing steps (see 
Sect. 2.2). Initially, the augmented training set is divided 
into five equal-sized folds in a stratified manner, ensuring 
that the number of positive and negative samples remains 
consistent across all folds. Subsequently, four of these 

folds are used for training the model, while the remaining 
fold serves as the validation set for hyper parameter fine-
tuning. Table 2 provides a breakdown of the Leishmania 
positive and negative samples in each fold.

Five different models are developed training on five dis-
tinct training sets, and Table 3 displays their performance 
on the testing set. Despite being developed on various 
variations of the training data, the mean and standard 
deviation values for these models indicate consistent 
and high performance. Furthermore, Fig. 4 illustrates the 
continuous improvement and convergence to an optimal 
value of both accuracy and loss values during the training 
process.

Grad – CAM on leishfunet
Deep learning models, with their complex architectures, 
often lack transparency in how they arrive at decisions, 
making it difficult for clinicians to trust and under-
stand their outputs. Explainable artificial intelligence 
(XAI) techniques are imperative in this context, offering 
insights into model decisions and enhancing interpret-
ability. XAI methods such as Grad-CAM [58] provide 
clinicians with understandable rationales behind predic-
tions, enabling them to validate model outputs, improve 
trust, and ultimately facilitate the integration of deep 

Table 2  Distribution of Leishmania positive and negative 
samples in each fold

Number of samples
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Leishmania positive 66 66 67 67 67
Leishmania negative 75 75 74 74 74
Total 141 141 141 141 141

Table 3  The performance of different developed LeishFuNet
Accuracy (%) Precision (%) F1 score (%) Specificity (%) Sensitivity (%) AUC (%)

Fold 1 98.25 96.43 98.18 96.67 100 98.33
Fold 2 96.49 93.1 96.43 93.33 100 96.67
Fold 3 100 100 100 100 100 100
Fold 4 100 100 100 100 100 100
Fold 5 100 100 100 100 100 100
Average 98.95 ±  1.4 97.91 ±  2.77 98.92 ±  1.43 98 ±  2.67 100 99 ±  1.33

Fig. 4  Performance of LeishFuNet during training. (a) Shows changes in loss values, while (b) illustrates changes in accuracy values throughout the 
training process
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learning models into clinical practice while ensuring 
patient safety and care quality.

Grad-CAM, short for Gradient-weighted Class Acti-
vation Mapping, is a technique used in deep learning 
for visualizing and understanding which regions of an 
image are important for predicting a particular class. It 
generates heatmap visualizations by examining the gra-
dients of any target class flowing into a convolutional 
layer of a CNN. By highlighting these important regions, 
Grad-CAM provides insights into the decision-making 
process of the model, aiding researchers and practitio-
ners in interpreting and debugging deep learning mod-
els, particularly in tasks like object detection and image 
classification.

In this study, for implementing Grad-CAM on LeishFu-
Net for binary image classification, the first step involved 
computing the gradient of the score produced by the last 
dense layer (before the sigmoid function) with respect 
to the output feature map of the second-to-last convolu-
tional layer within LeishFuNet ( ∂

∼
y

∂Ak
, where ∼y  is the score 

and Ak ∈ R3×3×1024 is the feature map generated by the 
second-to-last convolutional layer (see Fig. 5)). Next, by 
implementing global average pooling, the importance 
weight of each feature map is calculated.

	
αk = GAP

(
∂

∼
y

∂Ak

)

� (8)

αk ∈ R1024 is the importance weight of feature maps and 
GAP  represents the global average pooling operator. 
By multiplying these importance weights with their cor-
responding feature maps, a heat map for each image is 
generated. It is noteworthy that, unlike the original Grad-
CAM approach where ReLU was applied to the weighted 

combination of feature maps to retain only the positive 
values, in our implementation, we omitted the ReLU 
activation to preserve all values contributing to LeishFu-
Net’s performance. This decision was made to maintain 
the integrity of all information that influences the model’s 
performance.

Analysis of the heat maps generated by Grad-CAM on 
test data predicted by LeishFuNet reveals that the model 
processes microscopic images in a manner consistent 
with clinical observation. Specifically, when the model 
searches for Leishmania parasites within medical images 
and detects them in certain sections of the microscopic 
image, it assigns a positive label to the image. Figure 6.a 
illustrates the specific areas within each image ana-
lyzed by LeishFuNet for predicting Leishmania -positive 
images.

When the Leishmania parasite density in a microscopic 
image is high, the model readily detects these parasites, 
often requiring analysis of only a few regions to classify 
the image as Leishmania positive. To evaluate the mod-
el’s robustness in scenarios with low-density Leishma-
nia parasites, we generated heatmaps using Grad-CAM 
for such images. As depicted in Fig. 6.b, compared to the 
high-density Leishmania images shown in Fig.  6.a, the 
model scrutinizes more regions to make predictions. This 
observation underscores the model’s robust performance 
when handling images with low Leishmania parasite 
densities.

Upon examining the heatmaps generated by Leish-
FuNet for Leishmania -negative images, it is evident 
that the model searches for Leishmania parasites across 
almost all regions of the image. If none of the analyzed 
regions indicate the presence of Leishmania parasites, 
the image is classified as negative (see Fig. 6.c).

The findings from implementing Grad-CAM on Leish-
FuNet demonstrate that the proposed model operates 

Fig. 5  Implementing Grad-CAM on LeishFuNet involves calculating gradients of LeishFuNet’s output score with respect to the output of the second-to-
last convolutional layer
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similarly to medical experts when analyzing microscopic 
images to detect Leishmania parasites. This similarity 
underscores the trustworthiness of LeishFuNet and its 
potential utility in practical applications.

LeishFuNet performance on another dataset
To demonstrate that LeishFuNet’s performance on 
our newly introduced dataset was not merely coinci-
dental and that its effectiveness extends beyond this 
specific dataset, we conducted an evaluation using a 
different Leishmania dataset. For this purpose, we uti-
lized the Microscopic Images of Parasites Species [59], 
which includes images of various parasites including 

Leishmania. This dataset was compiled by dividing 
microscopic images for each patient into multiple frag-
ments, with each fragment containing the image of a 
single parasite. Table  4 presents the types of parasites 
included in this dataset along with the corresponding 
quantities of each parasite. To prepare this dataset for 
binary classification, which is appropriate for evaluat-
ing our model, we specifically chose all the Leishmania 
images (2701) and Trypanosome images (2385). Trypano-
some images were selected because they exhibited the 
closest visual similarity to Leishmania images among all 
the available microscopic images of parasites. We applied 
the same preprocessing steps used previously, resizing 

Table 4  Parasite species and corresponding image counts in the microscopic images of parasites species dataset
Babesia Leishmania Leukocyte Plasmodium RBC Toxoplasma Trichomonad Trypanosome

# of images 1173 2701 1376 843 8995 6691 10,134 2385

Fig. 6  a) Analyzed regions of the microscopic images by LeishFuNet, leading the model to classify these images as Leishmania positive. b) Analyzed re-
gions of low-density Leishmania parasite images by LeishFuNet for prediction. c) Analyzed regions of negative Leishmania parasite images by LeishFuNet 
for prediction
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all images to dimensions of 224× 224 and rescaling their 
pixel values to a range between 0 and 1. Subsequently, 
we randomly selected 4000 images (78.65%) for training 
purposes, while 1086 samples (21.35%) were set aside for 
the testing phase. Table 5 provides detailed information 
regarding the number of parasites utilized for developing 
LeishFuNet.

Hyper parameter tuning steps were not implemented, 
and we opted to use the same hyper parameters as those 
employed previously in the development of LeishFu-
Net. The optimizer chosen was Adam, and binary cross-
entropy served as the loss function. Throughout the 
training process, the learning rate gradually adjusted 
from 10− 3 to 10− 5. Training was conducted over 40 
epochs. We did not utilize five-fold cross validation as 
our objective was not to fine-tune the model, but rather 
to evaluate its performance. According to Table 6, which 
presents the performance of LeishFuNet on the micro-
scopic images of parasites species dataset, it is evident 
that our proposed model effectively detects Leishmania 
parasites within this dataset. Additionally, Fig.  7 illus-
trates the fluctuations in accuracy and loss function 

throughout the training process, confirming that the 
model appropriately converges to an optimal value.

Discussion
Deep learning techniques are widely employed in various 
medical studies, including research on parasite detection. 
Access to a suitable dataset is crucial for developing such 
models. However, a major limitation in developing deep 
learning models for Leishmania detection is the lack of 
accessible public data. This study aims to address this 
issue by providing a clean and publicly accessible data-
set containing microscopic images from both Leishma-
nia -infected and non-infected patients. This dataset can 
significantly contribute to the development of advanced 
deep learning models by researchers in this field, facili-
tating easier detection of the disease and helping in its 
prevention and control.

Many studies in this field have developed their models 
using private datasets, making it challenging to evaluate 
LeishFuNet on their datasets and to provide a fair com-
parison of our model’s performance with other deep 
learning models. Consequently, we compared our study 
with existing research using other tangible criteria.

Firstly, LeishFuNet is designed for patient-level detec-
tion, whereas previous studies focused on slide-level 
detection. In slide-level detection, the model categorizes 
slides into positive and negative samples. In such stud-
ies, each patient may contribute multiple slides to the 
training data, potentially biasing the model towards cer-
tain hidden features specific to particular patients rather 

Table 5  Detailed information on the number of parasites 
utilized for developing LeishFuNet.

Number of images
Train Test

Leishmania 2117 584
Trypanosome 1883 502
Total 4000 1086

Table 6  Performance of LeishFuNet in detecting Leishmania parasites in the microscopic images of parasites species dataset
Accuracy Precision F1 score Specificity Sensitivity AUC

LeishFuNet performance 99.91% 100% 99.91% 100% 99.83% 99.91%

Fig. 7  Changes in a) loss values and b) accuracy during the training of LeishFuNet on the microscopic images of parasites species dataset
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than features from the microscopic images themselves. 
Moreover, it’s possible that slides from the same patient 
are present in both the training and testing sets, which 
can undermine the generalizability and reliability of the 
model’s performance. In contrast, LeishFuNet is trained 
using microscopic images, each derived from a separate 
patient. Therefore, it does not encounter these issues, and 
its reported performance is deemed reliable.

Secondly, LeishFuNet stands out as an end-to-end 
model, unlike several previous studies in the field of 
Leishmania detection. Many of these studies utilized 
machine learning techniques that require specialists for 
feature extraction during both the training and testing 
phases. This issue is circumvented in end-to-end models 
like LeishFuNet.

Another notable improvement over previous studies 
in our research is the utilization of XAI techniques. In 
healthcare-related studies where decision-making is criti-
cal, deploying deep learning models in practical applica-
tions necessitates demonstrating their trustworthiness 
[60]. While previous studies demonstrated high perfor-
mance in detecting Leishmania, they did not incorporate 
XAI techniques to validate the trustworthiness of their 
models for practical use. In contrast, LeishFuNet, with 
the assistance of Grad-CAM, demonstrated that it clas-
sified microscopic images in a manner similar to clini-
cians. The implementation of Grad-CAM on LeishFuNet 
revealed that the model searches for Leishmania parasites 
within each input image and if it detects a few parasites, 
the image is classified as Leishmania positive. It has been 
observed that in densely infected images, the model clas-
sifies the image by focusing on limited regions, whereas 
in less densely infected images, it investigates a wider 
region. For Leishmania negative samples, the model only 
classifies them as non-infected if it thoroughly exam-
ines all regions of the image and finds no evidence of the 
parasite’s existence. This process mirrors the approach 
taken by clinicians in identifying Leishmania -infected 
patients from their microscopic images. This underscores 
that LeishFuNet not only achieves high performance but 
also does so with a systematic approach, demonstrating 
its trustworthiness for practical applications. Moreover, 
alongside Grad-CAM, other XAI techniques like LIME 
[61], SHAP [62], and RISE [63] can be leveraged in future 
studies to analyze the model’s prediction process and fur-
ther enhance its trustworthiness.

To quantitatively compare our proposed model with 
state-of-the-art deep learning models, we evaluated 

MobileViT [64], an advanced model that combines con-
volutional neural networks and visual transformers, on 
our introduced dataset. We then compared its perfor-
mance with LeishFuNet. The results, summarized in 
Table  7, indicate that LeishFuNet outperformed Mobi-
leViT in most metrics. This suggests that LeishFuNet is 
more suitable for detecting Leishmania compared to 
powerful deep learning models like MobileViT.

Despite the mentioned advantages of LeishFuNet out-
lined above, this study also has several limitations:

 	• Small Dataset Size: The dataset used to develop 
LeishFuNet is relatively small. While we addressed 
this issue by employing transfer learning techniques, 
developing future deep learning models using larger 
datasets of Leishmania microscopic images could 
yield improved results.

 	• Limited to a Single Microscope Type: LeishFuNet 
is trained exclusively on a single type of microscopic 
images captured using the Olympus-CX23-TR-Japan 
microscope. Expanding the scope of future deep 
learning models to include images from various types 
of microscopes can mitigate potential biases in the 
results and enhance the reliability of the model.

Conclusion
In this research, we introduced LeishFuNet, an end-to-
end model designed to detect Leishmania at the patient 
level in microscopic images. This model eliminates the 
need for expert analysis of such images, thereby reducing 
the additional costs associated with CL diagnosis. Lever-
aging feature fusion and transfer learning techniques, 
LeishFuNet has demonstrated superior performance 
compared to state-of-the-art deep learning models in 
detecting Leishmania. Additionally, it has exhibited high 
performance on a separate public dataset, showcasing 
its generalizability and ability to accurately process new, 
unseen samples. Through the utilization of Grad-CAM, 
we illustrate that LeishFuNet’s decision-making process 
closely resembles that of human clinicians, enhancing its 
reliability and applicability in real-world scenarios. Our 
solution offers an economical alternative for the exami-
nation of CL. Also, we introduce a publicly available 
dataset of leishmaniasis microscopic images comprising 
both positive and negative samples in a roughly equal 
proportion. This dataset is valuable for further research 

Table 7  Performance of MobileViT and LeishFuNet on the introduced Leishmania dataset. These results demonstrate that LeishFuNet 
surpasses powerful and state-of-the-art deep learning models in detecting Leishmania in microscopic images

Accuracy (%) Precision (%) F1 score (%) Specificity (%) Sensitivity (%) AUC (%)
MobileViT 96.49 100 96.15 100 92.59 0.963
LeishFuNet 98.95 97.91 98.92 98 100 99
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using deep learning and machine learning techniques in 
the field of leishmaniasis.
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