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Abstract 

Background There are abundant studies on COVID-19 but few on its impact on hepatitis E. We aimed to assess 
the effect of the COVID-19 countermeasures on the pattern of hepatitis E incidence and explore the application 
of time series models in analyzing this pattern.

Methods Our pivotal idea was to fit a pre-COVID-19 model with data from before the COVID-19 outbreak and use 
the deviation between forecast values and actual values to reflect the effect of COVID-19 countermeasures. We 
analyzed the pattern of hepatitis E incidence in China from 2013 to 2018. We evaluated the fitting and forecasting 
capability of 3 methods before the COVID-19 outbreak. Furthermore, we employed these methods to construct pre-
COVID-19 incidence models and compare post-COVID-19 forecasts with reality.

Results Before the COVID-19 outbreak, the Chinese hepatitis E incidence pattern was overall stationary and seasonal, 
with a peak in March, a trough in October, and higher levels in winter and spring than in summer and autumn, annu-
ally. Nevertheless, post-COVID-19 forecasts from pre-COVID-19 models were extremely different from reality in sec-
tional periods but congruous in others.

Conclusions Since the COVID-19 pandemic, the Chinese hepatitis E incidence pattern has altered substantially, 
and the incidence has greatly decreased. The effect of the COVID-19 countermeasures on the pattern of hepatitis E 
incidence was temporary. The incidence of hepatitis E was anticipated to gradually revert to its pre-COVID-19 pattern.
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Background
Hepatitis E is a major public health problem and one of 
the most frequent causes of acute hepatitis worldwide. 
The global burden of hepatitis E is high; every year, 
there are approximately 20 million hepatitis E virus 
(HEV) infections, leading to approximately 3.3 million 
symptomatic cases of hepatitis E and an estimated 70 
000 deaths [1, 2]. HEV is primarily transmitted through 
the fecal–oral route, and can also be spread through 
blood and vertical transmission. Although the infection 
is usually self-limiting, it may cause chronic hepatitis 
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and rapidly progress to cirrhosis in patients with immu-
nodeficiency [3]. In pregnancy, HEV infection can pro-
gress into fulminant hepatitis (acute liver failure), which 
carries a high risk of death; the threat to maternal health 
and subsequently the fetus surpasses that of hepatitis B, 
with a mortality rate as high as 25% for third-trimester 
HEV-infected pregnant women [4, 5]. Accordingly, it is 
crucial to monitor and analyze the incidence pattern of 
hepatitis E.

Since the COVID-19 pandemic, there has been a series 
of non-pharmaceutical interventions, including social 
distance control, limiting personal movement restric-
tion, enhancing personal protection. These measures not 
only prevent the spread of COVID but also guard against 
other infectious diseases. Several studies indicated that 
COVID-19 prevention measures can partially reduce 
tuberculosis, scarlet fever, rubella, diphtheria, pertussis, 
etc. [6–9]. Therefore, it is necessary to study the impact of 
the COVID-19 countermeasures on hepatitis E to guide 
prevention and control strategies for these diseases.

In this context, we analyzed the incidence of hepatitis 
E in China to determine the differences in the pattern of 
hepatitis E before and after the COVID-19 outbreak and 
accessed the application of time series models in analyz-
ing the pattern of hepatitis E incidence. Here, we sought 
to reveal the effect of the COVID-19 pandemic on the 
pattern of hepatitis E incidence.

Materials and Methods
Data Source
Information on the incidence of hepatitis E in China 
(Table S1) was obtained from the Overview of the 
National Legal Infectious Disease Epidemic Situation 
published by the National Bureau of Disease Control 
and Prevention (China, http:// www. nhc. gov. cn/) online 
and collected every month from January 2013 to Febru-
ary 2023. According to Chinese laws, all medical institu-
tions are required to promptly report statutory infectious 
diseases including hepatitis E through the online report-
ing system. If the conditions for online reporting are 
not available, they should report to the relevant local 
government authorities. The reported data is subject to 
legal review and quality control by relevant government 
departments in China, supported by a comprehensive 
system of supervision and error correction. The data 
source is authoritative, and the contents are reliable.

Methods
Our pivotal idea was that a pre-COVID-19 incidence 
model (fitted with monthly incidence data from 2013 
to 2019) and its forecast values should be in accord-
ance with the incidence pattern before the COVID-19 

outbreak. Since the COVID-19 outbreak was the only 
new variable introduced, the deviation between forecast 
values and actual values should theoretically reflect the 
effect of COVID-19 countermeasures. We chose 2 mod-
els that have been widely applied in incidence forecast-
ing over the years, namely the seasonal autoregressive 
integrated moving average (SARIMA) model and the 
Holt-Winters model. Additionally, we have embraced the 
emerging technology in the fields of mathematics and 
computer science, the artificial neural network modeling.

The raw data were organized through Excel, while 
the data processing, model fitting and forecasting, and 
statistical analysis in this study were performed with 
R 4.2.2 (RRID:SCR_001905) with the forecast, tseries, 
and openxlsx packages. The main functions we used are 
shown in Table S2. The root mean square error (RMSE) 
and mean absolute percentage error (MAPE) were 
adopted to evaluate the errors in model fitting and fore-
casting. The confidence level in this study was set to 95%.

SARIMA model
The seasonal autoregressive integrated moving average 
(SARIMA) model is a variant of the ARIMA model that 
introduces seasonal parameters, thus leading to the supe-
rior capability to fit time series for diseases with strong 
seasonality, such as influenza [10]. The model is denoted 
byARIMA(p, d, q)(P,D,Q)m . In addition to the param-
eters in the ARIMA model, P denotes the order of the 
seasonal autoregressive part, D denotes the degree of 
seasonal first differencing involved, Q denotes the order 
of the seasonal moving average part, and m denotes the 
seasonal period (e.g., number of observations per year) 
[11]. In R, we used the auto.arima() function with sea-
sonal parameter set to TRUE to fit the model with the 
exact maximum likelihood estimation and AIC used to 
select the optimal model [12] and the forecast() function 
for forecasting.

Holt‑Winters model
The Holt-Winters exponential smoothing method, pro-
posed by Charles C. Holt & Peter R. Winters in 1960 [13, 
14], is a special and modified type of exponential smooth-
ing method that comprehensively measures the smooth-
ness, trend, and seasonality of time series. The elemental 
thought of the Holt-Winters model is to introduce a sea-
sonal parameter to the quadratic exponential smoothing 
method, which permits us to decompose time series by 
the dimension of seasonality. Therefore, to fit the time 
series, which consists of random variations, linear trends, 
and seasonality, we could employ the Holt-Winters 
model. The model is classified into additive seasonal and 
multiplicative seasonal types as follows.

http://www.nhc.gov.cn/
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The time series is decomposed into three compo-
nents: at , the level statistic,bt , the trend statistic, andst , 
the seasonal statistic; st  is added to the trend and level 
components in the additive model and multiplied by the 
trend and level components in the multiplicative model. 
p denotes the seasonal period.α,β , and γ are the level 
smoothing factor, trend smoothing factor, and seasonal 
smoothing factor, which balance the weights of current 
values and preceding values in the level, trend, and sea-
sonal parts, respectively. When the smoothing factor 
approaches 0, the weights of the current values shrink, 
the time series becomes more stationary, and the effec-
tive forecast period becomes longer in sync. In R, we 
used the HoltWinters() function to fit the model, selected 
optimal parameters by minimizing the squared error 
[11], and used the forecast() function for forecasting.

NNAR model
Artificial neural networks are hierarchical network struc-
tures designed by mimicking the simple mathematical 
structure of the brain, consisting of the input layer (bot-
tom layer), the output layer (top layer), and the hidden 
layer (middle layer). The network can establish com-
plex nonlinear relationships between independent and 
dependent variables. For time series, the lagged values 
can be used as the inputs of the neural network, which 
is called neural network autoregression (NNAR). The 
model is denoted byNNAR(p,P, k)m , where p denotes 
the optimal lag order of the linear AR process, P denotes 
the optimal lag order of the seasonal AR process, and k 
denotes the number of nodes in the hidden layer. In R, 
we used the nnetar() function to fit the model. For sea-
sonal time series, the default values are P = 1, and p is 
chosen from the optimal linear model fitted to the sea-
sonally adjusted data. If k is not specified, it is set to 
k = (p+ P + 1)/2 (rounded to the nearest integer) [11]. 
We used the forecast() function for forecasting.

Results
Analysis of the pattern of hepatitis E incidence 
before the COVID‑19 outbreak
Typically, the monthly incidence of hepatitis E in China 
from 2013 to 2018 was assumed to be trend station-
ary and nonrandom (Fig.  1), which was verified by the 

Additive seasonal model : Yt+h = at + hbt + st−p+1+(h−1) mod p; at = α(Yt − st−p)+ (1− α)(at−1 + bt−1);

bt = β(at − at−1)+ (1− β)bt−1; st = γ (Yt − at)+ (1− γ )st−p.

Multiplicative seasonal model : Ŷt+h = (at + hbt) st−p+1+(h−1) mod p; at = α(Yt/st−p)+ (1− α)(at−1 + bt−1);

bt = β(at − at−1)+ (1− β)bt−1; st = γ (Yt/at)+ (1− γ )st−p.

Box-Ljung test (χ2 = 252.73, df = 24, p < 0.001) and the 
augmented Dickey-Fuller test (Dickey-Fuller = -5.9816, 
lag order = 4, p < 0.01). The difference analysis of the 
original series showed that ndiff = 0; hence, there was 
no demand for differencing before modeling. In the 
estimate of the autocorrelation function (ACF) and par-
tial autocorrelation function (PACF) with the original 
series (Fig.  2), the autocorrelation and partial autocor-
relation function reached their maximum values (which 
exceeded the boundary) when lag = 12. Moreover, the 
ACF exhibited the classic pattern of the sinusoid (with 
a period of approximately 12) gradually converging on 
0, indicating that the series had strong seasonality with 
a period of 12 (months), which was consistent with our 
visual observation. To further confirm our observa-
tions, we decomposed the incidence series into seasonal, 
trend, and irregular components using LOESS smooth-
ing (Fig.  1). The results showed significant seasonal-
ity and the absence of a trend. Furthermore, the month 
plot (for each month, a subseries was plotted) and sea-
son plot (data were plotted against the months in sepa-
rate years) are shown in Fig. 1. The results illustrated that 
there was no noteworthy trend among every Jan. Feb. … 
Dec., but there was convincing seasonality with a peak 
in March and a trough in October annually. Analysis of 
the seasonal components by LOESS smoothing showed 
the same conclusion (highest value 1008.19 in March; 
lowest value -499.01 in October), and there were higher 
levels from January to May (seasonal components > 0) 
than from June to December (seasonal components < 0). 
Since the pattern was steadily repetitive each year, we 
suggested that there was a specific and constant pattern 
of hepatitis E incidence in China before the COVID-19 
outbreak.

In summary, before the COVID-19 outbreak, the pat-
tern of hepatitis E incidence in China was overall sta-
tionary and seasonal, with a peak in March, a trough in 
October, and higher levels in winter and spring than in 
summer and autumn, annually.

Model assessment
To assess those previously selected mathematical meth-
ods’ ability to describe the pattern of hepatitis E inci-
dence before the COVID-19 outbreak, we fitted and 



Page 4 of 12Qin et al. BMC Infectious Diseases          (2024) 24:355 

modeled the monthly incidence from 2013 to 2018 in 
China with these methods. As a result, we obtained 3 
models: SARIMA(0, 0, 0)(0, 1, 0)12 ; additive seasonal 
Holt-Winters model with trend; and NNAR(1, 1, 2)12 . We 
subsequently forecasted the monthly incidence in 2019. 
Determined by the accuracy of forecasting, the NNAR 
model outperformed the other models. The detailed pro-
cess is as follows.

Model fitting and effect analysis
We calculated the fitting RMSEs and the fitting MAPEs 
of the 3 models (Table  1). The SARIMA, Holt-Winters 
and NNAR models had RMSEs of approximately 180–
210 and MAPEs of approximately 6%-7%, which indicates 
a high degree of accuracy, according to the standards set 
by Lewis C.D.’s previous research [15]. We conducted 
the Box-Ljung test and augmented the Dickey-Fuller test 
for each model’s fitting series (Table 2), and all obtained 
p < 0.05, indicating that the models’ fitting series were 
nonrandom and stationary. In addition, we conducted 
the Box-Ljung test for each model’s fitting residuals 
(Table 2). All models obtained p > 0.05, indicating that the 
residuals were independent and the fitting was accurate.

We also estimated the ACF and PACF with the fitting 
residuals (Fig. S1, Fig. S2). In all 3 models, the ACF/PACF 
exceeded the boundary at a few lags. Subsequently, we 
plotted the fitting residuals, their histograms (Figure S2), 
and their normal quantile‒quantile plots (Q-Q plots, Fig-
ure S1). The residuals approximately fit the 0-mean nor-
mal distribution, but there were several deviating values. 
Accordingly, we further conducted the exact one-sample 
Kolmogorov‒Smirnov test for those residuals (Table  2) 
and obtained p > 0.05 for every model, indicating that 
those residuals could still fit the 0-mean normal distribu-
tion and that the deviations were random.

In summary, we concluded that the SARIMA, Holt-
Winters, and NNAR methods performed smoothly in fit-
ting the hepatitis E incidence series from 2013 to 2018.

Model forecasting and effect analysis
To cross-check, we employed the established models 
to forecast the incidence in 2019 and contrast this with 
actual values. To evaluate errors in forecasting, we cal-
culated their RMSEs and MAPEs (Table  1). The NNAR 
model acquired the forecasting MAPE of 5.32%, which 
was significantly lower than those acquired by the other 

Fig. 1 The monthly incidence of hepatitis E in China from January 2013 to December 2018 A raw data; B original series, seasonal components, 
trend components, and irregular components; C month plot; D season plot
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models. The forecast values of those 3 models from Janu-
ary to November 2019 were all within the 95% confidence 
interval (CI) of the models. However, the forecast in 
December was noticeably worse than those of the pre-
vious 11 months, exceeding the 95% CI in all 3 models. 
The exceedances were -0.18%, -0.0039%, and -5.5% of 
the forecast values (Fig. 3). Therefore, we calculated the 
RMSEs and MAPEs of those 3 models from January to 
November 2019 (Table 1). The RMSEs and MAPEs of all 
3 models decreased to 120 and 3%, indicating the fore-
cast deviation in December 2019, possibly attributed to 
the inchoate influence of COVID-19 on the pattern of 
hepatitis E incidence. Meanwhile, the forecasting MAPE 
of the NNAR model was still the lowest.

After comprehensive consideration, the SARIMA, 
Holt-Winters, and NNAR methods were optimal for 
describing the pattern of hepatitis E incidence before the 
COVID-19 outbreak. Among them, the NNAR method 
exhibited the best performance.

Analysis of the incidence pattern of hepatitis E 
after the COVID‑19 outbreak
We exploited the SARIMA, Holt-Winters, and NNAR 
methods to fit and model the monthly incidence of 
hepatitis E in China from 2013 to 2019 and obtained 
the following models: SARIMA(0, 0, 0)(0, 1, 0)12 , addi-
tive seasonal Holt-Winters model with the trend, and 
NNAR(1, 1, 2)12 (same type as in 3.2).

We calculated the fitting RMSEs and fitting MAPEs of 
the SARIMA model, Holt-Winters model, and NNAR 
model. The RMSEs were 201.36, 194.01, and 184.46, 
while the MAPEs were 5.94%, 6.38%, and 6.05%, respec-
tively, indicating the smooth performance of fitting. We 
analyzed the fitting effect by the same process as in 3.2.1 
and received the appropriate results as follows.

We conducted the Box-Ljung test for each model’s 
fitting series, and all obtained p < 0.05, indicating that 
the models’ fitting series were nonrandom. (SARIMA: 
χ2 = 348.92, df = 24, p < 0.001; Holt-Winters: χ2 = 334.32, 
df = 24, p < 0.001; NNAR: χ2 = 297.97, df = 24, p < 0.001).

Fig. 2 The autocorrelation plot and partial autocorrelation plot with original incidence series from 2013 to 2018 (A) autocorrelation; (B) partial 
autocorrelation
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We conducted the augmented Dickey-Fuller test for 
each model’s fitting series, and all obtained p < 0.05, 
indicating that the models’ fitting series were stationary. 
(SARIMA: Dickey-Fuller = -6.3587, lag order = 4, p < 0.01; 
Holt-Winters: Dickey-Fuller = -6.0352, lag order = 4, 
p < 0.01; NNAR: Dickey-Fuller = -5.7641, lag order = 4, 
p < 0.01).

We conducted the Box-Ljung test for each model’s fit-
ting residuals, and all obtained p > 0.05, indicating that 
the residuals were independent and the fitting was accu-
rate. (SARIMA: χ2 = 32.778, df = 24, p = 0.1089; Holt-Win-
ters: χ2 = 29.361, df = 24, p = 0.2068; NNAR: χ2 = 27.452, 
df = 24, p = 0.2838).

We estimated the ACF and PACF with the fitting resid-
uals (Fig. S3, Fig. 4). In all 3 models, the ACF and PACF 
exceeded the boundary at a few lags.

We plotted the fitting residuals, their histograms 
(Fig.  4), and their normal quantile‒quantile plots (Q-Q 
plots, Fig. S3). The residuals approximately fit the 0-mean 
normal distribution, but there were several deviating 
values.

We further conducted the exact one-sample Kol-
mogorov‒Smirnov test for those residuals and obtained 
p > 0.05 for all 3 models, indicating that those residuals 
could still fit the 0-mean normal distribution and that 
the deviations were random. (SARIMA: D = 0.13065, 

p = 0.1136; Holt-Winters: D = 0.062714, p = 0.9226; 
NNAR: D = 0.053952, p = 0.9775).

To cross-check, we employed the established models 
to forecast the incidence from January 2020 to Febru-
ary 2023 (Fig. 5). A mass of forecast values outdistanced 
the 95% CI of the models. There were enormous devia-
tions between the incidence pattern before and after the 
COVID-19 outbreak, which concretely manifested as a 
far diminished incidence.

To further investigate the deviation of the incidence 
pattern before and after the COVID-19 outbreak and 
explore the possible causes, we calculated the monthly 
relative error of the forecast (Fig.  5). There were pro-
nounced error peaks in February 2020 and January 2023. 
Based on the level of relative error, we divided the time 
series into 5 stages: January 2020 to May 2020, June 
2020 to February 2021, March 2021 to November 2022, 
December 2022 to January 2023, and February 2023. We 
calculated the RMSE and MAPE for each stage (Table 3). 
Notably, the forecast errors reached extremely large 
values in the first stage, gradually decreased in the sec-
ond and third stages, reached a maximum in the fourth 
stage and were finally reduced to quite small values in 
the last stage. Moreover, the forecast values in the third 
and fifth stages were all within the 95% CI of the mod-
els, while the forecast errors approached the level before 

Table 1 The fitting RMSEs, the fitting MAPEs, the forecast RMSEs, and the forecast MAPEs from models (with raw data from 2013 to 
2018)

MAPE mean absolute percentage error, RMSE root mean square error

Model SARIMA Holt‑Winters NNAR

Fitting with raw data from 2013 to 2018 RMSE 206.23 198.63 189.58

MAPE 6.03% 6.62% 6.26%

Forecasts from Jan. to Dec. 2019 RMSE 169.24 165.99 172.36

MAPE 5.46% 5.44% 5.32%

Forecasts from Jan. to Nov. 2019 RMSE 114.37 115.59 123.28

MAPE 3.80% 3.87% 3.71%

Table 2 Results of the Box-Ljung test for fitting series, the augmented Dickey-Fuller test for fitting series, the Box-Ljung test for fitting 
residuals, and the Kolmogorov–Smirnov test for fitting residuals (with raw data from 2013 to 2018)

χ2, D-F and D: the test statistic; p p-value

SARIMA Holt‑Winters NNAR

Fitting series Box-Ljung test
(df = 24)

χ2 309.47 278.12 243.01

p  < 0.001  < 0.001  < 0.001

augmented Dickey–Fuller test (lag 
order = 4)

D-F -5.78 -4.92 -5.17

p  < 0.01  < 0.01  < 0.01

Fitting residuals Box-Ljung test
(df = 24)

χ2 34.05 30.57 23.54

p 0.0838 0.1665 0.488

Kolmogorov–Smirnov test D 0.1352 0.0942 0.0676

p 0.1437 0.6269 0.9296
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Fig. 3 The forecasts (in 2019) from models (with raw data from 2013 to 2018) A SARIMA; B Holt-Winters; C NNAR. The black lines refer to input 
to the model. The red lines refer to the actual values which were not used for model fitting
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Fig. 4 The fitting residuals (with raw data from 2013 to 2019), their autocorrelation plots, and their histograms A SARIMA; B Holt-Winters; C NNAR
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the COVID-19 outbreak (as in 3.2.1), indicating effective 
forecasting. In summary, after the COVID-19 pandemic, 
the pattern of hepatitis E incidence in China changed 
from January 2020 to May 2020 and from December 
2022 to January 2023, while in other periods, the inci-
dence pattern was in accordance with the pre-COVID-19 
pattern, which meant that the effect of COVID-19 on the 
incidence pattern might be temporary.

Discussion
Constructing time series models to analyze data and fore-
cast is currently widely performed in various fields, such 
as economics, energy science, social issues, industrial 
quality control, geophysics, environmental science, and 
aeronautics [16–23]. In the field of public health, time 
series forecast methods are mainly applied to forecast 

Fig. 5 The forecasts (in from January 2020 to February 2023) and relative errors A SARIMA; B Holt-Winters; C NNAR. The black lines refer to input 
to the model. The red lines refer to the actual values which were not used for model fitting
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disease burden, disease incidence, population level, age 
structure, etc. [24–26].

Among the existing methods for time series analysis 
and forecasting, the ARIMA/SARIMA models are the 
most widely used and are mainly used for analyzing sta-
tionary series with a linear trend. Before modeling, we 
can convert an explosive series into a stationary series 
by differencing. The ARIMA/SARIMA model relies on 
a large scale of uninterrupted data; therefore, the model 
accuracy may not be ideal in the case of a few deficien-
cies or outliers [27]. With the seasonal parameter intro-
duced, the Holt-Winters exponential smoothing method 
would be able to describe the seasonality of time series. 
When fitting seasonal series with a linear trend, the Holt-
Winters model is preferred. The NNAR model possesses 
hierarchical network structures, constructing complex 
nonlinear relationships between a response variable and 
its predictors. One of its superiorities is to fit nonlinear 
and explosive series. The artificial neural network is an 
inexplicable black box at this stage, as is the human brain. 
From another perspective, it could describe not only sea-
sonality, trend, periodism, the holiday effect, etc., but also 
other ambiguous effects. Therefore, the NNAR model 
usually outperforms others in forecasting [28].

In previously published studies, some scholars have 
fitted and forecasted time series by different mathemati-
cal methods, whereas most of them only focused on fit-
ting, forecasting, and performance evaluation. In this 
context, we innovatively applied the forecast model to 
the analysis of incidence pattern transformation. Our 
basic thought was to exploit a pre-COVID-19 inci-
dence model to forecast incidence (representing the 
pre-COVID-19 incidence pattern) and compare it with 
the actual incidence after the COVID-19 outbreak (rep-
resenting the post-COVID-19 incidence pattern). Since 
the COVID-19 outbreak was the only new variable intro-
duced, the deviation between forecast values and actual 

values should theoretically reflect the effect of COVID-
19 countermeasures.

Initially, we analyzed the hepatitis E incidence series 
before the COVID-19 outbreak. We suggested a specific 
and constant pattern of hepatitis E incidence in China 
before the COVID-19 outbreak. The pattern was overall 
stationary and seasonal, with a peak in March, a trough 
in October, and higher levels in winter and spring than 
in summer and autumn, annually, which was consistent 
with the findings of a previous study by Wei S. et al. [29].

After assessment, we exploited the SARIMA, Holt-
Winters, and NNAR methods to construct pre-
COVID-19 models of hepatitis E incidence from 2013 to 
2019. According to Lewis C.D., a model whose MAPE is 
less than 10% indicates a high degree of accuracy [15]. In 
our models, the fitting MAPEs were 6–7% and forecast 
MAPEs were 3–4%, pronouncedly lower than the models 
in Li Z.’s work [30].

Subsequently, we exploited the pre-COVID-19 models 
to forecast the incidence from January 2020 to February 
2023. There was enormous forecast deviation, manifested 
as significantly lower forecast values than the actual val-
ues (with MAPEs of approximately 90%).

Among the influential policies on COVID-19 from the 
Chinese government, there were 2 critical events: in Jan-
uary 2020, the central government of China implemented 
the emergency epidemic prevention and control policy, 
while the first-level public health emergency response 
was activated in more than 30 provinces and cities, and 
the lockdown began in Wuhan [31]; in December 2022, 
the National Health Commission announced the man-
agement downgrading of COVID-19 from Class A to 
Class B (in accordance with the national law on infectious 
disease prevention and treatment) [32]. According to our 
results, the forecast deviation reached an extremely large 
scale from January 2020 to May 2020 (MAPE of approxi-
mately 80%) and from December 2022 to January 2023 

Table 3 The forecast RMSEs and the MAPEs from models (with raw data from 2013 to 2019) in 5 stages

MAPE mean absolute percentage error, RMSE root mean square error

Stage SARIMA Holt‑Winters NNAR

Forecasting MAPE Jan. 2020 to May.2020 84.37% 75.03% 80.55%

Jun. 2020 to Feb. 2021 28.40% 19.53% 29.90%

Mar. 2021 to Nov. 2022 9.17% 6.98% 9.36%

Dec. 2022 to Jan. 2023 97.32% 74.94% 92.24%

In Feb. 2023 3.31% 11.75% 4.98%

Forecasting RMSE Jan. 2020 to May.2020 1259.90 1126.58 1190.66

Jun. 2020 to Feb. 2021 542.20 385.02 537.57

Mar. 2021 to Nov. 2022 240.09 203.50 234.34

Dec. 2022 to Jan. 2023 1203.54 921.74 1078.16

In Feb. 2023 73.00 259.32 109.98
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(MAPE of approximately 90%) during the same periods 
of the Wuhan lockdown (January 2020 to April 2020) and 
COVID-19 management downgrading (December 2022 
to January 2023).

We assumed that the main reason for the forecast devi-
ation was changes in prevention and control policies. In 
response, the public reduced unnecessary trips and paid 
more attention to personal hygiene, in which case trans-
mission of the hepatitis E virus was partially cut off, and 
some patients with hepatitis E did not see a doctor, lead-
ing to a significant decrease in incidence. From another 
perspective, this also indicated a high degree of pub-
lic credibility of the Chinese government, as the public 
actively responded to government policies. Moreover, 
the forecast from March 2021 to November 2022 and 
February 2023 was quite precise, and all the forecast 
values were within the 95% CI of those models. These 
results indicated that during those periods, the effects of 
COVID-19 countermeasures on the incidence of hepa-
titis E were small. Therefore, we believe that the effects 
of the COVID-19 countermeasures on the incidence of 
hepatitis E may be temporary and based on the public’s 
response to government policies.

As a result of the absence of suitable quantitative met-
rics for evaluating COVID-19 policies, this assumption 
cannot be considered robust evidence. It is imperative 
to identify quantifiable indicators of the sociological 
effect of COVID-19, establish corresponding sequences, 
and construct systematic models to verify this hypoth-
esis. Nevertheless, our primary conclusion, that the 
impacts of COVID-19 are temporary, is not undermined. 
As COVID-19 policies are still in place, the pattern of 
hepatitis E incidence was expected to gradually return 
to the pre-COVID-19 pattern. Based on that conclu-
sion, we could still forecast the incidence of hepatitis E 
with selected models henceforward. We could also col-
lect incidence data in real time and compare it with the 
forecast values. When there is a significant deviation (out 
of the 95% CI), it is important to be vigilant of possible 
emerging factors that affect the incidence (epidemic out-
break, etc.). In addition, while collecting incidence data, 
we can feed new data back into the models to continu-
ously optimize the parameters, enabling the models to 
update and learn (to adapt to new situations).

Conclusion
In conclusion, our study constructed efficient time series 
models to depict the hepatitis E incidence pattern and 
examined the effect of the COVID-19 countermeasures 
on this pattern. This effect appeared to be transitory in 
nature. Since the incidence of hepatitis E was anticipated 

to gradually revert to its pre-COVID-19 pattern, there is 
a viable opportunity to establish an epidemiological sur-
veillance and alert system using these time series models. 
To ascertain the validity of this hypothesis, further stud-
ies are essential.
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