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Abstract 

Background Dengue fever is a well‑studied vector‑borne disease in tropical and subtropical areas of the world. 
Several methods for predicting the occurrence of dengue fever in Taiwan have been proposed. However, to the best 
of our knowledge, no study has investigated the relationship between air quality indices (AQIs) and dengue fever 
in Taiwan.

Results This study aimed to develop a dengue fever prediction model in which meteorological factors, a vector 
index, and AQIs were incorporated into different machine learning algorithms. A total of 805 meteorological records 
from 2013 to 2015 were collected from government open‑source data after preprocessing. In addition to well‑known 
dengue‑related factors, we investigated the effects of novel variables, including particulate matter with an aerody‑
namic diameter < 10 µm  (PM10),  PM2.5, and an ultraviolet index, for predicting dengue fever occurrence. The col‑
lected dataset was randomly divided into an 80% training set and a 20% test set. The experimental results showed 
that the random forests achieved an area under the receiver operating characteristic curve of 0.9547 for the test set, 
which was the best compared with the other machine learning algorithms. In addition, the temperature was the most 
important factor in our variable importance analysis, and it showed a positive effect on dengue fever at < 30 °C 
but had less of an effect at > 30 °C. The AQIs were not as important as temperature, but one was selected in the pro‑
cess of filtering the variables and showed a certain influence on the final results.

Conclusions Our study is the first to demonstrate that AQI negatively affects dengue fever occurrence in Taiwan. 
The proposed prediction model can be used as an early warning system for public health to prevent dengue fever 
outbreaks.
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Background
Dengue fever is caused by the dengue virus, a well-stud-
ied arboviral disease worldwide, with more than 50 mil-
lion new cases reported annually [1]. There are four types 
of dengue viruses: DENV-1, DENV-2, DENV-3, and 
DENV-4. All types of viruses can cause severe diseases in 
humans [2]. Dengue virus transmission is a major issue in 
tropical and subtropical areas of the world. Because the 
virus is transmitted by mosquitoes, transmission inten-
sity is limited by changes in weather and climate, such as 
rainfall, humidity, and temperature [3]. Aedes aegypti is 
one of the most important vectors of chikungunya, den-
gue, and Zika viruses. Over the past few decades, the 
incidence of dengue fever has continued to increase [4]. 
Dengue fever is primarily observed in tropical regions. 
The first local European dengue fever cases reported in 
France and Croatia occurred in 2010 [5]. Bhatt et al. esti-
mated that there are 390 million dengue infections per 
year in the tropics, of which 96 million appear to be sig-
nificant [6]. Another study also demonstrated evidence of 
dengue in 128 countries, with an estimated 3.97 billion 
population at risk [7].

History of dengue fever outbreaks in Taiwan
In the last century (i.e., 1901, 1915, 1931, 1942–1943, 
1981, 1991, 1994, 1995, and 1998), several severe den-
gue fever outbreaks occurred in Taiwan. Among these 
records, 1915, 1931, and 1942–1943 outbreaks affected 
the entire island [4]. In general, dengue fever is not con-
sidered a local epidemic in Taiwan, but originates in 
neighboring countries in Southeast Asia and is brought 
to Taiwan through close commercial and travel activities. 
Each outbreak was different, and various strains were 
determined to be related to those imported from Viet-
nam, Thailand, Indonesia, and Cambodia [1].

Between 2010 and 2015, severe outbreaks of dengue 
fever occurred three times in Taiwan. The first epidemic 
occurred in Penghu County in 2010, with a prevalence 
of 101 per 100,000 people. The second was in Kaohsiung 
City in 2014, with a prevalence rate of 540 per 100,000 
population. A recent outbreak occurred in 2015 in Tainan 
City with a prevalence rate of 1208 per 100,000 popu-
lation. The national prevalence rate in 2010 was 8 per 
100,000 people (i.e., 1,888 cases), which increased to 187 
per 100,000 people in 2015 (i.e., 43,832 cases). Further-
more, the prevalence rate in people aged over 50 years is 
higher than that in other groups [8, 9]. Currently, dengue 
fever outbreaks occur mainly in southern Taiwan, where 
Ae. aegypti and Ae. albopictus coexist, but rarely in the 
northern or central regions, where only Ae. albopictus 
exists. Local outbreaks are most frequent in summer and 
fall, less frequent in winter, and caused by a single dengue 

fever virus strain that disappears when the outbreak ends 
[10].

Literature review of dengue fever prediction
Several methods have been proposed to analyze dengue 
fever. In Sakon Nakhon Province, Thailand, the incidence 
of dengue virus infection (DVI) is related to meteoro-
logical factors and socioeconomic covariates based on a 
generalized linear model. The monthly minimum tem-
perature had a positive effect, but the 2-month cumu-
lative rainfall had a negative effect on the DVI [11]. In 
Singapore, the Ae. aegypti breeding percentage was posi-
tively correlated with annual case counts by Spearman’s 
correlation coefficient across 11 years, which ranged 
between 0.547 and 0.737 [12]. A previous study found no 
relationship between air pollution index (API) levels and 
dengue cases in all five study zones in Selangor, Malay-
sia [13]. In Greater São Paulo, Brazil, statistical associa-
tions of particulate matter with an aerodynamic diameter 
of < 10 µm  (PM10) and moisture were found in reported 
dengue fever cases. This study showed that  PM10 had a 
negative effect on dengue fever [14].

Furthermore, the lag effect of variables is a key factor 
influencing dengue fever occurrence and has been incor-
porated in several studies. Chen et al. found that several 
monthly meteorological factors with lag periods of 0–4 
months were positively associated with dengue fever 
cases in Kaohsiung, Taiwan using Spearman’s coefficient 
[15]. Wu et al. used the autoregressive integrated moving 
average (ARIMA) model to analyze the incidence of den-
gue fever and found that temperature and relative humid-
ity with a lag effect of 2 months had significant effects on 
the incidence of dengue fever in Kaohsiung [16]. Chuang 
et  al. analyzed weekly dengue incidence rates in a dis-
tributed lag non-linear model, which can simultaneously 
handle the lag effects of factors and non-linear relation-
ships. Minimum temperature and precipitation were 
non-linear. The incidence rate increased when the tem-
perature was either lower than 17 °C or higher than 23 
°C. Moderate to heavy rainfall had a stronger effect than 
low to moderate or heavy rainfall. This might increase 
the risk of transmission at a lag of 10 or 20 weeks [17]. 
Phung et al. used generalized linear distributed lag mod-
els to analyze dengue cases and meteorological data of 
the Mekong Delta region (MDR) from 2003 to 2013, and 
found that the northeast MDR was a high-risk cluster. 
A 1 °C increase in temperature at lags of 1–4, 5–8, and 
9–12 weeks increases the risk of dengue by 11, 7, and 5%, 
respectively. However, a 1% rise in humidity and a 1-mm 
increase in rainfall increased the risk by less than 1% [18]. 
Johansson et  al. used Poisson regression and distrib-
uted lag models to analyze monthly dengue incidences. 
The temperature at lag periods of 0, 1, and 2 months and 
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precipitation at lag periods of 1 and 2 months were posi-
tively associated with variances in monthly dengue inci-
dence [3].

In addition to statistical methods, machine learn-
ing is a computer method that focuses on learning by 
experience from data [19]. Machine learning algorithms 
combine statistics and make predictions in a dataset by 
finding patterns [20]. Recently, the use of machine learn-
ing algorithms to make reliable predictions from data-
sets has become increasingly common [21]. Guo et  al. 
utilized six machine-learning algorithms to predict the 
weekly incidence of dengue fever using data from 2011 
to 2014 in Guangdong, China. The results showed that 
the support vector regression model was the best predic-
tion model with the smallest prediction error rates for 
tracking the status and predicting outbreaks of dengue 
fever in other areas [22]. Carvajal et al. incorporated four 
models to predict dengue incidence with meteorologi-
cal factors, and found that random forests with lagged 
meteorological factors were the best prediction models 
based on the minimum root mean square error and mean 
absolute error [23]. In Selangor, Malaysia, Salim et  al. 
used machine learning techniques, including decision 
trees, artificial neural networks, support vector machines 
(SVM), and naïve Bayes, to predict dengue outbreaks. 
They incorporated climate variables, such as tempera-
ture, wind speed, humidity, and rainfall, into each model. 
The results showed that the SVM with a linear kernel had 
the best performance based on a test set with the highest 
prediction accuracy of 70% [24]. Compared to regression 
and ARIMA, Benedum et  al. used dengue surveillance, 
population, temporal, and weather data to build mod-
els based on random forests, regression, and ARIMA to 
predict dengue fever counts and outbreaks in three geo-
graphic locations. They concluded that the random for-
ests outperformed the other algorithms, with 21% and 
33% fewer errors than Poisson regression and ARIMA, 
respectively [25].

Specific aims of this study
Our study aimed to build a prediction model with lag 
times of 0–10 days, which included meteorological fac-
tors, a vector index, and air quality indices (AQIs), to 
predict dengue fever occurrences. Furthermore, the 
importance of the variables and predictors of dengue 
fever were analyzed. We chose the best prediction model 
for classification by comparing three machine learning 
algorithms to predict cases of dengue fever. AQIs, includ-
ing  PM10 and  PM2.5, are reported to be important features 
of environmental air pollution. However, the relation-
ship between AQIs and dengue fever remains unknown 
and has rarely been studied. Furthermore, the ultraviolet 
(UV) index is an important factor. These environmental 

factors were incorporated into our method to further 
determine their relationship with dengue fever.

Methods
Data source
This study attempted to identify the factors affecting the 
occurrence of dengue fever. From October 18, 2013, to 
December 31, 2015, 805 observations (days) with 57,724 
infected cases were collected from open-source data from 
several official websites in Taiwan. Dengue cases and the 
vector index were collected from the Centers for Disease 
Control, meteorological data were obtained from the 
Central Weather Bureau, and the AQIs were downloaded 
from the Environmental Protection Administration. 
These datasets are publicly available and can be down-
loaded freely (as shown in Table 1). Meteorological vari-
ables are used to analyze and predict dengue fever cases 
or incidence in many countries [3, 18, 26–29]. Variable-
related vectors were used in previous studies [12, 30]. In 
previous studies, variables related to AQIs were consid-
ered when analyzing their associations with dengue fever 
in other countries [13, 14]. This is the first study to incor-
porate Taiwan’s AQIs to identify their associations with 
dengue fever. In addition, to consider lag effects, 121 var-
iables ( 11 features × and 11 lagged days) were included 
in our models. The main study areas included Tainan 
City and Kaohsiung City in southern Taiwan, which have 
a tropical climate. At the end of 2015, 1.7 million house-
holds and 4.7 million people lived in these areas. We 
chose these two cities as our study objects because 98% 
of all indigenous cases in Taiwan occurred in Kaohsiung 
and Tainan in 2015. More than half of the local dengue 
fever cases were recorded in Tainan City.

Statistical analyses
SAS 9.4 (SAS Institute, Cary, NC, USA) was used to 
analyze baseline characteristics, and RStudio ver. The 
1.2.5001 software (2009–2019 RStudio) was used to con-
struct the prediction model. Means and standard devia-
tions (SDs) were reported for continuous variables and 
compared using Student’s t-test to examine whether 
there were significant differences in the occurrence of 
dengue fever. For model comparison, we used the area 
under the receiver operating characteristic curve (AUC) 
as an evaluation measure to select the best prediction 
model.

Machine learning algorithms
Logistic regression analyzes the relationships between a 
categorical variable, which is either dichotomous or mul-
tinomial, and multiple dependent variables. The regres-
sion output directly generates an effect estimate and a 
p-value [31, 32]. In 2001, Breiman proposed random 
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forests [33], which used a bagging ensemble method to 
randomly create several independent and unpruned trees 
from a dataset. The forest generalization error converges 
to a limit when the number of trees generated in the 
model becomes larger [34]. The package, “randomForest” 
was developed by Breiman and Culter and is available 
in the R environment. XGBoost is an algorithm based 
on the gradient boosting decision tree [35] proposed by 
Chen and Guestrin. Using an additive training strategy, 
it combines all predictions of a group of weak learners 
to build a strong classifier [36]. In our study, we used the 
“xgboost” package in the R environment.

Evaluation metrics
The AUC, accuracy, sensitivity, and specificity are the 
four measures used to evaluate prediction performance. 
These are defined in Eqs. (1, 2 and 3):

Here, TP, TN, FP, and FN denote the true positives, true 
negatives, false positives, and false negatives, respectively.

The receiver operating characteristic (ROC) curve plot 
shows tradeoffs between sensitivities and specificities, 
in which the y-axis represents sensitivity and the x-axis 
denotes [1—specificity]. Models with higher sensitivity 
and specificity generated curves close to the upper-left 

(1)Accuracy = (TP+ TN)/(TP+ TN+ FP+ FN)

(2)Sensitivity = TP/(TP+ FN)

(3)Specificity = TN/(TN+ FP)

corner of the ROC plot. The AUC has been used in medi-
cal research since the 1970s and is considered a standard 
indicator for evaluating the performance of predictive 
models. Previous research suggested that AUC is a bet-
ter measure for comparing the performance of classifiers 
[37]. It summarizes a model’s performance and avoids the 
threshold selected by the supposed subjectivity by con-
verting a continuous probability into a binary positive–
negative variable [38].

System architecture
The original dataset was divided into training and test 
sets for the development of the prediction model and 
validation of the predictive performance. We used three 
algorithms, logistic regression, random forests, and 
XGBoost, to build a prediction model for the occurrence 
of dengue fever and compared them using the AUC of  
the test set. Finally, we interpreted the effects of each 
variable on dengue fever occurrence. The workflow is 
illustrated in Fig. 1.

Results
Descriptive statistical analysis of dengue fever outbreaks
A total of 805 samples were collected, and 65.96% of 
the records had dengue fever. We used Student’s t-test 
for evaluation, and the means of all variables showed 
significant differences (as shown in Table  2) between 
the occurrence or non-occurrence of dengue fever. The 
results showed that meteorological variables and the vec-
tor index had statistically significant differences between 
occurrence and nonoccurrence. In AQIs  (PM10 and 

Table 1 Variables of the daily vector index, meteorological data, and air quality indices

Abbreviation: BI Breteau Index, HI House Index, LI Larvae Index, UV ultraviolet
a https:// data. cdc. gov. tw/ en/ datas et/ dengue- daily- deter mined- cases- 1998
b https:// data. cdc. gov. tw/ en/ datas et/ dengue- mosqu ito- inves tigat ion- latest- 12m
c https:// opend ata. cwb. gov. tw/ datas et/ obser vation? page=1
d https:// www. epa. gov. tw/ eng/ 5B794 123D2 E93D96

Category Features Source Description

Dengue cases Local dengue cases Centers for Disease Control,  Taiwana,b Dengue daily confirmed cases

Vector index BI
HI
LI

Dengue mosquito investigation records

BreteauIndex(BI)(%) =
No. of positive containers infested
Total no. of containers inspected

∗ 100
  

HouseIndex(HI)(%) =
No. of positive housees infected
Total no. of houses inspected

∗ 100  

LarvaIndex(LI)(%) = No. of larvae
Total no. of houses inspected

∗ 100  

Meteorological data Temperature
Rainfall
Relative humidity
UV index
Wind speed
Atmospheric pressure

Central Weather Bureau,  Taiwanc Temperature: daily average temperature (oC)
Rainfall: daily total rainfall (mm)
Relative Humidity: daily average relative humidity (%)
UV Index
Wind Speed: average wind speed per hour (km/hr)
Atmospheric pressure (hPa)

Air quality index PM10
PM2.5

Environmental Protection Administration, 
 Taiwand

PM10(μg/m3): Inhalable particles with diameters which  
are 10 µm or smaller
PM2.5(μg/m3): Inhalable particles with diameters which  
are 2.5 µm or smaller

https://data.cdc.gov.tw/en/dataset/dengue-daily-determined-cases-1998
https://data.cdc.gov.tw/en/dataset/dengue-mosquito-investigation-latest-12m
https://opendata.cwb.gov.tw/dataset/observation?page=1
https://www.epa.gov.tw/eng/5B794123D2E93D96
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 PM2.5), the mean concentration of occurrence was sig-
nificantly lower than that of non-occurrence.

Prediction of dengue fever occurrences using machine 
learning algorithms and lag effects
To predict dengue fever, a random forest algorithm was 
first incorporated to choose the best feature set with the 
lowest prediction error in the feature selection. The origi-
nal dataset was randomly divided into two parts: 80% as 

a training set with 636 observations and 20% as a test set 
with 159 observations. In the random forest package, 
the “rfcv” function was used to optimize the prediction 
model by examining errors under different combinations 
of variables. There were 121 variables (11 features × and 
11 lag days) in the models. We found that the minimum 
error occurred for 60 variables (indicated by the dashed 
line in Fig. 2).

The top 60 variables generated the lowest error com-
pared to using all variables, and the model trained on 
60 variables performed slightly better than the origi-
nal model using all variables in terms of both accuracy 
and AUC (Table  3). The new model had a higher AUC 
and accuracy based on fewer variables than the original 
model. We chose the model with the top 60 variables for 
comparison with other machine learning algorithms.

Principal component analysis (PCA) is a well-known 
approach for feature extraction. Kaiser criterion and 
scree plot were used to determine the number of com-
ponents in the PCA. The Kaiser criterion drops all com-
ponents with an eigenvalue < 1 [39]. The scree plot shows 
the top 25 components with eigenvalues > 1 (Figure S1 
in Additional File 1). The top 25, 60, and all components 
were incorporated into the prediction model based on 
the random forests. The prediction model with 25 com-
ponents achieved the highest AUC of 0.9512 among 
the three models (Table  S1 in Additional File 1); how-
ever, it was lower than that of the model with the top 60 
variables.

For the performance comparison based on 60 selected 
variables, as shown in Fig. 3, the random forests outper-
formed the other algorithms in terms of accuracy, speci-
ficity, and AUC, except that XGBoost also performed well 
in terms of sensitivity. For the test set, the random forests 

Fig. 1 System architecture of the proposed study

Table 2 Descriptive statistics of variables related to the occurrence 
of dengue fever

Abbreviation: SD standard deviation, UV ultraviolet, BI Breteau Index, HI House 
Index, LI Larvae Index
*** p < 0.001
** p < 0.01
* p < 0.05

Occurrence of dengue fever p value

Yes (n = 531) No (n = 264)

Variable Mean SD Mean SD

Temperature (°C) 26.22 4.06 22.83 4.20 < 0.0001***

UV index 6.68 2.60 5.96 2.03 < 0.0001***

Rainfall (mm) 9.76 36.15 3.62 13.25 0.0078**

Atmospheric pressure 
(hPa)

1010.50 6.03 1013.80 4.00 < 0.0001***

BI 3.72 2.89 2.45 2.00 < 0.0001***

HI 2.93 2.06 2.08 1.58 < 0.0001***

LI 41.84 54.02 28.28 26.75 < 0.0001***

PM10 (μg/m3) 60.30 30.31 73.87 29.32 < 0.0001***

PM2.5 (μg/m3) 27.38 17.67 36.64 19.66 < 0.0001***

Relative humidity (%) 74.19 6.33 71.91 6.40 < 0.0001***

Wind speed (m/s) 2.49 0.84 2.63 0.76 0.0291*
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achieved an AUC of 0.9547, compared with 0.9329 for 
XGBoost and 0.7905 for logistic regression. Therefore, we 
chose random forest as the best prediction model.

Effects of variables on dengue fever outbreaks
The selected variables were ranked according to the 
mean decrease in accuracy (MDA) estimated using our 

model. The MDA is an index generated by observing 
out-of-bag errors for a given variable. The MDA index of 
each variable was averaged for comparison with the oth-
ers, as shown on the x-axis in Fig. 4. The results showed 
that temperature was the most important factor, and UV 
was the second-most important variable compared to 
the others. This suggests that these two variables could 
be considered critical factors in the occurrence of dengue 
fever.

Figure  5 depicts the relationship between dengue 
fever occurrence and the predictors. The variables 
are labeled on the x-axis, and changes in the marginal 
effects of dengue fever occurrences are illustrated on 
the y-axis. The marginal effects generated by the “par-
tial” function in the “pdp” package were averaged in 
the plots. Changes in the marginal effects of tempera-
ture showed a non-linear relationship, with a peak near 
30 °C (Fig. 5a). Below 30 °C, the temperature has a posi-
tive effect on dengue fever occurrence. Although higher 
temperatures increased the probability of occurrence, 
an overheated environment above 30 °C decreased the 

Fig. 2 Relationships between mean square errors and a number of top variables incorporated into the model

Table 3 Comparison of the random forest model with/without 
feature selection for the test set

Abbreviations: Acc. Accuracy, Sen. Sensitivity, Spec. specificity, AUC  area under the 
receiver operating characteristics curve

No. of variables Acc Sen Spec AUC 

Random 
forests (all vari‑
ables included)

121 0.8742 0.9688 0.7302 0.9545

Random 
forests (top 
60 variables 
selected)

60 0.8994 0.9479 0.8254 0.9547

Fig. 3 Comparison of the prediction performance based on different algorithms for the test set



Page 7 of 11Kuo et al. BMC Infectious Diseases          (2024) 24:334  

occurrence. According to the World Health Organiza-
tion classification, the UV index is categorized into five 
levels:1 and 2, low; 3–5, moderate; 6 and 7, high; 8–10, 
very high; and 11 + : extreme [40]. In Fig. 5b, the peak 
of the UV index was near 5, indicating that the mar-
ginal effect of UV increased slightly before the moder-
ate level and began to fall afterwards. Relative humidity 
(RH) had a positive effect and peaked at approximately 
78% (Fig. 5c). As shown in Fig. 5d, the marginal effect 
of  PM10 was negative on the probability of occurrence. 
The figure shows that higher  PM10 levels lead to a lower 
probability of dengue occurrence.

Discussion
Our research attempted to select the best model to pre-
dict dengue fever outbreaks and investigate the relation-
ships between predictors and dengue fever. From our 
experimental results, the random forests outperformed 
the other two algorithms in terms of AUC for predicting 
dengue fever outbreaks (Fig. 3, Table S2 in Additional File 
1). The temperature was the most important factor influ-
encing the occurrence of dengue fever.

In previous studies, dengue fever cases or incidence 
rates were used as target variables for the estimation. 
A time series model and generalized additive model 

Fig. 4 Importance of variables for predicting dengue fever occurrences

Fig. 5 Relationships between variables and dengue fever depicted by the marginal effects from partial dependency plots
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have been used to explain predictors of dengue cases or 
incidence rates [16, 18, 24, 28, 41]. Compared to those 
studies, the random forest algorithm not only accu-
rately predicted the occurrence of dengue fever but also 
provided a partial dependence plot to depict the rela-
tionships between predictors and dengue fever. The 
importance of a variable is generated by observing the 
out-of-bag error for that specific variable as other vari-
ables remain [33]. Biomedical interpretations of predic-
tors from our results correspond well with the domain 
knowledge.

AUC is a good indicator for measuring the perfor-
mance of prediction models. Based on our results, ran-
dom forests achieved the highest AUC of 0.9547. Ghosh 
et  al.. used logistic regression to predict the occurrence 
of dengue in Kharaghur, India. Their results showed that 
the AUC values for the training and testing data were 
0.854 and 0.858, respectively [42]. Adde et al. used logis-
tic binomial regression to predict outbreaks over the 
period 1991–2013 in French Guiana using climate indica-
tors, and their best result was an AUC of 0.88 [43]. Addi-
tionally, in some previous studies, models were built to 
predict the epidemic years. Descloux et al. used an SVM 
explicative model to predict outbreak years in Noumea, 
New Caledonia, with an AUC of 0.8 [44]. Hii et al. used 
Singaporean weekly data at lag times of up to 20 weeks 
to develop a time-series Poisson multivariate regres-
sion to detect outbreaks (when the weekly clinical cases 
exceeded the epidemic threshold) in 2004–2010 and 
2011. Their results showed AUCs of 0.96 in 2004–2010 
and 0.98 in 2011 [45]. Compared with other studies, the 
prediction model based on random forests achieved a 
higher AUC.

Random forest achieved the highest accuracy of 89.94% 
in our experimental results. Nejad et  al.. used five algo-
rithms to construct prediction models for dengue out-
breaks from 2010 to 2013. Their results showed that the 
Bayes network model with mean and maximum tem-
perature, mean relative humidity, and TempeRain factor 
(TRF, which consists of the average of minimum tem-
perature five weeks plus a current week and cumulative 
rainfall for two weeks before the current week) achieved 
the best accuracy of 92.35% [46]. Anno et al. used deep 
learning based on AlexNet to predict dengue fever out-
breaks using a dataset of longitudinal-time sea surface 
temperature via eightfold cross-validation and yielded 
an accuracy of 100% [27]. Moreover, the highest sensitiv-
ity and specificity in our study were 0.9688 and 0.7302, 
respectively. Althouse et al. used the Singapore dataset to 
develop a prediction model for periods with high dengue 
incidence, and the results showed that the sensitivity and 
specificity were 0.861 and 0.765, respectively [47]. Com-
pared with the above study, our results showed higher 

sensitivity but lower specificity. This result is similar to 
that of their study, although the outcome of interest was 
slight.

Temperature plays a key role in the life cycle and 
growth period of viruses in mosquitoes [48]. Tempera-
ture showed a non-linear relationship with and a posi-
tive effect on dengue fever occurrence, indicating that 
higher temperatures increased the probability of occur-
rence before 30 °C, which began to decrease afterwards. 
Colon-Gonzalez et  al. also reported that the effect of 
temperature has a highly non-linear relationship with 
dengue incidence in their generalized additive model 
[28]. This demonstrates that the effect of temperature on 
the incidence of dengue fever is not constant. Under dif-
ferent conditions, the effect of temperature on dengue 
incidence did not increase or decrease linearly. Yang et al. 
also reported that female mosquitoes survive in a tem-
perature range of 15–30 °C and they bite more to raise 
mosquito offspring [49]. Furthermore, the number of off-
spring peaks near 30 °C, which might be a risk for dengue 
outbreaks [50]. The number of mosquitoes is associated 
with temperature, and the probability of dengue is higher 
at optimal temperatures for mosquitoes.

In our study, UV had a negative effect on dengue fever 
outbreaks when the UV intensity exceeded a moderate 
level. Villena et  al. found that the metabolic rate of Ae. 
albopictus was higher after exposure  to full sun condi-
tions on days 8 and 15 compared to the non-UV condi-
tion. This shows that UVB radiation is harmful to the 
larval survival of Ae. albopictus, owing to adverse effects 
on their cells [51]. Compared to Ae. aegypti, Ae. albopic-
tus is unlikely to spread the dengue fever virus on a large 
scale in most situations, but speculating on its presence 
is easier and less threatening to the public [49]. UV radi-
ation has a limited effect on reducing the spread of the 
virus, but a higher intensity has a certain effect.

Regarding the particulate matter,  PM2.5 and  PM10 are 
two important AQI measures widely used worldwide. 
Thiruchelvam et  al. found no relationship between the 
air pollution index and dengue fever cases in five zones 
in Selangor, Malaysia, based on the ARIMA model [13]. 
Based on our research,  PM2.5 and the related lag effect 
variables were removed in the process of optimizing our 
model.  PM10 appeared to reduce the occurrence of dis-
ease in our study.  PM10 was negatively correlated with 
dengue fever in a previous study. Although air pollution 
has not been confirmed in other studies, it has shown 
obvious influences on the life cycle of Ae. aegypti mos-
quito [14]. In our experimental results, the relationship 
between the larval index and PM10 was significantly neg-
ative (Tables S3, S4, and Figure S2 in Additional File 1). 
The AQI is not as important as temperature, but it was 
selected in the process of filtering the variables and had a 
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certain influence on the final results (Tables S5 and S6 in 
Additional File 1).

The lifespan of mosquitoes and virus transmission 
is influenced by RH [26]. Phung et  al. reported that the 
RH with lag times of 1 ~ 4 and 5–8 weeks in the range of 
83.5 ~ 86 had a larger effect on the risk of dengue fever 
through a categorical distributed lag model in Vietnam 
[18]. In our results, an RH of approximately 77% had the 
greatest effect on the probability of dengue occurrence. 
In general, a higher RH resulted in a higher probability. 
The trend was similar, although the peaks were differ-
ent. In Yangon, the largest city in Myanmar, Thu et  al. 
reported that the rainy season (with temperatures of 
23–30 °C and RH of 90%) is the peak period of survival 
of Ae. aegypti mosquitoes. High virus transmission and 
longer mosquito life are beneficial conditions for out-
breaks [52]. According to our results, the plum rainy sea-
son in Taiwan, when temperatures and RHs are similar to 
those in Yangon, might be a key prevention period.

A limitation of our research is that we did not account 
for the effect of El Niño Southern Oscillation (ENSO). 
Many studies [17, 23, 26, 48, 53] have determined that 
ENSO is an important factor influencing climate and den-
gue transmission. Furthermore, transportation, clustering 
effect of population density, urbanization, and geography 
are factors affecting virus transmission, but these data 
are difficult to quantify accurately. These factors can be 
included in future prediction models. In addition, our 
study included 805 records from October 2013 to Decem-
ber 2015. In the process of collecting data, some infor-
mation might not have been released or may have been 
missing. In the future, the completeness of the public data 
can be analyzed to improve our research. Furthermore, 
in the available public dataset, no information about the 
serotypes of the dengue virus was provided. The relation-
ship between serotype and occurrence was not investi-
gated in our study, owing to the limitations of our dataset.

Conclusions
Prediction models built for dengue fever cases and inci-
dence rates use statistics and machine learning models. 
Our study attempted to predict the occurrence of dengue 
fever because predictions can be used for epidemic pre-
vention. We considered the lag times of the meteorologi-
cal, vector, and AQI variables to build prediction models 
using machine learning tools for the probability of occur-
rence. In a comparison of the studies, the lag time was 
shorter, but the warning was immediate. Our study can 
also be used to predict dengue fever within a few days.
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