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Abstract 

Background Anopheles stephensi is native to Southeast Asia and the Arabian Peninsula and has emerged as an effec‑
tive and invasive malaria vector. Since invasion was reported in Djibouti in 2012, the global invasion range of An. 
stephensi has been expanding, and its high adaptability to the environment and the ongoing development of drug 
resistance have created new challenges for malaria control. Climate change is an important factor affecting the dis‑
tribution and transfer of species, and understanding the distribution of An. stephensi is an important part of malaria 
control measures, including vector control.

Methods In this study, we collected existing distribution data for An. stephensi, and based on the SSP1‑2.6 future 
climate data, we used the Biomod2 package in R Studio through the use of multiple different model methods such 
as maximum entropy models (MAXENT) and random forest (RF) in this study to map the predicted global An. ste-
phensi climatically suitable areas.

Results According to the predictions of this study, some areas where there are no current records of An. stephensi, 
showed significant areas of climatically suitable for An. stephensi. In addition, the global climatically suitability areas 
for An. stephensi are expanding with global climate change, with some areas changing from unsuitable to suitable, 
suggesting a greater risk of invasion of An. stephensi in these areas, with the attendant possibility of a resurgence 
of malaria, as has been the case in Djibouti.

Conclusions This study provides evidence for the possible invasion and expansion of An. stephensi and serves 
as a reference for the optimization of targeted monitoring and control strategies for this malaria vector in potential 
invasion risk areas.
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Introduction
Anopheles stephensi is a vector of Plasmodium vivax and 
Plasmodium falciparum parasites originating in South-
east Asia and the Arabian Peninsula [1–3]. Countries 

such as India, Afghanistan, Iran, Pakistan, Egypt, Myan-
mar, Thailand and China are the distribution areas of An. 
stephensi [4]. An. stephensi has been implicated in malaria 
transmission throughout much of its native range in Asia 
and the Middle East, including India, Iran, and Pakistan 
[5]. In India, An. stephensi is considered an efficient vec-
tor of urban malaria [3]. In China, another country with 
known distribution of An. stephensi, the mosquito is 
not a vector of malaria and has been reported to be dis-
tributed mainly in provinces of the oriental realm, such 
as Guangxi, Hainan, and Sichuan Provinces [6]. How-
ever, in recent years, there have been few reports of An. 
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stephensi being collected in China [7]. Malaria is a life-
threatening disease caused by parasites that are trans-
mitted to humans through the bite of infected female 
Anopheles mosquitoes [8]. There are five parasite species 
that cause malaria in humans, and two of these species 
–P. vivax and P. falciparum– pose the greatest threat [8, 
9]. According to the latest World Malaria Report, there 
were approximately 247 million malaria cases globally 
in 2021 (245 million in 2020), with an estimated 619,000 
malaria deaths, and nearly half of the world’s population 
is at risk of malaria [9]. Moreover, the number of malaria 
cases reported in Comoros, Costa Rica, Ecuador, Guate-
mala and some other countries on the mainland shows 
an increase compared to 2020 [9]. Malaria is considered 
one of the major vector-borne diseases most sensitive to 
changes in environmental conditions, similar to other 
vector-borne diseases such as dengue fever [10, 11]. This 
is because malaria incidence in endemic areas is largely 
determined by seasonal variations in mosquito popula-
tions and densities [12]. Additionally, environmental fac-
tors such as temperature [13] and precipitation [14, 15] 
can influence malaria incidence by altering the duration 
of the mosquito and parasite life cycles or by influencing 
human, vector or parasite behavior [16].

An. stephensi is a day-biting, anthropophilic mos-
quito found mainly in cattle sheds near human dwell-
ings (endophilic) and which feeds indoors (endophagic) 
[3]. Research on An. stephensi in China [6] suggests that 
it breeds mainly in stagnant water in containers and can 
also breed in puddles, wells, and pools. Similar to Aedes 
mosquitoes, An. stephensi is able to breed in small, arti-
ficial containers in urban areas such as domestic water 
storage containers and garden reservoirs, and it can also 
breed and develop in larger water-containing structures 
[17–19] and seems to adapt quickly to local environ-
ments (including secluded habitats such as deep wells) 
[9]. During the dry season, when malaria transmission 
rates usually reach seasonal lows, An. stephensi can with-
stand extremely high temperatures [9], and this ability of 
the mosquito to adapt to different environments provides 
more possibilities for invasion and makes it more chal-
lenging to control.

An. stephensi is an invasive disease vector, and the evi-
dence is increasing that the geographic range of An. ste-
phensi has expanded over the last decade. Invasion by 
An. stephensi was first reported in Djibouti in 2012 [20], 
Notably, the invasion of An. stephensi in Djibouti in 2012 
led to a 30-fold increase in malaria cases in Djibouti, 
from 1,684 cases in 2012 to 49,402 cases in 2019 [9, 19], 
and a 39-fold increase in malaria cases overall by 2020 
[21]. A geostatistical model predicted that the species 
could spread to many other African cities, which would 
eventually expose at least 126 million people to risk [22]. 

Malaria is a major public health problem and challenge 
worldwide, and as an important vector of malaria, the 
adaptability of An. stephensi to urban environments com-
pared to the main malaria vectors in Africa (An. gambiae 
and An. funestus) makes malaria control a greater chal-
lenge in more areas [23]. The invasion and population 
establishment of vector Anopheles mosquitoes in new 
areas brings possible opportunities for malaria trans-
mission, so the invasion of these mosquitoes is also an 
important threat to global public health.

The shared socioeconomic pathways (SSPs) are new 
’pathways’ established by a series of international teams 
of climate scientists, economists and energy system mod-
elers to study possible changes in global society, popula-
tion and economy over the next century (https:// www. 
carbo nbrief. org/ expla iner- how- shared- socio econo mic- 
pathw ays- explo re- future- clima te- change/. Assessed Sep. 
30, 2023). The SSP model is included in the Sixth Assess-
ment Report of the Intergovernmental Panel on Climate 
Change (IPCC), published in 2021, and has also been 
used to explore how societal choices will affect green-
house gas emissions. The SSPs encompass five narratives 
of the future (SSP1-SSP5), and the SSP1 model describes 
a world of sustainability-focused growth and equality. By 
2100, global carbon dioxide emissions will fall to approxi-
mately 22 to 48 gigatons per year  (GtCO2), and the global 
surface temperature will rise by 3 to 3.5  °C under the 
SSP1 climate model (https:// www. ipcc. ch/ report/ ar6/ 
wg1/ chapt er/ chapt er-4/. Assessed Sep. 30, 2023). Cli-
mate change is an important factor influencing the dis-
tribution and transfer of species [24]. Climate change and 
increased carbon emissions may lead to rapid changes 
in the global distribution of vector mosquitoes [25], 
and these changes may even trigger the rapid spread of 
malaria into more regions.

Vector control is a very effective way to reduce malaria 
transmission and is an important component of malaria 
control and elimination strategies. The current research 
on the global distribution of An. stephensi is lacking, and 
systematic and large-scale surveillance of this vector 
is still in its infancy [9]. As invasion by An. stephensi is 
intensifying, understanding the current and future global 
potential areas suitable for the transmission of invasive 
mosquitoes is important for malaria control and preven-
tion. Species distribution models (SDMs) are valuable 
and powerful tools for studying the effects of climate 
change on the potential distribution of species [26–28]. 
However, uncertainty of SDMs is prevalent due to dif-
ferences in the use of ecological theories, as well as the 
assumptions of different SDMs and the different statis-
tical methods used. An individual model may result in 
differences in suitable habitat for the same species due 
to multiple factors, leading to uncertainty in predictions 
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[27, 28]. Biomod2 is a new computing framework devel-
oped in R for building SDMs [29], exploring the rela-
tionship between the spatial distribution of species and 
environmental variables through the use of multiple dif-
ferent model methods such as maximum entropy models 
(MAXENT) and random forest (RF), as well as calibrat-
ing and evaluating the models, thus improving the accu-
racy of predicting the potential distribution of species. 
Therefore, we used the Biomod2 package in R Studio 
in this study to map the predicted global An. stephensi 
climatically suitable areas, which can provide a neces-
sary tool for assessing the current and future risk of An. 
stephensi.

Materials and Methods
Species occurrence data
According to the species occurrence records from the 
literature (Table S1) and the Global Biodiversity Infor-
mation Network website (https:// www. gbif. org/, GBIF.
org, 2019), we selected only those records that clearly 
originated from human observations, and from these, 
we screened records with precise latitude and longitude 
information to ensure geographic accuracy. Ultimately, a 
total of 964 global occurrence records for An. stephensi 
were obtained for further model construction (Fig.  1, 
Table S2).

Current bioclimatic variables
Current bioclimatic variables and elevation data with a 
spatial resolution of 2.5 m were both downloaded from 

WorldClim (https:// www. World clim. org/. Assessed Sep. 
16, 2023). The bioclimatic variables contain 19 climate 
factors (Bio1-Bio19, Table  1), and these variables were 
divided into 3 categories: (1) 9 temperature-related vari-
ables, Bio1, Bio2, Bio3, Bio4, Bio5, Bio6, Bio7, Bioo10 
and Bio11. (2) 8 precipitation-related variables, Bio12, 
Bio13, bio14, Bio15, Bio16, Bio17, Bio18 and Bio19. (3) 
2 coupling variables of temperature and precipitation, 
Bio8 and Bio9. These climate factors are closely related 
to the distribution of species and are necessary for 
prediction.

Future bioclimatic variables
The future bioclimatic variables were also obtained from 
worldclim (https:// www. world clim. org/). And the biocli-
matic variables were under the new set of emissions scenar-
ios Shared Socioeconomic Pathway (SSP) 1–2.6 (https:// 
www. carbo nbrief. org/ expla iner- how- shared- socio econo 
mic- pathw ays- explo re- future- clima te- change/#. Assessed 
Sep. 16, 2023). A number of these SSP scenarios have been 
selected to drive climate models for the Coupled  Model 
Intercomparison Project 6 (CMIP6). The data of 2021–
2040 and 2041–2060 were selected with the same spatial 
resolution of 2.5 m in this study.

Construction and evaluation of model
Ten different model were used in Biomod2, including 
artificial neural network (ANN) [30], classification and 
regression tree analysis (CTA) [31], flexible discriminant 
analysis (FDA) [32], generalized additive model (GAM) 

Fig. 1 Known global distribution of An. stephensi 
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[33], generalized boosting model (GBM) [34], general-
ized linear models (GLM), multiple adaptive regression 
splines (MARS) [35], maximum entropy models (MAX-
ENT) [36], random forest (RF) [37]and surface range 
envelope (SRE) [38]. 80% of the distribution records 
of An. stephensi were randomly selected as the training 
dataset and the remaining 20% as the testing dataset. 
Kappa coefficients (Kappa) [39], the true skill statistic 
(TSS) [40] and area under the receiver operating charac-
teristic (ROC) curve (AUC) [41, 42]are used to evaluate 
the model. Generally, the higher the values of these indi-
cators, the higher the accuracy of the model results [43].

Construction of ensemble model
The TSS values greater than or equal to 0.8 were selected 
from all individual models, and two integration meth-
ods, committee averaging (CA) and weighted mean of 
probabilities (WM), were used to integrate these models  
to produce an ensemble model (EM). Evaluation of the 
ensemble model produced by the two methods was car-
ried out to select a method that performed better in the 
model evaluation index. The selected ensemble model was 
used to predict the potential distribution of An. stephensi  

under future climatic conditions for the years 2021–2040 
and 2041–2060, and ultimately to derive a change in the 
distribution of An. stephensi by comparing it with the 
current climatically suitable areas.

Results
Model evaluation
The 10 individual models in Biomod2 were evaluated 
according to Kappa, TSS and AUC (Table  2). In terms 
of AUC values, RF has the highest AUC value in all the 
individual model, followed by GAM and MAXENT. In 
terms of TSS values, RF, GAM and MAXENT perform 
better. In terms of Kappa, CTA and SRE results are less 
than ideal. The best performing models include GAM, 
MAXENT, and RF models, which have higher values of 
Kappa, TSS, and AUC when compared to the other mod-
els. After selecting models with TSS values higher than 
0.8 (GAM, GBM, MAXENT, RF) to construct the ensem-
ble model, the Kappa, TSS and AUC values of the model 
were improved compared with those of the individual 
model. In addition, the ensemble model constructed 
through the WM method had higher Kappa and AUC 
when the AUC values were almost the same.

Table 1 Environmental variables

To reduce autocorrelation between variable data and avoid overfitting of model predictions, we conducted correlation analyses of environmental factors 
using maxent.jar software and SPSS 20.0 to calculate Pearson correlation coefficients of the environmental factors before making predictions. Among the two 
environmental factors with correlation coefficients of | r |> 0.9, we chose the one that was more biologically significant. Finally, we selected Bio1, Bio2, Bio3, Bio6, Bio7, 
Bio8, Bio9, Bio10, Bio12, Bio13, Bio14, Bio15, Bio18, Bio19, and elevation as the environmental factors for modeling

Variable Description Units

Bio1 Annual Mean Temperature ℃
Bio2 Mean Diurnal Range (Mean of monthly (max temp‑min temp)) ℃
Bio3 Isothermality (Bio2/Bio7) (× 100) ‑

Bio4 Temperature Seasonality (standard deviation × 100) ‑

Bio5 Max Temperature of Warmest Month ℃
Bio6 Min Temperature of Coldest Month ℃
Bio7 Temperature Annual Range (Bio5‑Bio6) ‑

Bio8 Mean Temperature of Wettest Quarter ℃
Bio9 Mean Temperature of Driest Quarter ℃
Bio10 Mean Temperature of Warmest Quarter ℃
Bio11 Mean Temperature of Coldest Quarter ℃
Bio12 Annual Precipitation mm

Bio13 Precipitation of Wettest Month mm

Bio14 Precipitation of Driest Month mm

Bio15 Precipitation Seasonality (Coefficient of Variation) ‑

Bio16 Precipitation of Wettest Quarter mm

Bio17 Precipitation of Driest Quarter mm

Bio18 Precipitation of Warmest Quarter mm

Bio19 Precipitation of Coldest Quarter mm

elev Elevation ‑
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Current climatically suitable area prediction for An. 
stephensi
Figure 2 shows the suitability index distribution of climat-
ically suitable areas for An. stephensi under the current 
climatic conditions based on the 10 individual model, and 
all the data have been normalized. It can be seen from the 
results that most of the climatically suitable areas of An. 
stephensi obtained from different single models are basi-
cally the same, although there are some differences in the 
distribution areas of An. stephensi. Totally, the global dis-
tribution of climatically suitable areas for An. stephensi 
is concentrated in parts of Asia and Africa between the 
Tropic of Cancer (Tropic of Cancer) and the Tropic of 
Capricorn (Tropic of Cancer), Southern Africa, parts of 
America and northern Australia.

The ensemble model (Fig.  3) constructed through the 
CA and WM methods predicted a similar range of cli-
matically suitable areas for An. stephensi. Globally, areas 
of suitability for An. stephensi were concentrated in 
southern China, India, Pakistan, Afghanistan, Iran and 
most of Saudi Arabia, Africa, South America and a small 
portion of the southern United States, and some part of 
Australia. Overall, areas with a high suitability index for 
An. stephensi were found in most countries in South-East 
Asia, Saudi Arabia and Africa, particularly in most of the 
northern part of India bordering Myanmar, Myanmar, 

Vietnam, the southern coastal areas of China, Saudi Arabia 
and Algeria.

As can be seen from the model evaluation index 
(Table  2), the ensemble model constructed through 
the WM method has a higher Kappa and TSS than the 
ensemble model constructed through the CA method 
with the same AUC value, so we chose to use the ensem-
ble model constructed through the WM method when 
making predictions of the global climatically suitable area 
of An. stephensi in the future climate scenarios.

Trends of the distribution of climatically suitable areas 
for An. stephensi under SSP1‑2.6
Figure  4-A and B show the global climatically suitable 
areas for An. stephensi in 2021–2040 and 2041–2060, 
respectively, as predicted by the ensemble model con-
structed through the WM method based on the SSP1-2.6 
climate scenarios. Comparing the results of the ensemble 
model prediction to the current prediction of climatically 
suitable areas, the global climatically suitable area for An. 
stephensi will expand by 33.17% from 2021–2040 (Fig. 5-
A). From 2041–2060 (Fig.  5-B), the global climatically 
suitable area for An. stephensi will expand by 49.46%. 
We calculated the percentage of current and future cli-
matically suitable areas for An. stephensi predicted by the 
ensemble model constructed through the WM method, 

Table 2 Accuracy evaluation of model

Evaluation index ANN CTA FDA GAM GBM GLM MARS MAXENT RF SRE EM(WM) EM(CA)

Kappa 0.764 0.751 0.793 0.887 0.834 0.788 0.790 0.882 0.962 0.387 0.888 0.829

TSS 0.711 0.700 0.732 0.867 0.837 0.749 0.734 0.907 0.953 0.478 0.924 0.926

AUC 0.901 0.853 0.920 0.986 0.979 0.938 0.917 0.981 0.993 0.739 0.995 0.994

Fig. 2 Distribution map of potential climatically suitability areas of An.stephensi produced by integrated 10 species spatial distribution model. 
A ANN, B CTA, C FDA, D GAM, E GBM, F GLM, G MARS, H MAXENT, I RF, J SRE
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and Table  3 provides a more intuitive view of future 
trends in the expansion of climatically suitable areas.

According to our predictions, the global climatically 
suitable areas of An. stephensi is expected to expand 
and move north-westwards over the next 40  years. The 
climatically suitable areas of Asia, Africa, America, Aus-
tralia and other areas for An. stephensi are predicted to 
expand.

Discussion
The spread of An. stephensi is a major potential threat to 
malaria control and elimination in Africa and southern 
Asia. The propensity of An. stephensi to spread and establish 
outside the current range is already being observed, drawing 

the attention of the global health community (https:// www. 
who. int/ news/ item/ 29- 09- 2022- who- launc hes- new- initi 
ative- to- stop- the- spread- of- invas ive- malar ia- vector- in- 
africa. Assessed Oct. 13, 2023). Therefore, it is necessary to 
better understand the current distribution of An. stephensi 
and the potential future changes in its distribution. Indi-
vidual SDMs have been used more frequently to predict the 
potential geographical distributions of invasive mosquitoes 
[44, 45], while the prediction results using individual SDMs 
may be under- or over-fitted [43, 46], and ensemble model 
is well suited to avoid or reduce this uncertainty. Therefore, 
in this study, we used global distribution data to model the 
global distribution of An. stephensi under current and future 
climate conditions using Biomod2, provided a map of the 

Fig. 3 Potential climatically suitability areas distribution of An.stephensi predicted by the combined model. A CA, B WM

Fig. 4 Potential climatically suitability areas distribution of An.stephensi in future climate conditions based on ensemble model. A 2021–2040, 
B 2041–2060

https://www.who.int/news/item/29-09-2022-who-launches-new-initiative-to-stop-the-spread-of-invasive-malaria-vector-in-africa
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potential global distribution of An. stephensi under cur-
rent climate conditions, and predicted changes in the global 
distribution of An. stephensi under future climate change 
conditions based on the SSP1-2.6 climate scenario. A total 
of 10 individual models were used in the construction of 
species distribution models using Biomod2. Among these 
models, MAXENT is the most commonly used model for 
species distribution prediction research using individual 
models [47]. By comparing the prediction results of MAX-
ENT models and ensemble models in this study, we found 
that in terms of model evaluation indicators, when using 
the same species distribution data and climatic variables, 
the ensemble models have higher prediction accuracy. The 
prediction ranges of MAXENT and ensemble models are 
essentially the same, though, in terms of predicted climati-
cally suitability areas maps. In addition, according to the 
prediction results of this study, the best performing models 

are GAM, MAXENT and RF, which have higher kappa, 
TSS and AUC values than the other models. These mod-
els also have higher predictive accuracy, leading to more 
accurate simulation effects. The differences in simulation 
effects between different models may be due to differences 
in how each model describes the fundamental and realised 
ecological niches of the species [48]. The ensemble model 
prediction method constructed in our study is a solution to 
reduce uncertainty, although it cannot solve the limitations 
and over-prediction of these individual models themselves, 
the results of this study show that the ensemble model pre-
diction method is able to improve the model accuracy and 
reduce the model uncertainty to a certain extent.

Since An. stephensi was first reported in Djibouti in 
2012, it was collected in Ethiopia and Sudan in 2016 [49, 
50], Sri Lanka in 2017 [51], Somalia in 2019 [52], Nigeria 
in 2020 [53, 54] and Yemen in 2021 [21]. As recently as 
2022, An. stephensi has also been collected in Kenya [21]. 
According to the predictions of this study, some areas 
where there are no current records of An. stephensi, espe-
cially in North Africa, showed significant areas of suita-
ble habitat for An. stephensi. Ahn et al. [54] used bilateral 
maritime trade data to model and analyze countries with 
the highest risk of invasion of An. stephensi in Africa. The 
results showed that Djibouti and Sudan are the coun-
tries with the highest risk of invasion of An. stephensi 
in Africa, and An. stephensi has already invaded and 
established populations in these two countries. Strong 

Fig. 5 Predicted climatically suitability areas change of An. stephensi by ensembled model of WM of probabilities under SSP1‑2.6. A 2021–2040 
B 2041–2060

Table 3 Percentage of climatically suitability areas distribution of 
An. stephensi 

Period Percentage of area (%)

unsuitable suitable

current 91.59 8.41

2021–2040 88.80 11.20

2041–2061 87.43 12.57
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maritime trade links seem to play a positive role in the 
invasion of An. stephensi and help it to invade new areas 
through human commerce. Countries such as Sudan, 
Egypt and Nigeria, as the known colonisation location for 
An. stephensi, are the bordering country to Chad, Libya, 
Niger and Central Africa, which are climatically suitable 
areas in our predicted results. Trade exchanges between 
regions are also an important influence on the inva-
sive spread of species. 12  years ago, it might have been 
unknown to Africa, but 12 years later, An. stephensi has 
nearly invaded and colonised about a third of the African 
continent. It is justified to assume that these mosquitoes 
arrived on the African continent as a result of inter-coun-
try traffic and trade, accompanied by climate change, 
which facilitated their settlement. We consider, and our 
predictions suggest, that An. stephensi will spread in the 
future if no measures are taken.

Many studies have already demonstrated that An. ste-
phensi comprises of three ecological variants, namely 
‘type’ form, ‘intermediate’ and ‘mysorensis’ which can be 
characterized by egg morphometry [55–57]. The ‘type’ 
form is an efficient urban malaria vector in India due to 
its anthropophilic nature and adaptation to man-made 
breeding sites, moreover, ‘type’ and ‘intermediate’ forms 
have also emerged as efficient vectors in rural areas of 
India as a result of changing agricultural and water stor-
age practices (https:// www. who. int/ publi catio ns/m/ item/ 
WHO- CDS- GMP- MPAC- 2019. 14. Assessed Dec. 13, 
2023). But as far as the current research is concerned, we 
are unable to clearly distinguish these three variants [58]. 
There is currently no widely accepted molecular iden-
tification method for An. stephensi [59, 60]. Therefore, 
there is currently no precise documentation of the occur-
rence records of An. stephensi, as well as its new invasion 
records in Africa, which can accurately identify the eco-
logical variants of An. stephensi. That is, most records of 
the distribution of An. stephensi are now sensu lato, not 
sensu stricto. We believe that further research is needed 
to develop reliable and feasible identification methods for 
these three variants of An. stephensi, and to accumulate 
distribution data for each genotype, in order to provide 
support for further distribution prediction and vector 
determination.

An. stephensi has been shown to be an effective vec-
tor of malaria in both rural and urban areas [61] and has 
a strong ability to survive and breed in urban areas [2], 
mainly in water tanks, water storage containers, con-
struction sites, desert coolers, wells, and other artificial 
habitats [21, 61, 62], potentially placing urban popula-
tions at greater risk. In India, An. stephensi is the main 
malaria vector in urban environments and success-
fully sustains malaria transmission even at low vector 

densities [63, 64]. Sub-Saharan Africa, the region with 
the highest malaria burden, with more than 40% of the 
population living in urban environments [9], has many 
moderately and lowly suitable areas for An. stephensi 
in our projections, reinforcing the need to strengthen 
vector surveillance and control in these areas. In addi-
tion, the predictions showed that the southern United 
States, Mexico, and South America have large areas of 
moderately and lowly suitable habitat for An. stephensi. 
According to the latest WHO Malaria Report [9], Mexico 
and South America have the highest burden of malaria 
outside Sub-Saharan Africa, and in the United States, 
approximately 2,000 malaria cases are diagnosed annu-
ally, with the majority of these cases being imported [8]. 
Thus, once An. stephensi has successfully invaded, the 
suitable environment for its survival will help it to settle 
and spread in these areas, which will pose a new threat 
to malaria control. The sensitivity of malaria endemic 
vectors to insecticides is an important component of 
developing an effective vector management program 
[65]. Resistance in An. stephensi has been reported in 
Africa and Asia over the last two years. High resistance 
to pyrethroids was observed in An. stephensi mosqui-
toes captured in Ethiopia [66], which suggests the limited 
effectiveness of pyrethroid-only insecticide-treated nets 
(which have been used throughout Ethiopia) in control-
ling malaria transmitted by An. stephensi. Resistance 
in An. stephensi has also been reported in regions such 
as Afghanistan [67], Pakistan [68], Dubai [69] and India 
[70]. The development of resistance in malaria vectors is 
one of the serious limitations to effective vector control 
strategies that rely on chemical insecticides [65], and the 
resistance shown by An. stephensi to insecticides in these 
areas poses an additional challenge to its control. There-
fore, to cope with the risk of invasion and malaria trans-
mission associated with the expansion of An. stephensi 
habitats, integrated vector control measures should be 
actively strengthened in these areas. In terms of protect-
ing populations, attention should be given to improv-
ing health education, housing conditions and the use 
of screens and other barriers to prevent invasive mos-
quitoes from entering human dwellings, and considera-
tion should be given to adopting or intensifying the use 
of insecticide-treated mosquito nets or indoor residual 
spraying. Therefore, in suitable areas where An. stephensi  
has not yet invaded, mosquito species should be routinely 
monitored, identified and documented to prevent the 
importation of An. stephensi, especially in locations where 
there is movement of people and trade, such as airports, 
seaports, land ports and other ports of exit and entry.

The invasive spread of malaria vectors has affected the 
control programs of many malaria-endemic countries in 

https://www.who.int/publications/m/item/WHO-CDS-GMP-MPAC-2019.14
https://www.who.int/publications/m/item/WHO-CDS-GMP-MPAC-2019.14
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Africa and Asia [9, 71, 72], posing a great challenge to the 
control of malaria and its vectors. The predicted results 
of this study, however, provide evidence for the possible 
invasion and expansion of An. stephensi as well as a ref-
erence base for the optimization of targeted surveillance 
and control strategies for An. stephensi in potential inva-
sion risk areas. 
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