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Abstract 

Background In Japan, carbapenem-resistant Enterobacterales (CRE) infections were incorporated into the National 
Epidemiological Surveillance of Infectious Diseases (NESID) in 2014, necessitating mandatory reporting of all CRE 
infections cases. Subsequently, pathogen surveillance was initiated in 2017, which involved the collection and analysis 
of CRE isolates from reported cases to assess carbapenemase gene possession. In this surveillance, CRE is defined as (i) 
minimum inhibitory concentration (MIC) of meropenem ≥2 mg/L (MEPM criteria) or (ii) MIC of imipenem ≥2 mg/L 
and MIC of cefmetazole ≥64 mg/L (IPM criteria). This study examined whether the current definition of CRE surveil-
lance captures cases with a clinical and public health burden.

Methods CRE isolates from reported cases were collected from the public health laboratories of local governments, 
which are responsible for pathogen surveillance. Antimicrobial susceptibility tests were conducted on these iso-
lates to assess compliance with the NESID CRE definition. The NESID data between April 2017 and March 2018 were 
obtained and analyzed using antimicrobial susceptibility test results.

Results In total, 1681 CRE cases were identified during the study period, and pathogen surveillance data were avail-
able for 740 (44.0%) cases. Klebsiella aerogenes and Enterobacter cloacae complex were the dominant species, fol-
lowed by Klebsiella pneumoniae and Escherichia coli. The rate of carbapenemase gene positivity was 26.5% (196/740), 
and 93.4% (183/196) of these isolates were of the IMP type. Meanwhile, 315 isolates were subjected to antimicrobial 
susceptibility testing. Among them, 169 (53.7%) fulfilled only the IPM criteria (IPM criteria-only group) which were 
susceptible to meropenem, while 146 (46.3%) fulfilled the MEPM criteria (MEPM criteria group). The IPM criteria-only 
group and MEPM criteria group significantly differed in terms of carbapenemase gene positivity (0% vs. 67.8%), multi-
drug resistance rates (1.2% vs. 65.8%), and mortality rates (1.8% vs 6.9%).

Conclusion The identification of CRE cases based solely on imipenem resistance has had a limited impact on clinical 
management. Emphasizing resistance to meropenem is crucial in defining CRE, which pose both clinical and public 
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Background
Carbapenem-resistant Enterobacterales (CRE) have 
been  represents a global public health concern, and the 
importance of surveillance is well recognised [1–3]. Fur-
thermore, carbapenemase-producing Enterobacterales 
(CPE) have been prioritised as the target in CRE sur-
veillance because of their potential to exhibit multidrug 
resistance and cause outbreaks in healthcare settings [1, 
4, 5]. However, practical application of the definition of 
CRE for surveillance based on the antimicrobial suscep-
tibility test (AST) in clinical diagnostic laboratories is 
cumbersome because the minimum inhibitory concen-
trations (MICs) of carbapenems for CPE might be below 
the clinical breakpoints, Enterobacterales consists of 
diverse bacteria species, and their mechanisms of carbap-
enem resistance are complex and inconsistent.

In Japan, patient-based CRE case surveillance was 
included in the National Epidemiological Surveillance of 
Infectious Diseases (NESID) in 2014, followed by CRE 
pathogen surveillance in 2017 [6]. In this national surveil-
lance, CRE was defined as follows:

 (i) MIC of meropenem ≥2 mg/L (MEPM criteria) or
 (ii) MIC of imipenem ≥2 mg/L and cefmetazole 

≥64 mg/L (IPM criteria).

The characteristics of this Japanese definition of CRE is 
a low MIC cutoff (meropenem/imipenem MIC ≥2 mg/L) 
and the combined usage of imipenem resistance and 
cefmetazole resistance (MIC ≥64 mg/L).

In establishing these criteria, numerous discussions 
occurred regarding the IPM criteria. It was acknowl-
edged that imipenem was not recommended for detect-
ing CPE because of its overlapping MIC distribution 
among wild-type isolates and carbapenemase produc-
ers, particularly in several species of Enterobacterales [7, 
8]. However, imipenem was inevitably included in the 
CRE definition because in Japanese clinical settings in 
2014, carbapenem susceptibility was primarily assessed 
using imipenem rather than meropenem. However, a low 
MIC cutoff for carbapenems was deemed necessary to 
enhance the sensitivity of CPE detection. The reason for 
combining cefmetazole resistance with imipenem resist-
ance was to exclude intrinsic imipenem non-susceptible 
Proteus mirabilis and CTX-M-type extended-spectrum 
β-lactamase (ESBL) producers, which are endemic to 
Japan [9, 10].

Imipenem resistance is usually included in the defini-
tion of CRE in other countries. The current definition 
provided by the Centers for Disease Control and Preven-
tion of United States (US-CDC) for CRE is Enterobac-
terales that are resistant to any carbapenem (i.e., MIC 
of ≥4 mg/L for doripenem, meropenem, or imipenem 
or ≥ 2 mg/L for ertapenem) or documented carbapen-
emase production [11]. The European Antimicrobial 
Resistance Surveillance Network has focused on carbap-
enem resistance using imipenem or meropenem, as well 
as multidrug resistance (defined as resistance to a com-
bination of fluoroquinolones, third-generation cepha-
losporins, and aminoglycoside) in Escherichia coli and 
Klebsiella pneumoniae [12].

The CRE definition in national surveillance has a sub-
stantial impact on clinical management, infection control 
policy, and clinical research. However, since the intro-
duction of Japanese CRE surveillance, no study has eval-
uated whether the IPM and MEPM criteria facilitate the 
effective detection of CPE and identification of CRE cases 
that truly pose a clinical and public health burden.

Methods
This population-based observational study aimed to 
assess the current CRE definition used in Japan by ana-
lyzing data collected between April 2017 and March 
2018 by national case and pathogen surveillance and the 
antimicrobial susceptibilities of isolates obtained from 
reported CRE cases.

National surveillance data of cases of CRE infections 
in Japan
Physicians must report all diagnosed CRE cases to pub-
lic health centres within 7 days of diagnosis. The defi-
nition of CRE used in this surveillance program was as 
described in the Background. CRE infection was reported 
if CRE was isolated from aseptic clinical specimens or 
from non-aseptic clinical specimens, followed by clini-
cal confirmation that the isolated CRE was the causative 
infectious pathogen.

Information collected in the surveillance report-
ing form includes patient demographics, type of infec-
tion, CRE species, clinical specimen, date of diagnosis, 
and date of death, if applicable. We considered all cases 
whose date of death was reported as fatal within 7 days of 
diagnosis, to analyse the all-cause 7-day mortality.

health burden. This emphasis will enable the efficient allocation of limited health and public health resources 
and preservation of newly developed antimicrobials.

Keywords Carbapenem-resistant Enterobacterales, Carbapenemase-producing Enterobacterales, Surveillance 
definition, Meropenem, Imipenem, IMP-type metallo-β-lactamase, Multidrug resistance
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This study analyzed the data of CRE cases diagnosed 
between April 1, 2017 and March 31, 2018, and the data 
were obtained from the NESID system on October 10, 
2018. The per capita incidence of CRE infection was cal-
culated using national statistics obtained from the Statis-
tics Bureau of Japan. The estimated total population of 
Japan was 126,706,000 as of October 1, 2017.

National pathogen surveillance data for CRE
In March 2017, pathogen surveillance for CRE was initi-
ated as part of the NESID program in which the results of 
carbapenemase gene investigations have been registered. 
The Public Health Institute (PHI) of each local govern-
ment conducted genotypic analysis of the CRE isolates 
from the reported CRE cases, examining the major car-
bapenemase genes (blaIMP, blaKPC, blaNDM, and blaOXA-

48-like) using polymerase chain reaction and conducting 
phenotypic tests for carbapenemase production using 
metallo-β-lactamase inhibitors (sodium mercapto-acetic 
acid or EDTA) and a KPC-type carbapenemase inhibi-
tor (boronic acid). All PHI personnel in charge of these 
analysis were trained at the National Institute of Infec-
tious Diseases (NIID) for standardized surveillance. In 
this study, pathogen data were obtained from the NESID 
pathogen surveillance system on October 23, 2018 and 
integrated with the data of CRE cases.

Antimicrobial susceptibility
Because AST data are not included neither in CRE case 
surveillance nor pathogen surveillance, isolates registered 
in the pathogen surveillance from the PHIs were collected 
in this study, and their MICs were determined for ten 
types of antimicrobials (flomoxef, ceftriaxone, cefepime, 
piperacillin–tazobactam, aztreonam, imipenem, mero-
penem, levofloxacin, amikacin, and tigecycline) using 
the MicroScan Neg MIC EN 2 J panel (Beckman Coulter, 
Brea, CA, USA) at NIID. Susceptibility breakpoints for 
each antimicrobial were determined with reference to 
the 26th edition of the Clinical and Laboratory Standards 
Institute (CLSI) M100 [13]. The breakpoints for flomoxef 
and tigecycline, which are not included in the CLSI cri-
teria, were defined as follows: flomoxef, ≤8 mg/L for 
susceptible and > 32 mg/L for resistant; and tigecycline, 
≤0.5 mg/L for susceptible and > 0.5 mg/L for resistant.

Statistical analysis
The Wilcoxon rank-sum test was used to analyze statis-
tically significant differences in continuous variables, 
whereas categorical variables were analyzed using Fish-
er’s exact test.

The statistical association between the variables of 
interest and all-cause 7-day mortality was evaluated using 
a logistic regression approach. Statistically significant risk 

factors identified by univariate logistic regression were 
further evaluated using multivariable logistic regression.

Statistical tests were two-sided, and p < 0.05 denoted 
statistical significance. Hommel-type corrections were 
conducted for multiple tests when necessary to appro-
priately identify the statistical association between 
outcomes and mortality. In addition, when a clear asso-
ciation was observed with mortality prior to the tests, 
the significance was subjected to one-sided testing with a 
threshold of p < 0.05. Statistical analyses were performed 
using JMP 13.2.1 (SAS Institute Inc., Cary, NC, USA) and 
RStudio (2021.09.0 + 3519).

Results
Description of CRE cases in Japan
In total, 1681 cases of CRE infection were reported 
across all 47 prefectures of Japan between April 2017 and 
March 2018; thus, the annual incidence was 1.33 cases 
per 100,000 population.

Pathogen surveillance data were available for 740 
(44.0%) of the 1681 reported cases. Carbapenemase 
gene-positive Enterobacterales (CgPE) infection was con-
firmed in 196 cases (26.5%, Table 1). The clinical features 
of CgPE and carbapenemase gene-negative Enterobac-
terales (CgNE) infections were generally similar, except 
that CgPE cases were less likely to involve intra-abdom-
inal infection than CgNE cases. Four species, namely 
Klebsiella aerogenes, Enterobacter cloacae complex 
(ECC), K. pneumoniae, and E. coli, accounted for approx-
imately 80% of the reported pathogens. No isolates of K. 
aerogenes, the most reported species, were CgPE, and K. 
pneumonia, and E. coli were observed more frequently in 
CgPE cases than in CgNE cases. The predominant car-
bapenemase gene was blaIMP (183, 93.4%), whereas few 
other carbapenemase genes were observed [blaNDM and 
blaKPC in eight (4.1%) and five cases (2.6%), respectively]. 
The all-cause 7-day mortality was 4.5% among 740 CRE 
cases with pathogen surveillance data, and the rate was 
higher for CgPE cases (6.1%) than for CgNE cases (3.9%), 
although the difference was not statistically significant.

Seven‑day mortality risk analysis
Thirty-three (4.5%) of the 740 CRE cases under pathogen 
surveillance were fatal (Supplemental Table 1). Univariate 
and multivariate analyses (Table 2) revealed that blood-
stream infections, respiratory tract infections, and E. coli 
infections were significant risk factors for 7-day mortal-
ity, whereas carbapenemase gene positivity was not sig-
nificant [odds ratio (OR) = 1.62, 95% confidence interval 
(CI) = 0.78–3.37, p = 0.225].

When the assessment specifically focused on determin-
ing the 7-day mortality risk among CgPE infections, posi-
tivity for the KPC/NDM-type carbapenemase gene was 
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a significant independent risk factor compared to IMP-
type carbapenemase (Table 3). Cases associated with the 
KPC/NDM-type carbapenemase gene most frequently 
manifested as bloodstream infection, which was iden-
tified as one of the significant risk factors in the 7-day 
mortality risk analysis for CRE. Conversely, urinary tract 
infection was the most reported manifestation in cases 
associated with IMP-type carbapenemase (Supplemental 
Table 2).

Antimicrobial susceptibility
Among the 740 cases with pathogen surveillance data, 
357 isolates from the same number of cases (357/740, 
48.2%) underwent AST at NIID. The species distribu-
tion (p = 0.0776) and CgPE proportion (28.2% vs. 26.5% 
in pathogen surveillance, p = 0.562) of the 357 isolates 
did not differ significantly from those of the 740 isolates 
identified during pathogen surveillance.

Figure  1 depicts the susceptibility to ten antimicrobi-
als by species and the presence or absence of the carbap-
enemase gene. The proportion of multidrug resistance, 
defined as resistance to more than two of four commonly 
used broad-spectrum antimicrobials other than car-
bapenems in Japan (cefepime, piperacillin–tazobactam, 
levofloxacin, and amikacin), was 29.1% among the 357 
CRE isolates, and the proportion was significantly higher 
in CgPE cases than in CgNE cases (65.4% vs. 14.8%, 
OR = 10.8; 95% CI = 6.33–18.48, p < 0.0001).

K. aerogenes and carbapenemase gene-negative ECC 
retained susceptibility to various types of antimicrobials, 
where the proportions of resistance to cefepime, pipera-
cillin–tazobactam, levofloxacin, and amikacin were 5.7, 
10.0, 0.5, and 0%, respectively, leading to a low proportion 
of multidrug resistance among all CgNE isolates. Con-
versely, K. pneumoniae and E. coli displayed no differ-
ence in the proportion of multidrug resistance regarding 
carbapenemase gene possession (E. coli: 86.7% for CgNE 

Table 1 Baseline characteristics of cases with carbapenem-resistant Enterobacterales infection reported to the National 
Epidemiological Surveillance of Infectious Diseases

IQR interquartile range: CgPE carbapenemase gene-positive Enterobacterales: CgNE carbapenemase gene-negative Enterobacterales
a Bacterial species for blaNDM-positive isolates were K. pneumoniae (n = 5) and E. coli (n = 3).bAll isolates carrying blaKPC were K. pneumoniae

Characteristic All reported cases Cases with pathogen 
surveillance data

CgPE cases CgNE cases P value

(N = 1681) (N = 740) (N = 196) (N = 544)

Age, median [IQR] 76 [67–83] 77 [68–84] 78 [69–85] 76 [67–84] 0.085

Male (N, %) 1045 (62.2%) 454 (61.4%) 112 (57.1%) 342 (62.9%) 0.171

Type of infection (N, %)

Urinary tract infection 542 (32.2%) 244 (33.0%) 76 (38.8%) 168 (30.9%) 0.051

Bloodstream infection 491 (29.2%) 208 (28.1%) 64 (32.7%) 144 (26.5%) 0.115

Intra-abdominal infection 454 (27.0%) 207 (28.0%) 31 (15.8%) 176 (32.4%) < 0.001

Respiratory tract infection 368 (21.9%) 171 (23.1%) 53 (27.0%) 118 (21.7%) 0.913

Bone and soft tissue infection 138 (8.2%) 61 (8.2%) 16 (8.2%) 45 (8.3%) 1.000

Others 16 (1.0%) 6 (0.8%) 1 (0.5%) 5 (0.9%) 1.000

Not specified 5 (0.3%) 2 (0.3%) 0 (0%) 2 (0.4%) 0

Multiple types of infection 305 (18.1%) 144 (19.5%) 40 (20.4%) 104 (19.1%) 0.752

Bacterial species (N, %)

Klebsiella aerogenes 595 (35.4%) 241 (32.6%) 0 (0%) 241 (44.3%) < 0.001

Enterobacter cloacae complex 487 (29.0%) 202 (27.3%) 60 (30.6%) 142 (26.1%) 0.226

Klebsiella pneumoniae 165 (9.8%) 86 (11.6%) 53 (27.0%) 33 (6.1%) < 0.001

Escherichia coli 129 (7.7%) 68 (9.2%) 38 (19.4%) 30 (5.5%) < 0.001

Serratia marcescens 71 (4.2%) 29 (3.9%) 4 (2.0%) 25 (4.6%) 0.135

Others 192 (11.4%) 97 (13.1%) 37 (18.9%) 60 (11.0%) 0.007

Not reported 48 (2.9%) 18 (2.4%) 4 (2.0%) 14 (2.6%) 0.793

Detected carbapenemase gene (N, %)

blaIMP – 183 (24.7%) 183 (93.4%) – –

blaNDM
a – 8 (1.1%) 8a (4.1%) – –

blaKPC
b – 5 (0.7%) 5b (2.6%) – –

blaOXA-48-like – 0 (0%) 0 (0%) – –

Cases with reported date of death (N, %) 68 (4.0%) 33 (4.5%) 12 (6.1%) 21 (3.9%) 0.225
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vs. 88.2% for CgPE, p = 1.000; K. pneumoniae: 64.7% for 
CgNE vs. 46.7% for CgPE, p = 1.000). Furthermore, E. 
coli exhibited remarkably high levofloxacin resistance. 
CgNE-E. coli and CgPE-E. coli displayed equally high 
levels of levofloxacin resistance (86.7 and 88.2%, respec-
tively). Among the carbapenemase types, NDM/KPC-
type CgPE exhibited a distinctively higher proportion 
of multidrug resistance than IMP-type CgPE (100% vs. 

62.0%, p = 0.025). All NDM/KPC-type CgPE isolates were 
resistant to cefepime, piperacillin–tazobactam, and levo-
floxacin. By contrast, 89, 27, and 40% of IMP-type CgPE 
isolates were resistant to cefepime, piperacillin–tazobac-
tam, and levofloxacin, respectively.

Regarding the mortality risk associated with multidrug 
resistance, CRE isolates simultaneously resistant to three 
broad-spectrum antimicrobials, namely cefepime, piper-
acillin–tazobactam, and levofloxacin, carried a higher 
risk of 7-day mortality than isolates not resistant to these 
antimicrobials (13.8% vs. 3.7%, OR = 4.22. 95% CI = 1.27–
14.03, p = 0.0593). However, the observed difference was 
not significant, possibly because of a lack of statistical 
power attributable to the small number of fatal cases.

Comparison of the two CRE criteria groups
To compare the clinical characteristics of CRE cases iden-
tified by imipenem resistance and meropenem resistance, 
two groups were defined: the “IPM criteria-only group,” 
which fulfilled only the IPM criteria and not the MEPM 
criteria, and the “MEPM criteria group,” which met 
the MEPM criteria regardless of imipenem resistance. 
Among the 357 isolates, 315 (88.2%) met the CRE defini-
tion based on AST results at the NIID. Among them, 169 
isolates (53.7%) were categorised into the IPM criteria-
only group, and 146 (46.3%) belonged to the MEPM cri-
teria group. The majority (71.2% 104/146) of the isolates 
in the MEPM criteria group simultaneously fulfilled the 

Table 2 Seven-day mortality risk analysis among CRE cases with pathogen surveillance data (N = 740)

aOR adjusted odds ratio: OR odds ratio: CI confidence interval

CRE cases with pathogen surveillance data (N = 740)

Univariate analysis Multivariate analysis

Covariate OR (95% CI) P aOR (95% CI) P

Male 1.72 (0.79–3.75) 0.202 – –

Age < 18 years 1.92 (0.43–8.51) 0.308 – –

Age > 64 years 2.43 (0.73–8.06) 0.174 – –

Urinary tract infection 0.44 (0.18–1.08) 0.087 – –

Bloodstream infection 2.87 (1.42–5.8) 0.005 4.00 (1.88–8.52) 0.0003

Respiratory tract infection 2.94 (1.45–5.97) 0.005 4.71 (2.17–10.24) < 0.0001

Intra-abdominal infection 1.3 (0.62–2.74) 0.552 – –

Bone and soft tissue infection 0.71 (0.17–3.03) 1.000 – –

Escherichia coli 4.12 (1.83–9.27) 0.002 5.17 (2.18–12.24) 0.0002

Klebsiella aerogenes 0.65 (0.29–1.47) 0.346 – –

Klebsiella pneumoniae 0.75 (0.22–2.52) 1.000 – –

Enterobacter cloacae complex 0.85 (0.38–1.91) 0.842 – –

Serratia marcescens 2.62 (0.75–9.14) 0.134 – –

Carbapenemase gene-positive Enterobacte-
rales

1.62 (0.78–3.37) 0.225 – –

Table 3 Seven-day mortality risk analysis among CgPE cases 
(N = 196)

OR odds ratio, CI confidence interval

Univariate analysis

OR (95% CI) P

Male 1.05 (0.32–3.44) 1.000

Age < 18 years 2.3 (0.26–20.38) 0.402

Age > 64 years 1.81 (0.22–14.62) 1.000

Urinary tract infection 0.3 (0.06–1.4) 0.133

Bloodstream infection 3.12 (0.95–10.25) 0.061

Respiratory tract infection 2.91 (0.9–9.48) 0.09

Intra-abdominal infection 0.47 (0.06–3.75) 0.695

Bone and soft tissue infection 1.02 (0.8–8.48) 1.000

Escherichia coli 2.21 (0.63–7.75) 0.253

Klebsiella pneumoniae 0.52 (0.11–2.46) 0.519

Enterobacter cloacae complex 1.14 (0.33–3.95) 1.000

Serratia marcescens 5.48 (0.53–57.14) 0.225

blaNDM, blaKPC 5.8 (1.36–24.82) 0.036
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Fig. 1 Antimicrobial susceptibility patterns of CRE isolates. Proportions of isolates resistant (R), intermediate (I), and susceptible (S) to the indicated 
antimicrobials as specified below the graphs, are represented by red, yellow, and blue bars. Antimicrobial abbreviations: FMOX (flomoxef ), CTRX 
(ceftriaxone), CFPM (cefepime), P/T (piperacillin/tazobactam), AZT (aztreonam), IPM (imipenem), MEPM (meropenem), LVFX (levofloxacin), AMK 
(amikacin), TGC (tigecycline)

Table 4 IPM-criteria-only group and MEPM-criteria group: Comparison among the isolates satisfying Japanese CRE criteria at national 
central laboratory (N = 315)

IPMcriteria-only group = Isolates meeting the criteria only for imipenem MIC≥2 and cefmetazole MIC≥64

MEPM criteria group = Isolates meeting the criteria for meropenem MIC≥2, irrespective of imipenem resistance
a  US CDC-CRE criteria definition: (a) Resistant to any carbapenem antimicrobial (i.e., minimum inhibitory concentrations of ≥4 mcg/ml for doripenem, meropenem, 
or imipenem OR ≥ 2 mcg/ml for ertapenem); (b) In addition: (i) For bacteria that have intrinsic imipenem nonsusceptibility (i.e., Morganella morganii, Proteus spp., 
Providencia spp.), resistance to carbapenems other than imipenem is required, OR (ii) Documented to produce carbapenemase

N (%) IPMcriteria‑only group
N = 169

MEPM criteria group
N = 146

P‑value

IPM criteria fulfilled 169 (100%) 104 (71.2%) –

Klebsiella aerogenes 109 (64.5%) 13 (8.9%) < 0.0001

Enterobacter cloacae complex 55 (32.5%) 40 (27.4%) 0.328

Klebsiella pneumoniae 0 (0%) 40 (27.4%) < 0.0001

Escherichia coli 1 (0.6%) 44 (30.1%) < 0.0001

Serratia marcescens 4 (2.4%) 9 (6.2%) 0.153

CgPE 0 (0%) 99 (67.8%) < 0.0001

Multidrug resistance 2 (1.2%) 96 (65.8%) < 0.0001

7-day-mortality 3 (1.8%) 10 (6.9%) 0.0428

US-CDC CRE reporting  criteriaa fulfilled 46 (27.2%) 146 (100%) < 0.0001

 Meropenem MIC≥4 0 (0%) 128 (87.7%) < 0.0001

 Imipenem MIC≥4 41 (24.3%) 85 (58.2%) < 0.0001

 Ertapenem MIC≥2 10 (5.9%) 146 (100%) < 0.0001
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IPM criteria, indicating resistance to both imipenem and 
meropenem (Table 4).

The species distribution differed between the IPM cri-
teria-only and MEPM criteria groups. K. aerogenes com-
prised more than 60% of isolates in the IPM criteria-only 
group, whereas E. coli and K. pneumoniae accounted for 
nearly 60% of isolates in the MEPM criteria group. Nota-
bly, CgPE isolates were not found in the IPM criteria-
only group, whereas 67.8% of the isolates in the MEPM 
criteria group were CgPE. The proportion of multidrug 
resistance was low in the IPMcriteria-only group (1.2%), 
91.1% of the isolates in the IPM criteria-only group were 
susceptible to all four antimicrobials. Seven-day mortal-
ity was also significantly lower among in the IPMcriteria-
only group than in the MEPM criteria group (1.8% vs. 
6.9%, p = 0.0428).

In addition, 61.0% (192/315) of the isolates satisfied 
the CRE definition of the US CDC. The CRE defini-
tion of US CDC had two-fold higher thresholds for the 
MICs of meropenem and imipenem than the Japanese 
CRE definition. Among isolates in the IPMcriteria-only 
group, 24.3% fulfilled the US-CDC CRE criteria for imi-
penem, and 95.1% (39/41) of them remained suscepti-
ble to cefepime, piperacillin–tazobactam, levofloxacin, 
and amikacin. Meanwhile, all isolates in the MEPM cri-
teria group fulfilled the US CDC CRE criteria. This was 
because all 18 isolates in the MEPM criteria group, which 
had a meropenem MIC of 2 mg/L, exhibited an MIC of 
2 mg/L for ertapenem. One of these 18 isolates was an 
IMP-type carbapenemase producer.

Discussion
In Japan, among the reported CRE cases, the dominant 
species were K. aerogenes and ECC, followed by K. pneu-
moniae and E. coli. The proportion of CgPE isolates was 
26.5%, and the 7-day mortality was 4.5%. Both of these 
figures were lower than those reported in other coun-
tries [4, 14, 15], but they were consistent with previous 
domestic studies that used the same CRE definition [16, 
17]. However, one of these previous studies reported 
higher mortality rates than the present study. Specifically, 
Oka et al. reported a 28-day mortality rate of 14.6% [17]. 
This difference might be attributable to the study popula-
tions and longer observational periods, as their study was 
conducted at university hospitals in which patients with 
more complex clinical backgrounds were more prevalent, 
whereas our study, which included cases from primary 
hospitals.

One of the reasons for prioritizing CPE among CRE 
isolates is that CPE is associated with a significantly 
higher risk of mortality than infection caused by non-
CPE [18, 19]. However, recent studies revealed no sig-
nificant differences in clinical outcomes between CPE 

and non-CPE infections [14, 16, 17, 20, 21]. Our analysis 
also did not conclude that CgPE posed a greater risk of 
mortality. Conversely, it revealed a higher proportion of 
multidrug resistance among CgPE isolates than in among 
CgNE isolates. Furthermore, CRE isolates exhibiting 
multidrug resistance carried a notably high risk of 7-day 
mortality. These findings that multidrug resistance, rather 
than the mere possession of carbapenemase genes, exerts 
a stronger impact on clinical outcomes. In other words, 
the previously reported causal association between CPE 
infection and mortality might be confounded by the 
presence of multidrug resistance. Recently, novel antimi-
crobials targeting CPE have been introduced in clinical 
settings, including new β-lactam–β-lactamase inhibitor 
combinations (e.g., imipenem–relebactam and ceftazi-
dime–avibactam) and cefiderocol. These antimicrobials 
can alter the clinical outcomes of CRE infections, par-
ticularly those caused by CPE.

The significant difference in the proportion of mul-
tidrug resistance between CgPE and CgNE isolates in 
this study might be attributable to the large proportion 
(82.4%, 211/256, Fig. 1) of K. aerogenes and ECC isolates 
in CgNE. These isolates remained susceptible to various 
antimicrobials, thereby reducing the overall proportion 
of multidrug resistance among CgNE isolates. The rea-
son for high susceptibility to various antimicrobials but 
not to imipenem and cefmetazole in K. aerogenes and 
CgNE-ECC might be explained by the presence of chro-
mosomal AmpC β-lactamase production combined with 
altered membrane permeability, which can elevate the 
MIC of imipenem even though they are not exogenously 
acquired resistance mechanisms but can elevate the MIC 
of imipenem [22–24].

In the analysis of mortality risk, cases other than K. 
aerogenes and ECC infections, particularly those involv-
ing E. coli and K. pneumoniae, accounted for half of the 
fatal cases and likely influenced the risk analysis. It is 
important to recognize that the proportion of multid-
rug resistance in E. coli and K. pneumoniae did not differ 
between CgPE and CgNE. In particular, the proportion 
of multidrug resistance in E. coli exceeded 85% regard-
less of the presence or absence of carbapenemase genes. 
This could be one of the explanations for the novel find-
ing that E. coli infection itself increased the risk of early 
mortality among cases with CRE infection.

Unlike K. aerogenes and ECC, CgNE-E. coli and 
CgNE-K. pneumoniae typically exhibit elevated MICs 
for carbapenems only when they acquire exogenous 
β-lactamase genes, such as plasmid-mediated ESBLs and 
AmpC β-lactamase genes, alongside altered membrane 
permeability [25, 26]. This propensity for co-acquiring 
other exogenous resistance genes, such as aminoglyco-
side resistance genes, reflects the scenario for CPE, which 
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acquires exogenous carbapenemase genes and other 
resistance genes and consequently develops multidrug 
resistance. In addition, the distinct high rate of resistance 
to levofloxacin, one of the commonly used antimicrobials 
in Japan [27], observed in E. coli isolates might also con-
tribute to multidrug resistance and higher mortality rates 
because of empirical treatment failure.

IMP-type carbapenemase is a domestically preva-
lent carbapenemase in Japan, whereas NDM/KPC-type 
carbapenemase was more associated with cases with a 
history of travel abroad [28]. Within the CgPE cases ana-
lyzed, NDM/KPC-CgPE increased the risk of mortality 
compared to IMP-type CgPE. This finding might also be 
attributable to the higher prevalence of multidrug resist-
ance in NDM/KPC-CgPE than in IMP-type CgPE.

Despite slight variations in mortality data among 
domestic studies, the characteristics of CRE cases in 
Japan, including the high proportion of K. aerogenes and 
ECC, relatively lower proportion of CgPE, and the low 
mortality, were distinctive. We assumed that these fea-
tures in Japan might be explained by the specific Japanese 
CRE definition, particularly among cases that met only 
the IPM criteria, forming the IPMcriteria-only group in 
this study. This group comprised 97% K. aerogenes and 
ECC isolates, a single E. coli isolate, and no K. pneumo-
niae isolates, and no isolates were CgPE. Furthermore, 
this group exhibited a low proportion of multidrug 
resistance (1.2%). Of the isolates in the IPMcriteria-only 
group, which remained susceptible to meropenem, 91% 
were also susceptible to cefepime, piperacillin–tazobac-
tam, levofloxacin, and amikacin, meaning that sufficient 
treatment options were available, which could explain the 
low mortality of 1.8% in this group.

In the IPMcriteria-only group, 24.3% of the patients 
exhibited an imipenem MIC of ≥4 mg/L, which aligns 
with the cutoff used in the US-CDC CRE criteria [11]. 
These isolates also remained susceptible to other anti-
microbials used to treat CRE infections. Regardless of its 
MIC cutoff, imipenem is an inappropriate reference drug 
for the definition of CRE surveillance.

This study had several limitations. First, the NESID 
does not provide any definition or guideline for the clini-
cal diagnosis of CRE infection, and all diagnoses are 
based on the clinician’s discretion. Second, the clini-
cal aspects of the cases, such as underlying diseases and 
treatment courses, were unavailable, and such infor-
mation is crucial for evaluating mortality risks in real-
world settings. Furthermore, because the mortality risk 
was analyzed under the limitation of surveillance data, 
which were collected within 7 days of diagnosis, a longer 
observation period would provide a more precise view of 
mortality. Third, the number of isolates tested for antimi-
crobial susceptibility was limited. Finally, the findings of 

this study were derived from an analysis of CRE cases in 
Japan, where IMP-type carbapenemase is dominant. Fur-
ther study in regions with different dominant carbapene-
mase gene profiles is required to evaluate the significance 
of imipenem resistance in defining CRE.

Conclusion
In summary, in cases in the IPMcriteria-only group, in 
which CRE was identified solely based on imipenem 
resistance, the isolates were less likely to be CgPE. Fur-
thermore, and more importantly, these isolates were less 
likely to exhibit multidrug resistance, indicating that 
existing antimicrobials are more likely to be effective, 
potentially resulting in a lower clinical and public health 
burden. To preserve newly developed antimicrobials 
such as ceftazidime–avibactam, meropenem–vaborbac-
tam, imipenem–cilastatin–relebactam, and cefiderocol 
and to efficiently allocate limited healthcare and public 
health resources for infection control, it is recommended 
that CRE is defined solely using the MEPM criteria. This 
approach will help accurately understand the disease bur-
den of CRE infection and the challenges it presents in 
clinical management and infection control.
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