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Abstract 

Background Omicron has become the dominant variant of severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) since first reported in November 2021. From the initially detected Wuhan lineage, sublineages BA.2, BA.4, BA.5, 
BQ, XAG, and XBB have emerged over time and are dominant in many countries. Therefore, the aim is to evaluate 
which variants are circulating and the clinical characteristics of inpatients infected with the Omicron variant.

Methods This retrospective cohort study selected hospitalized patients admitted with respiratory symptoms 
to a hospital in the state of Rio Grande do Sul, Brazil, between June and July 2022. SARS-CoV-2 results were ana-
lyzed together with clinical outcomes and vaccination status. A viral genome library was prepared and forwarded 
to the Illumina MiSeq Platform for sequencing.

Results In total, 37 genomes were sequenced. Concerning the Omicron sublineages, our study detected: BA.1 
(21 K), BA.2 (21 L), BA.4 (22A), BA.5 (22B), BA.2.12.1 (22C), BQ.1 (22E), XBB (22F), and XAG recombinant. Omicron BA.5 
(30%), BA.2 (19%), and BQ.1 (19%) were the most frequent sublineages, respectively. In total, 38% of patients present 
hypertension, and the most common symptoms were coughing (62%). Analyzing the COVID-19 vaccination, 30% 
of patients were fully vaccinated, 49% had a partial vaccination status, and 21% were unvaccinated (no dose).

Conclusions BA.5 was the most prevalent sublineage in our study and surpassed the predominance of BA.2, 
as reported by the national genomic surveillance program. BQ.1 was diagnosed earlier in this study than it was offi-
cially reported in the state. Current data have demonstrated that the Omicron variant causes less severe infections, 
with the high rate of transmissibility and mutational landscape causing the rapid emergence of new sublineages.
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Background
On 24 November 2021, the World Health Organization 
(WHO) reported a new variant of SARS-CoV-2 (severe 
acute respiratory syndrome coronavirus 2): B.1.1.529, 
from South Africa. This variant of concern (VOC) was 
designated Omicron based on the changes in coronavirus 
disease 2019 (COVID-19) epidemiology, the increase in 
the number of cases due to the great potential for dissem-
ination, and the risk of reinfection. Previously identified 
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VOCs (Alpha, Beta, Gamma, and Delta) emerged when 
the vaccination measures for COVID-19 were being 
established. Omicron appeared at a time when global 
immunity had been achieved through available vaccines 
[1, 2].

A large number of new mutations in the spike protein 
led to the Omicron variant, the most mutated SARS-
CoV-2, compared to the first Wuhan lineage described 
at the beginning of the disease [3]. More than 60 muta-
tions in its genome, 32 of which are in the spike protein’s 
receptor binding domain (RBD) [3, 4]. Many of them 
were observed previously in the Alpha (del69–70), Kappa 
and Iota (T95I), and Kappa and Delta (G142D) variants. 
Mutations in the Omicron spike region fall in the foot-
print of the main virus entry receiver, the human angi-
otensin-converting enzyme 2 (ACE2). Thus, mutations 
can provide a potential and evolutionary advantage by 
strengthening the virus ACE2-RBD binding [4, 5].

Initially, in November 2021 the sublineages BA.1, BA.2, 
and BA.3 were discovered simultaneously and share 
many common mutations, though each also has unique 
characteristics. Subsequently, in January and February 
2022, BA.4 and BA.5 were defined and presented spike 
proteins most closely related to BA.2, indicating a com-
mon ancestor [5]. BA.4 and BA.5 have identical muta-
tions in the 5′ region (ORF1ab to envelope) yet exhibit 
divergence in the 3′ region (from M to the 3′ genome 
end). Therefore, it is related to a recombination event [4, 
6]. With the circulation of the Delta variant and Omicron 
emerging, recombination events occurred, and new sub-
lineages appeared, like XBB and BQ.1 [5, 7, 8].

In summary, the Omicron variant is characterized as a 
VOC with increased infectivity and an enhanced capac-
ity to evade the immune system, hence a resurgence in 
cases, hospital admissions, or deaths. In the South of 
Brazil, as of December 2021, this VOC caused the fifth 
wave of COVID-19 cases with new infections associated 
with higher transmissibility. The symptoms of the infec-
tion are less dangerous than those of other SARS-CoV-2 
strains, but it is more transmissible and less susceptible 
to vaccines [3, 5, 6].

Following the initiation of vaccination programs 
around the world, the pandemic scenario has changed. In 
Brazil, the immunization panel standardized by the Bra-
zil Ministry of Health defined the vaccination number of 
doses to each patient based on age. However, the spread 
of Omicron is likely to have important implications such 
as an increase in the number of cases. In addition, strate-
gies are needed to limit transmission. The main goal of 
this study was to evaluate the circulation of Omicron 
lineages and the clinical characteristics of hospitalized 
patients in a hospital in Rio Grande do Sul (RS), a state 
in southern Brazil. As the population exhibits a diverse 

vaccination profile and little is known about how the new 
sublineages have affected individuals, this study aims to 
assess the clinical profile of patients, including symptoms 
and comorbidities, as well as the outcome of the infec-
tion. The continued discovery of diverse Omicron line-
ages can leverage understanding around the evolution 
and spread of the virus.

Methods
Sampling
This study was approved by the Research Ethics Com-
mittee at Santa Casa de Misericórdia de Porto Alegre 
Hospital (file number: 57888422.3.0000.5335 - Ethical 
Review Presentation Certificate). June and July are the 
coldest months of winter, and therefore patients admit-
ted to a hospital in the city of Porto Alegre, in the state 
of Rio Grande do Sul, were selected in 2022. As inclusion 
criteria for our study, the patient had to be hospitalized 
and exhibit respiratory symptoms. There was no age limi-
tation. After the selection and to avoid possible bias, the 
patients were classified in age categories.

Clinical characteristics like symptoms, comorbidities, 
and clinical outcomes were collected directly from the 
medical records (Tasy 3.07.1815.133 Software) of each 
patient and accessed at the hospital. COVID-19 vaccine 
status was collected through the national immunization 
program, and the classification was defined according 
to the immunization panel standardized by health nor-
mative from the Brazilian Government, based on age 
[9]. During the period of study, patients considered fully 
vaccinated included those aged over 40 years old (with 4 
doses), between 12 and 39 years old (with 3 doses), and 
between 5 and 11 years (with 2 doses). Children under 
4 years old were not included in the panel during the 
period of this study. Considered partially vaccinated 
patients with a different number of doses than indicated, 
as described above.

SARS‑CoV‑2 detection and genome sequencing
Naso-oropharyngeal swab samples were submitted 
to nucleic extraction, and infections were confirmed 
through molecular methods, as follows. Initially, the 
commercial MagMAX™ CORE Nucleic Acid Purifica-
tion Kit (Applied biosystems™, Thermo Fisher Scientific, 
Waltham, MA, USA) was used to perform viral RNA 
extraction using automated KingFisher™ Duo Prime 
(Thermo Fisher Scientific™) equipment. For SARS-CoV-2 
detection, reverse transcription-quantitative real-time 
polymerase chain reaction (RT-qPCR) was performed 
using the Charite Institute (Berlin, Germany) protocols 
for selecting the envelope (E) gene. Assays were per-
formed with AgPath-ID One-Step RT-PCR Reagents 
(Thermo Fisher Scientific™).
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Viral genome sequencing was carried out with the 
COVIDSeq Illumina Kit, following the manufacturer’s 
instructions (San Diego, CA, USA). The viral genome 
library used was the Illumina MiSeq platform (Foster 
City, CA, USA), with MiSeq Reagent Kit v3 (600-cycle). 
The Geneious Prime™ (2023.0.1) suite was used for 
genome assembly, editing, and mapping the sequences 
against the reference sequence (NC_045512) available in 
the EpiCoV database from the Global Initiative on Shar-
ing Avian Influenza Data (GISAID) [10]. PANGO and 
Nextrain lineage assignments were applied to character-
ize the consensus sequences.

Sequences generated in this study were aligned with 
116 Brazilian SARS-CoV-2 complete genomes and the 
reference sequence that were retrieved from the GISAID 
database. Alignment using the reference sequence from 
Wuhan as the outgroup was performed using Geneious 
Prime™. The evolutionary history was inferred by using 
the Maximum Likelihood method and General Time 
Reversible model [11]. The tree with the highest log like-
lihood (− 48,488.33) is shown. The percentage of trees 
in which the associated taxa clustered together is shown 
above the branches. Initial tree(s) for the heuristic search 
were obtained automatically by applying Neighbor-Join 
and BioNJ algorithms to a matrix of pairwise distances 
estimated using the Maximum Composite Likelihood 
(MCL) approach (applying 1000 bootstraps), and then 
selecting the topology with superior log likelihood value. 
A discrete Gamma distribution was used to model evo-
lutionary rate differences among sites (5 categories (+G, 
parameter = 1.6111)). The rate variation model allowed 
for some sites to be evolutionarily invariable ([+I], 48.94% 
sites). The tree is drawn to scale, with branch lengths 
measured in the number of substitutions per site. This 
analysis involved 152 nucleotide sequences. There was a 
total of 29,921 positions in the final dataset. Evolutionary 
analyses were conducted in MEGA11 [12].

Results
From a total of 64 patients positively diagnosed with 
COVID-19, and following confirmation, samples with 
cycle threshold (Ct) below 30 were selected, accord-
ing to laboratory protocol cut-off. As such, 37 genomes 
were sequenced. Of them, 29 (78%) were from June and 8 
(22%) from July. Patients were from different cities in the 
state of Rio Grande do Sul, female samples corresponded 
to 21 (57%) and male to 16 (43%), with ages ranging from 
11 months to 97 years old, while the average age recorded 
was 51 years old.

With the genetic characterization, the phylogenetic 
tree was inferred (Fig. 1). All sequences were uploaded to 
GISAID, and the accession numbers can be observed in 
the Supplementary Material 1. Likewise, coverage depth, 

coverage breadth, and additional information about 
the sequences are in the Supplementary Material 2. The 
Omicron variant represented 100% of the frequency of 
the sequences generated. BA.1 (21 K), BA.2 (21 L), BA.4 
(22A), BA.5 (22B), BA.2.12.1 (22C), BQ.1 (22E), XBB 
(22F), and XAG recombinant sublineages were detected, 
and the most prevalent sublineages were from the Omi-
cron BA.5 (30%). Subsequently, other frequencies were 
BQ.1 (19%), BA.2 (19%) and XAG (16%). The represen-
tation of sublineage detection distribution is depicted in 
Fig.  2 across epidemiological weeks, with weeks 22–25 
corresponding to June and weeks 26–28 to July.

Analyzing the clinical characteristics, summarized in 
Table  1, 38% of patients present hypertension, 9% had 
one kind of malignance and 19% had neurological dis-
ease. The most common symptoms were coughing (62%), 
fever (46%), and headache (40%). Of the total number of 
patients, there were three deaths, two of whom suffered 
from lymphoma. The deaths corresponded to a 10-year-
old female child, infected with Omicron BA.1.1; a 
42-year-old adult man, infected with BA.5; and a 75-year-
old female, infected with BA.2. We did not have access to 
the patient’s cause of death, as it was not described in the 
medical records.

During the study, the COVID-19 full vaccination panel 
varied depending on age. Of the total, 30% of patients 
were fully vaccinated, 49% had a partial vaccination sta-
tus, and 21% were unvaccinated (no dose). The rela-
tionship between vaccination status and the Omicron 
sublineage is shown in Fig. 3.

Discussion
Until July 2022, the southern region of Brazil had the 
highest incidence of COVID-19 cases in the country. The 
circulation of the BA.2 sublineage in Brazil represents 
61.5% of the genomes sequenced in the overall popula-
tion, according to data published in the national genomic 
surveillance program [13, 14]. Omicron BA.2 emerged 
in Brazil in early January 2022, and according to Silva 
et  al. (2022), the BA.2 sublineage represented 64% of 
the genomes sequenced in June 2022. In Minas Gerais, 
another Brazilian state, Queiroz et al. [15] showed BA.1 
as the most present sublineage when the number of cases 
declined and BA.2 became prevalent. Further, proving 
highly successful at evading the host immune system, 
BA.4 and BA.5 replaced all the previously emerged sub-
lineages and became dominant globally.

In the state of Rio Grande do Sul, the first cases of 
BA.5 infections were reported in late May and early 
June 2022. Monitoring data showed that during the 
time of the study, BA.2 was the most frequent (75%) 
sublineage detected in the state [16]. This frequency 
fails to correspond with the findings in this study, 
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Fig. 1 Phylogenetic analysis of complete genomes of SARS-CoV-2 Omicron variant in patients and alignment with other Brazilian SARS-CoV-2 
strains. Maximum Likelihood method and General Time Reversible model; Maximum Composite Likelihood applying 1000 bootstraps
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where BA.5 was detected in 30% of samples and BA.2 in 
19%. Although, this corroborates with studies in other 
regions of Brazil and countries where the BA.5 subline-
age presented a wave of infections during this time [4, 
17, 18]. According to Sousa et  al. (2023), BA.5 repre-
sents 41.1% of the sequenced genomes in the Mara-
nhão, state in the northeastern region of Brazil.

As of October 2022, BQ.1 has been detected in 65 
countries with a prevalence of 6% and represents one 
of the most recently discovered sublineages. Accord-
ing to Scarpa et  al. (2022), the genome has a close 
relationship with its direct progenitor BA.5 and is typi-
cally characterized by amino acid mutations involving 
important genes. In this study, BQ.1 was detected in 
seven patients (19%), although the first official related 
case had been reported in November 2022 by the Rio 
Grande do Sul State Health Surveillance Center. In 
other Brazilian states, studies have documented the 
introduction of this sublineage since November 2022 
[18]. The elevated potential to replace BA.5 positioned 
BQ as a new dominant variant.

With the circulation of different variants in the same 
place and at the same time, chronic infection and co-
infection become possible through viral recombination. 
A genome recombination event, like circulating line-
ages combined with the host, is an important evolu-
tionary mechanism for the emergence of pathogens [5, 
14]. XAG was characterized by four unique mutations 
like synonymous mutations and is a recombination of 
Omicron BA.1.1 and BA.2.23, while recombinant XBB 
has a large portion of the mutations in the spike protein 
derived from BA.2 [19].

XAG was first identified in the state in April 2022 and 
detected in our study in 16% of samples. This result is 
similar to the findings in other studies and monitor-
ing services [16, 20]. In a study conducted by Silva et al. 
(2022), an examination of samples collected from vari-
ous Brazilian states revealed the identification of 252 
sequences attributed to the recombinant XAG cluster as 
of July 2022. The XBB recombinant was detected once 
(3%), and the first official detection declared by WHO 
occurred in October 2022. Ao et  al. (2023) reported a 
global prevalence of 1.3% and the spread to 35 countries. 
The BQ sublineage, even as XBB presented immune eva-
sion through enhanced receptor-binding affinity, suggests 
a higher reinfection risk and is one advantage over other 
circulating Omicron sublineages [19].

The infectivity of Omicron is considered higher than 
the ancestral SARS-CoV-2 variant principally due to 
BA.4/BA.5, though the severity of illness, hospitalization, 
and deaths are lower [17]. Analyzing the clinical out-
comes found in this study showed no relationship with 
one specific variant, sex, and age. Among the comorbidi-
ties presented by the patients, two had lymphoma. They 
were also admitted to the intensive care unit, and needed 
intubation, and the clinical outcome was death. The oth-
ers were not related to the severity and SARS-CoV-2 
infection. These clinical features with lower severity were 
consistent with further findings in studies. BA.4 and 
BA.5 are known to have a growth advantage over other 
variants because of improvements in intrinsic trans-
missibility or enhanced immune evasion [5, 17, 21]. No 
relationship between comorbidities, symptoms, and sub-
lineages was found in this study.

Fig. 2 Omicron sublineage distribution by epidemiological weeks
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COVID-19 vaccination had conferred robust protec-
tion against clinical disease involving the BA.1.1 sub-
lineage, right during the first infection peak. The lower 
incidence of hospitalization and death, and shorter-
lasting symptoms are in direct association with the 
high level of vaccination and previous infections by 
other variants and so afford some protection [5, 17]. 
Evaluating the vaccination status of patients who died, 
the child was partially vaccinated, the adult was fully 
vaccinated, and the elderly person was unvaccinated. 
Patients received at least one dose corresponding to 
83% (31/37), which attests to the effectiveness of the 
protective measure.

According to Lewnard et  al. (2023), 15.8% of the 
BA.4/BA.5 cases had not received any vaccine doses, 
and among BA.2 cases the number was 16.1%. The 
index in this study corresponds to 8 and 43%, respec-
tively. These findings suggest that BA.4/BA.5 infec-
tions reach individuals with greater immune protection 
against SARS-CoV-2 than BA.2. Studies showed that 
three or four doses of vaccine do not induce robust 
neutralization against BA.4/BA.5 since the spike pro-
tein mutations confer a capacity of immune evasion. 
Moreover, XAG and BQ.1 exhibit the greatest evasion 
against vaccine neutralization and suggest that these 
new sublineages will replace BA.5 as the dominant var-
iant in circulation [17, 20]. This analysis is limited to a 
restricted number of samples to conclude the relation-
ship between vaccination status and Omicron infection.

The severity of infections is influenced by variant-
specific properties and the intrinsic capacity to trans-
mit and infect another individual with immunity or not, 
as from vaccination or infection. This study presents 
different data on the circulation of Omicron subline-
ages in the southernmost state of Brazil that have been 
published so far. Our results represent the analysis of 
hospitalized patients. The analysis of this population 
yields interesting and debatable results, unlike the gen-
eral population. It also highlights the detection of BA.5 
as the most prevalent sublineage surpassing the pre-
dominance of BA.2 reported by the national genomic 
surveillance program. BQ.1 was also diagnosed before 
it was officially reported. Surveillance of sublineages 
circulation helps rapidly identify new emerging line-
ages, so can develop better prophylactic measures.

Table 1 Clinical characteristics of patients infected with the 
SARS-CoV-2 Omicron variant

a  Unvaccinated: a person who received no COVID-19 vaccination, according to 
the immunization panel, b Partially vaccinated: a person who received a COVID-
19 vaccine dose but had not completed the immunization panel, c Vaccinated: 
a person who completed a COVID-19 vaccine dose, in accordance with the 
immunization panel

Characteristics No. (%)

Age groups, year
Children (0–12) 10 (27%)

Adults (13–59) 8 (22%)

Elderly (> 60) 19 (51%)

Middle age 51 years

Sex
Female 21(57%)

Male 16 (43%)

Symptoms
Cough 23 (62%)

Fever 17 (46%)

Headache 15 (40%)

Coryza 9 (24%)

Vomit 5 (13%)

Sore throat 3 (8%)

Comorbidities
Hypertension 14 (38%)

Malignancies 9 (24%)

Neurological disease 7 (19%)

Cardiovascular disease 6 (16%)

Diabetes 5 (13%)

Obesity 4 (11%)

Chronic obstructive pulmonary disease (COPD) 2 (5%)

COVID‑19 vaccination status
Unvaccinated a 8 (21%)

Partially b 18 (49%)

Vaccinated c 11 (30%)

Clinical outcomes
Hospital discharge 34 (92%)

Death 3 (8%)

Fig. 3 Vaccination status and number of patients according 
to sublineages detected
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