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Abstract 

Background A lack of health resources is a common problem after the outbreak of infectious diseases, and resource 
optimization is an important means to solve the lack of prevention and control capacity caused by resource con‑
straints. This study systematically evaluated the similarities and differences in the application of coronavirus disease 
(COVID‑19) resource allocation models and analyzed the effects of different optimal resource allocations on epidemic 
control.

Methods A systematic literature search was conducted of CNKI, WanFang, VIP, CBD, PubMed, Web of Science, Scopus 
and Embase for articles published from January 1, 2019, through November 23, 2023. Two reviewers independently 
evaluated the quality of the included studies, extracted and cross‑checked the data. Moreover, publication bias 
and sensitivity analysis were evaluated.

Results A total of 22 articles were included for systematic review; in the application of optimal allocation models, 
59.09% of the studies used propagation dynamics models to simulate the allocation of various resources, and some 
scholars also used mathematical optimization functions (36.36%) and machine learning algorithms (31.82%) to solve 
the problem of resource allocation; the results of the systematic review show that differential equation modeling 
was more considered when testing resources optimization, the optimization function or machine learning algo‑
rithm were mostly used to optimize the bed resources; the meta‑analysis results showed that the epidemic trend 
was obviously effectively controlled through the optimal allocation of resources, and the average control effi‑
ciency was 0.38(95%CI 0.25–0.51); Subgroup analysis revealed that the average control efficiency from high to low 
was health specialists 0.48(95%CI 0.37–0.59), vaccines 0.47(95%CI 0.11–0.82), testing 0.38(95%CI 0.19–0.57), personal 
protective equipment (PPE) 0.38(95%CI 0.06–0.70), beds 0.34(95%CI 0.14–0.53), medicines and equipment for treat‑
ment 0.32(95%CI 0.12–0.51); Funnel plots and Egger’s test showed no publication bias, and sensitivity analysis sug‑
gested robust results.

Conclusion When the data are insufficient and the simulation time is short, the researchers mostly use the con‑
structor for research; When the data are relatively sufficient and the simulation time is long, researchers choose 
differential equations or machine learning algorithms for research. In addition, our study showed that control 

*Correspondence:
Jia‑lin Sun
gwsunjialin@163.com
Ming‑xia Jing
Mingxajing163@163.cm
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12879-024-09007-7&domain=pdf


Page 2 of 10Wang et al. BMC Infectious Diseases          (2024) 24:200 

efficiency is an important indicator to evaluate the effectiveness of epidemic prevention and control. Through 
the optimization of medical staff and vaccine allocation, greater prevention and control effects can be achieved.

Keywords COVID‑19, Resource allocation, Efficiency, Model, Meta‑analysis

Introduction
The coronavirus disease (COVID-19) pandemic has had 
a profound impact on the development of the global 
economy and social life [1]. The epidemic has had an 
enormous impact on the global medical system [2]. The 
mortality rate of COVID-19 patients with weakened 
immunity is as high as 41.7%, and the mortality rate will 
be even worse if medical resources are insufficient [3]. 
In the United States, a lack of vaccine resources that 
prevented older adults from receiving booster doses 
would have resulted in US $6.7 million in direct health 
care costs and 3.7 quality-adjusted life-years lost over 
180 days [4]. Similarly, in Brazil, one of the low- and mid-
dle-income countries with severe COVID-19 infection, 
patients could not receive timely treatment due to insuf-
ficient ICU beds, resulting in a mortality rate as high as 
34.42% [5]. Therefore, the shortage of medical resources 
is an important obstacle to the prevention and control of 
infectious diseases.

Studies have shown that resource optimization can 
effectively avoid infection caused by resource constraints 
[6]. In previous studies on resource optimization, through 
retrospective cohort analysis, researchers collected the 
characteristics of COVID-19 infection, summarized his-
torical experience, and provided references for resource 
optimization for possible future situations [7, 8]. Some 
scholars use some management methods, such as 6S and 
PDCA, to optimize the work system or process to achieve 
the purpose of rational allocation of resources [9]. These 
methods can solve the problem of resource shortages in 
the short term and with a small scope, and there is a time 
lag. However, emergent infectious diseases are charac-
terized by a wide range of diseases and a long duration. 
In contrast, modeling to solve the resource optimization 
problem has certain advantages, which can quickly simu-
late the effect of resource optimization in various situa-
tions and is not limited by time and region.

The model used in resource optimization is also con-
troversial. Seyed Ali Rakhshan et  al. [10] suggested that 
machine learning methods are more accurate than trans-
mission dynamics models for long-term predictions. 
However, the results from a study in Korea showed that 
transmission dynamics were more accurate than machine 
learning models [11]. Alaleh Azhir et  al. also showed 
differences in the prediction effect of next-day mortal-
ity using three machine learning models [12]. The cur-
rent systematic reviews mainly focus on the infection 

characteristics of susceptible populations [13, 14] and 
rarely consider the optimal allocation of resources. How-
ever, it is not clear how much effect different types of 
resource optimization can achieve. Therefore, this study 
aimed to sort out and analyze the related research on 
SARS-CoV-2 optimization models and evaluate the qual-
ity of research articles in this field. We systematically 
sorted out the application status and existing problems 
of the optimization model in COVID-19 resource alloca-
tion, and provided experience for formulating resource 
allocation plans for public health emergencies in the 
future.

Materials and methods
Search strategy
We searched the CNKI, WanFang, VIP, CBD, PubMed, 
Web of Science, Scopus and Embase databases to col-
lect different types of SARS-CoV-2 resource allocation 
models. The search time limit was from January 1, 2019 
to June 1, 2023.We used a combination of subject words 
and free words for retrieval. The search terms included: 
COVID-19 pneumonia, COVID-19, model, resource allo-
cation, resource optimization, optimal control, epidemic 
control, etc. (Supplementary Table 1). The review proto-
col was registered in PROSPERO (CRD42023458855).

Literature screening
Two reviewers independently screened the studies, 
extracted and cross-checked the data. If there were disa-
greements, they were resolved by discussion or consul-
tation with a third author. Studies were included if they 
(1) were related to the SARS-CoV-2 resource allocation 
scheme; (2) used at least one allocation model; or (3) 
involved optimization simulation or data simulation. The 
strategies that only considered the optimization of epi-
demic control or strategy without specific resource allo-
cation were excluded.

Data extraction and bias assessment
The following data were extracted independently by two 
reviewers: general study information (authors, year of 
publication, country, study design, modeling methodol-
ogy, outcomes of achieving objectives and resource opti-
mization, etc.).

All the studies included in this paper were model stud-
ies. The ISPOR-SMDM task force, as a model-centered 
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evaluation tool, not only includes the evaluation of the 
model itself, but also includes the evaluation of the state-
ment of the problem, modeling purpose, and data type, 
which can well evaluate the quality of model studies [15].
Tadele Girum et  al. [16] also used the ISPOR-SMDM 
task force to evaluate the quality of modeling studies. 
Two reviewers screened items from the ISPOR-SMDM 
task force and assessed the quality of each study inde-
pendently, including research problem description, prob-
lem transformation into modeling structure, parameter 
settings, resource types described, sensitivity analysis, 
and more (Supplementary Table 2). If the content of the 
included articles met the evaluation items, the evalua-
tion was “yes”; otherwise, the evaluation was “no”, and the 
quality of the article was finally judged by the frequency 
of “yes or no”.

Statistic analysis
The average control efficiency (ACE) formula was used to 
obtain the comprehensive index reflecting the optimiza-
tion effect [17]. The formula is as follows:

In this formulation, C is the control value of the unop-
timized resource allocation. O is the control value of the 
optimized resource allocation.

Average Control Efficiency =

n
k=0

|Ck1−Ok1|

Ck1
+

|Ck2−Ok2|

Ck2
+ · · ·

|Cn−On|

Cn

n
.

Funnel plot analysis of publication bias was performed 
by Review Manager 5.3 software, and sensitivity analy-
sis was performed by STATA 17.0 software. P < 0.05 was 
considered statistically significant [18, 19].

Results
A total of 716 relevant articles were obtained. After 
rechecking and reading titles and abstracts, only 132 arti-
cles were screened for full text, and 22 article were finally 
included in the systematic review (Fig. 1).

Among the 22 articles on resource allocation, 13 arti-
cles constructed differential equation models to achieve 
resource allocation. It is considered that a single optimal 
allocation model may have some limitations in allocating 
resources. Therefore, 4 articles utilized a combination of 
two or more methods for resource allocation (Table 1).

Results of article quality evaluation
Most of the studies met the conditions for the application 
of the model, but 59.09% of the articles did not perform 

sensitivity analysis, which is an important indicator to 
determine the accuracy of the model. In addition, 54.55% 
of the studies did not provide parameter settings, initial 
value tables or related accessory materials, which could 

Fig. 1 PRISMA (Preferred Reporting Items for Systematic Reviews and Meta‑Analyses) flow diagram for the studies included in the current 
meta‑analysis
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not be verified by other scholars through the original 
data (Supplementary Table 3 and Fig. 1).

Applicability analysis of the resource allocation 
optimization model
There are several prerequisites in model construction 
and resource allocation (Table 2). First, it is necessary to 
consider whether the data can provide the parameters 
of the model. In the large amount of available infor-
mation and data, it is difficult to quantify the dynamic 
variables. Among the 22 studies included in this study, 
4 studies used numerical simulation to study the prob-
lem of resource allocation. Therefore, appropriate meth-
ods could be selected to solve the problem of resource 
allocation. Second, suitable models were selected for the 
allocation of different resource types. From the included 

literature, differential equation modeling was more con-
sidered more when testing resource optimization. The 
optimization function or machine learning algorithm 
was mostly used to optimize the bed resources. Finally, 
the appropriate model is selected for implementation 
according to the optimization goal formulated in the 
study. The optimization goal can be divided into two 
situations: first, the maximization goal, such as resource 
coverage and efficiency, and second, the minimiza-
tion goal, such as the prevention and control cost and 
demand.

Meta‑analysis of control efficiency in resource allocation 
optimization
A total of 22 articles were included to calculate the con-
trol efficiency. According to the combined effect analysis, 

Table 1 Summary of optimal resource allocation models for COVID‑19

Field Frequency Proportion of total (%) References

Total number of articles reviewed 22 100 [20–41]

Region of focus
Africa 3 13.64% [20–22]

North America 6 27.27% [22, 23, 25, 30, 35, 37]

Asia 7 31.82% [24, 25, 31, 34, 36, 38, 39]

Europe 6 27.27% [20, 25, 26, 28, 32, 34]

South America 1 4.55% [25]

Numerical simulation 4 18.18% [27, 29, 33, 40]

Number of resources
1 18 81.82% [20–24, 26, 28, 29, 31–36, 38–41]

2 1 4.55% [37]

3 or more 3 13.64% [25, 27, 30]

Types of resources
Tests 4 18.18% [21, 26–28]

Vaccines 6 27.27% [29, 31, 32, 36, 40, 41]

Beds 8 36.36% [20, 25, 27, 30, 34, 37–39]

Apparatus and Instruments 3 13.64% [23, 30, 37]

PPE (Personal Protective Equipment) 2 9.09% [25, 33]

Health specialists 3 13.64% [24, 25, 27]

Therapeutic Drug 3 13.64% [23, 30, 37]

Lockdown 1 4.55% [22]

Decision variables
confirmed cases/Infection rate 14 63.64% [20–23, 25, 27–31, 33, 36, 40, 41]

Deaths/the mortality rate 9 40.91% [25, 26, 30, 32–34, 38, 40, 41]

the recovery rate 4 18.18% [24, 30, 35, 39]

cost‑effectiveness 4 18.18% [27, 37, 40, 41]

the duration of the epidemic 1 4.55% [21]

Method for modeling
differential equation (SEIR) 13 59.09% [21, 22, 25–29, 31–34, 39–41]

optimization function 8 36.36% [20, 22, 24, 32, 35, 36, 38]

machine learning algorithm 7 31.82% [22, 23, 25, 26, 30, 37, 38]
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Table 2 Optimal resource allocation models for COVID‑19 included in review

Study identifier /year of 
publication

Geographic focus Types of resources Optimization technique Optimization goal(s)

Evans et al. (2023) Madagascar Testing capacity Epidemic Model (SEIR model) Maximize testing efficiency

Xia,Zeyu et al. (2023) numerical simulation Testing Capacity; Beds; doc‑
tors and nurses

SEIR model The cost‑optimal solution 
for effective epidemic control

Jin Zhu et al. (2023) England Vaccines the multi‑period two‑dose 
vaccine allocation model

Minimize lower vaccine supply 
levels and minimize the daily 
number of deaths

Barnieh L et al. (2023) US Patient‑treating drugs; Beds decision tree model、a 
Markov model

Minimize treatment 
(hospitalization、quality‑
adjusted life year) costs

Kai Zong et al. (2022) US Lockdown resource allocation MARAAC structure、the 
advantage function、SEAIRD 
model

Minimize the economic loss 
while keeping the number 
of individuals

Khan A A et al. (2022) Pakistan Vaccines a compartment epidemic 
model、 the compartmental‑
based COVID‑19 vaccine 
model

Maximize vaccination

Schmidt et al. (2021) Munich Beds A Planning Model for Intra‑
hospital Resource Allocation

Maximize hospitalization rate

Apornak et al. (2021) Iran nurses the linear programming 
technique

Maximize nurse service timer 
period

Libin et al. (2021) Belgian Testing capacity extend the STRIDE model Maximize testing efficiency

Daniel Kim et al. (2021) numerical simulation Vaccines Extended SIR‑D model Maximize vaccine efficacy 
and reach

Jeongmin Kim et al. (2021) Korea ICU Beds Multivariate logistic regression 
(LR) and XGBoost

Maximize hospitalization rate

Worby et al. (2020) numerical simulation masks the “resource 
allocation”model、 the “sup‑
ply & demand” model (SEIR 
model)

Maximize mask use

Michail et al. (2020) Switzerland Testing capacity a sequential optimization 
algorithm、SEIrIuR epidemio‑
logical model

Minimize prediction uncer‑
tainty, Maximize information 
gain of unreported infections

Arunmozhi et al. (2022) 10 countries Ventilators; PPE; ICU Beds; 
Health specialists

the Probability Queueing 
Theory (PQT) and K‑Mean 
clustering Machine Learning 
(ML)

Increasing Capacity

Majid et al. (2023) Iran Vaccines a two‑stages model 
with uncertainty demand

Minimize the total cost 
of meeting demand、the 
maximum coverage index

Lin Wang et al. (2022) US ICU Beds; Ventilators; treat‑
ments for symptoms

a novel Lasso Logistic Regres‑
sion model based on feature‑
based time series data

Reducing the mortality rate 
of hospitalized COVID‑19 
patients

Bing Xue et al. (2022) US ECMO Multi‑horizon machine learn‑
ing prediction models

Maximize ECMO use

Ying‑Qi Zeng et al. (2022) 4 countries Beds COVID‑19 patient admission 
model

Maximize hospitalization rate

Mehrotra et al. (2020) US Ventilators a multi‑period planning 
model

Minimize ventilators’ shortage

Zhou D et al.(2022) numerical simulation Vaccines a transmission dynamic‑
model

Minimizing the size of infection

Sean Shao et al.(2022) Singapore Beds Beds resource planning 
model

Increasing beds Capacity

Krishna P. R et al.(2021) South Africa Vaccines Micro simulation model Minimize treatment costs
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the epidemic trend was obviously effectively controlled 
through the optimal allocation of resources, and the 
average control efficiency was 0.38 (95% CI 0.25–0.51; 
 I2 = 98%, P < 0.01) (Fig. 2).

According to the type of resources allocated, it was 
divided into different subgroups. The average control 
efficiency from high to low was health specialists 0.48 
(95% CI 0.37–0.59;  I2 = 0%, P < 0.01), vaccines 0.47 (95% 
CI 0.11–0.82;  I2 = 98%, P = 0.01), tests 0.38 (95% CI 0.19–
0.57;  I2 = 86%, P < 0.01), personal protective equipment 
(PPE) 0.38 (95% CI 0.06–0.70;  I2 = 94%, P = 0.02), beds 
0.34 (95% CI 0.14–0.53;  I2  = 94%, P < 0.01), medicines 
and equipment for treatment 0.32 (95% CI 0.12–0.51; 
 I2 = 78%, P < 0.01)proved that comprehensive

 (Fig. 3).

Publication bias and sensitivity analysis
The funnel plot results were basically symmetric, sug-
gesting a possible minor publication bias (Supplemen-
tary Fig.  2). In addition, we used Egger’s test to verify 
the results and found that there was no publication bias 
(P = 0.7119).

Sensitivity analysis showed robust results (Supplemen-
tary Fig. 3).

Discussion
In resource-constrained areas, resource optimization for 
infectious disease prevention and control urgently needs 
to be addressed. Most researchers use modeling studies 
to solve resource optimization problems [42, 43]. How-
ever, due to the differences in the models constructed, the 
resources allocated and the outcome indicators selected, 
the effects that can be achieved after resource optimiza-
tion are also different. The systematic review and meta-
analysis of the current model studies on optimizing 
resource allocation highlighted the importance of opti-
mization objectives, optimization tools, and optimization 
resource types to evaluate and improve the efficiency of 
COVID-19 control. By systematically combing the articles 
applying the resource optimization model, we put for-
ward the key issues that should be considered in modeling 
research and discussed the effect of optimizing resources.

Currently, to compare the accuracy of models, the 
same data are mostly used to use different models for 
simulation [44]. However, due to the inconsistent appli-
cation conditions of different models, the data types 
used have a great impact on them. Meanwhile, the qual-
ity evaluation results of our included articles showed 
that the models rarely provided parameter settings and 

Fig. 2 Forest plot of the average control efficiency in resource optimization
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Fig. 3 Results of subgroup analysis
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sources of values. The reliability of models will directly 
affect the formulation of optimization strategies, there-
fore, researchers need to understand the applicability 
of the model [45]. We divided the models used in the 
included literature into three types of resource alloca-
tion models according to their basic principles. Among 
them, the transmission dynamics model had at least 
three differential equations, which needed many param-
eters. Generally, the number of infections was estimated 
by iterative and summation methods. A study from 
Cameroon used a transmission dynamics model with 9 
differential equations and 25 parameters to assess the 
impact of an intervention on transmission [46]. The 
optimization function requires fewer restrictions, which 
is suitable for less information. It is mainly constructed 
according to the purpose of the author, and there is no 
fixed framework, such as limit formula and expectation 
formula. A study in Brazil used three parameters to con-
struct a model to simulate different control strategies 
and their cost-benefit analyses [47]. The machine learn-
ing algorithm mainly considers the impact of time on 
infectious diseases and is preferred when the prediction 
time is longer. This was also confirmed by the results of 
Dairi A et al. [48].

Control efficiency is an important indicator to evalu-
ate the effectiveness of epidemic prevention and con-
trol. Xinru Wan et al. [49] used the control efficiency 
to reflect the transmission of SARS-CoV-2 under dif-
ferent temperatures and humidities. A Korean study 
explored the attitudes and work stress of school nurses 
to improve the efficiency of school infection con-
trol [50]. Resource optimization played an enormous 
role in the effect of epidemic control, especially when 
resources were limited. The results of our meta-analy-
sis showed that the epidemic trend of COVID-19 had 
been effectively controlled through the optimal allo-
cation of resources, with an average control efficiency 
of 0.38 (95% CI 0.25–0.51). Lin Xie et al. [51] explored 
the relationship between medical resources and the 
mortality of COVID-19 patients in Hubei Province, 
and found that the number of hospital beds, the num-
ber of beds in the health care system, and the number 
of medical staff in a unit with confirmed cases all had 
a significant negative impact. This is consistent with 
the results of this study. Resource optimization plays 
a role in controlling other infectious diseases. Studies 
by some scholars have shown that through resource 
optimization, AIDS, influenza A and other infectious 
diseases can also be rapidly controlled [52, 53]. In 
addition, the subgroup analysis of this study showed 
that the optimization of human resources, vaccine 
resources, testing resources and personal protection 

resources could achieve greater prevention and con-
trol effects, which may be related to the importance of 
various resources in prevention and control, but also 
indirectly reflects the difficulty of improving different 
prevention and control resources. A study in Morocco 
showed that the local government made various efforts 
to control the outbreak but lacked human resources, 
especially qualified human resources in intensive care 
and resuscitation [54]. There are differences in epi-
demic prevention strategies in different countries, the 
amount of resources is not consistent, and there are 
different resistances in the optimization process. How-
ever, the optimization of any type of medical resource 
can reduce the number of infections. Xia Wang et  al. 
[55] also proved that comprehensive improvement of 
resource allocation ability can effectively reduce the 
infection rate.

Study limitations
Our study included 22 articles on resource optimization 
models, but there are still some limitations. First, due to 
language limitations, only Chinese and English studies 
were included in the study, and there may be selection 
bias in the selection of included studies. Second, there is 
a certain heterogeneity in the included literature, which 
is not only related to the subgroup analysis of resource 
type, but also related to the modeling method selected 
by the researchers, data time period, outcome indicators 
and other factors. Further research can be carried out in 
subgroups. Third, the meta-analysis method of the single 
group rate was used in this paper, which makes it difficult 
to control for heterogeneity, and it needs to be further 
confirmed by other methods. Finally, only the resource 
type of the included literature was classified and ana-
lyzed, but there were many other resources that were not 
further analyzed.

Conclusions
When the data are insufficient and the simulation time 
is short, the researchers mostly use the constructor for 
research; when the data are relatively sufficient and the 
simulation time is long, researchers choose differential 
equations or machine learning algorithms for research. 
In addition, our study showed that control efficiency is 
an important indicator to evaluate the effectiveness of 
epidemic prevention and control. Through the optimi-
zation of medical staff and vaccine allocation, greater 
prevention and control effects can be achieved. How-
ever, subsequent research should focus on improving the 
quality of research, improving the accuracy of the model, 
and establishing a simulation model that is closer to the 
real world.
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