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Abstract 

Background Diagnosis of tuberculous meningitis (TBM) is hampered by the lack of a gold standard. Current micro-
biological tests lack sensitivity and clinical diagnostic approaches are subjective. We therefore built a diagnostic model 
that can be used before microbiological test results are known.

Methods We included 659 individuals aged ≥ 16 years with suspected brain infections from a prospective obser-
vational study conducted in Vietnam. We fitted a logistic regression diagnostic model for TBM status, with unknown 
values estimated via a latent class model on three mycobacterial tests: Ziehl–Neelsen smear, Mycobacterial culture, 
and GeneXpert. We additionally re-evaluated mycobacterial test performance, estimated individual mycobacillary 
burden, and quantified the reduction in TBM risk after confirmatory tests were negative. We also fitted a simplified 
model and developed a scoring table for early screening. All models were compared and validated internally.

Results Participants with HIV, miliary TB, long symptom duration, and high cerebrospinal fluid (CSF) lymphocyte 
count were more likely to have TBM. HIV and higher CSF protein were associated with higher mycobacillary burden. 
In the simplified model, HIV infection, clinical symptoms with long duration, and clinical or radiological evidence 
of extra-neural TB were associated with TBM At the cutpoints based on Youden’s Index, the sensitivity and specificity 
in diagnosing TBM for our full and simplified models were 86.0% and 79.0%, and 88.0% and 75.0% respectively.

Conclusion Our diagnostic model shows reliable performance and can be developed as a decision assistant for clini-
cians to detect patients at high risk of TBM.

Summary Diagnosis of tuberculous meningitis is hampered by the lack of gold standard. We developed a diagnostic 
model using latent class analysis, combining confirmatory test results and risk factors. Models were accurate, well-
calibrated, and can support both clinical practice and research.
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Background
Tuberculous meningitis (TBM) is the most lethal form 
of Mycobacterium tuberculosis (Mtb) infection [1]. Early 
diagnosis is critical to initiate appropriate therapy, espe-
cially for low-middle-income countries, where access to 
diagnostic tests is limited. Nevertheless, diagnosing TBM 
is notoriously challenging as no gold standard exists. A 
confirmatory diagnosis of TBM requires identification of 
Mtb in cerebrospinal fluid (CSF), but conventional tests 
– Ziehl–Neelsen smear (ZN-Smear) microscopy, Gen-
eXpert MTB/RIF (Xpert), and culture by Mycobacteria 
Growth Indicator Tube (MGIT) – lack sensitivity due  
to the challenge of Mtb identification in paucibacillary 
CSF [1, 2].

A diagnosis of TBM is often guided by a combination 
of clinical, biochemical, and imaging features. TBM is 
suggested by a long duration of symptoms at presenta-
tion and abnormal CSF biomarker values. A number of 
diagnostic algorithms have been created that utilise this 
information [3–6]. However, many of these have not 
been widely validated, especially for those individuals for 
whom the true disease status could not be verified.

In 2010, a uniform case definition (UCD) was devel-
oped based on expert opinion [5]. This illustrated 
the diagnostic challenges presented by TBM and was 
intended to facilitate comparison of research data, rather 
than for use in clinical practice. The UCD distinguishes 
between four diagnostic levels: definite, probable, pos-
sible, and not TBM. Individuals with microbiological or 
molecular confirmation of Mtb within the CSF are allo-
cated to definite TBM. The remaining cases are defined 
as probable or possible, encompassing an expert-gen-
erated grading system where higher scores designate 
an increased probability of a diagnosis of TBM. It is 
expected that true TBM cases are represented by all defi-
nite cases, most probable cases, and some possible cases. 
Since TBM is almost always fatal if not treated with anti-
tuberculosis drugs and delayed treatment is strongly 
associated with death or severe neurological sequelae 
in survivors, physicians usually err on the side of TBM 
treatment for those with compatible symptoms despite 
ongoing diagnostic uncertainty.

In social science and psychology, a technique named 
Latent class analysis (LCA) or Latent class model (LCM) 
has been employed that has the ability to infer “hidden 
groups” (called latent classes) based on “observed indi-
cators”. The individual allocation into each group can 
be improved by relating it to “additional features”. LCA 
was later adopted in diagnostic studies to answer a simi-
lar problem when there is no practical gold standard to 
determine the disease status, as in the case of pulmonary 
tuberculosis and TBM [7–10].

The rationale and formulation of our LCA are discussed 
in the clinical and statistical supplementary appendi-
ces. In our study, we defined two “hidden groups”, those 
infected with Mtb and those infected with another patho-
gen, and the “observed indicators” are the three confirma-
tory tests (ZN-Smear, MGIT, and Xpert). The “additional 
features”, herein referred to as “diagnostic features” in 
our study, are the clinical, biochemical and imaging diag-
nostic features as used in the uniform case definition in 
combination with a few characteristics that are strongly 
indicative of not having TBM. A full list of included diag-
nostic features are outlined in the Clinical supplemen-
tary appendix. The main purpose of our study is to use 
the confirmatory test results and the diagnostic features 
to estimate TBM status per individual and develop a 
calibrated scoring system that quantifies the risk of TBM 
based on the diagnostic features. Our model allowed us 
to re-evaluate the performance of each confirmatory test. 
To improve clinical usability, we also developed a simpli-
fied scoring system requiring only clinical information 
and chest X-ray, without CSF analysis.

Methods
Participants
We used data from a prospective observational study on 
individuals with suspected brain infections who were 
admitted to the neuro-infection ward of the Hospital for 
Tropical Diseases (HTD), Ho Chi Minh City, Vietnam 
[11]. The HTD is a 550-bed centre providing secondary 
and tertiary treatment for a wide range of tropical infec-
tions in Southern Vietnam [3]. The study received ethical 
approval from HTD and the Oxford Tropical Research 
Ethics Committee and written informed consent was 
obtained from all participants or their relatives if they 
were incapacitated [11].

Participants were ≥ 16 years old and were enrolled 
between 29th August 2017 and 22nd January 2021. All 
were suspected of neurological infection and underwent 
lumbar puncture at baseline as a routine diagnostic pro-
cedure. Patients were ineligible for enrolment if perform-
ing a lumbar puncture was contraindicated and excluded 
from our analysis if the mycobacterial cultures of CSF 
taken within the first week were contaminated.

Data collection
Clinical and imaging data
Demographics (age, gender) and relevant medical history 
were collected. HIV tests were only conducted on those 
with identified risk factors for HIV infection. All partici-
pants underwent a chest X-ray. Brain imaging was not 
performed routinely and not included in the database.
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Cerebrospinal fluid (CSF) analysis
White cell count (WCC) and cellular differential, pro-
tein, glucose (with paired blood glucose taken at the same 
time), and lactate were measured at enrolment. A Gram 
stain was performed to screen for bacterial meningitis, 
PCR/serology for viral meningitis, PCR for Angiostron-
gylus cantonensis, and India-ink staining and a crypto-
coccal antigen lateral flow test if cryptococcal meningitis 
was suspected. Where possible at least 6  mL CSF was 
used for mycobacterial testing by ZN-Smear, MGIT, and 
either Xpert MTB/RIF or Xpert MTB/RIF Ultra (Xpert 
Ultra). We combined Xpert Ultra with Xpert as they were 
diagnostically comparable for TBM in our setting [11]. In 
case an insufficient sample (< 5 mL) of CSF was collected, 
the microbiological tests were done according to case-by-
case clinical judgement. In brief, if there was no clinical 
suggestion of TBM, the priority might be shifted to find-
ing other diagnoses. If CSF was repeatedly sampled (as 
directed by clinical need), only the first sample was used 
as long as it had at least 3 mL of CSF and was not col-
lected later than 7 days since enrolment. Methods of CSF 
processing have been described elsewhere [11].

Diagnosis and treatment
All patients received treatment according to the national 
and local guidelines. At the time of discharge or death, 
all were given a final diagnosis, based on the available 

clinical and laboratory information, including treatment 
response. If at least one of ZN-Smear, Xpert, or MGIT 
from CSF was positive at any time, the patient had defi-
nite TBM. Patients had suspected TBM if confirmatory 
microbiological and molecular tests were negative, but 
TBM was clinically suggested and anti-TB drugs were 
started. Those who recovered without anti-TB chemo-
therapy or had an alternative diagnosis confirmed micro-
biologically (e.g., by culture, PCR, or antigen tests) were 
assigned another diagnosis (i.e., not TBM).

Statistical analysis
Our latent class model for TBM has two components, 
both consisting of logistic regression models (Fig.  1). 
In the indicator model, we made the results of three 
observed confirmatory tests ZN-Smear, MGIT, and Xpert 
depending on TBM status. The prevalence model quan-
tifies the probability to have TBM. This probability is 
purely based on the diagnostic features, prior to any con-
firmatory tests. As the three tests share similar mecha-
nisms of detecting the presence of Mtb, we added an 
individual random effect – which we call the mycobacil-
lary burden – to eliminate their collinearity [7, 12]. The 
latent mycobacillary burden was related to a set of modu-
lating factors (bacillary burden sub-model).

The choice of diagnostic features and modulating fac-
tors was based on prior knowledge of their association 

Fig. 1 Basic model design. Unknown TBM status is linked with test results. The probability of a positive test depends on bacillary burden, which 
in turn depends on modulating factors. TBM risk factors help determining an individual’s TBM status. The distribution of test results shown 
on the bar plots are for demonstration only and do not correspond to the actual numbers
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with TBM status and bacterial burden [5] (Clinical sup-
plementary appendix). We added three indicators of an 
alternative diagnosis to the prevalence model: (1) positive 
CSF eosinophil count—a strong biomarker for eosino-
philic meningitis, a relatively common condition in Viet-
nam, usually caused by Angiostrongylus cantonensis; (2) 
positive CSF Indian-ink staining or cryptococcal antigen 
lateral flow test; and (3) positive CSF Gram stain for non-
acid-fast bacterial meningitis. We also included CSF red 
cell count as it is a marker of a traumatic lumbar punc-
ture, which requires corrections to WCC and biochemi-
cal features [13–15]. A complete formulation of our 
model design is reported in the Statistical supplementary 
appendix.

We used the individual estimated TBM risk from the 
above model to fit a simplified prevalence model that 
excluded laboratory information. In their stead, we added 
some simple clinical symptoms involved in a TBM diag-
nosis: fever, headache, neck stiffness, and psychosis. 
These variables were easy to measure and less prone to 
missingness. This allowed us to create a simple risk score 
table for quick screening. Furthermore, we used Bayes’ 
rule to calculate the change in probability of having TBM 
after retrieving results of some or all confirmatory tests, 
relative to the pre-test TBM probability (Clinical sup-
plementary  appendix). Because any positive test means 
definite TBM, and because MGIT culture results take 
2–8  weeks, we limited to five scenarios where nega-
tive confirmatory test results become available: (a) only 
Smear, (b) only Xpert, (c) Smear and MGIT, (d) Smear 
and Xpert, and (e) all three tests.

Missing values were handled based on their expected 
missingness mechanism (Clinical supplementary appen-
dix). We later tested their validity by conducting appro-
priate sensitivity analyses in the Statistical supplementary 
appendix.

We chose a Bayesian approach for estimation and 
incorporated prior knowledge [1, 16, 17] on test sensi-
tivity and specificity. on test sensitivity and specificity. 
Weakly informative prior distributions were used for all 
model coefficients (Statistical supplementary appendix). 
Estimates of the posterior distributions were obtained 
via Hamiltonian Markov Chain Monte Carlo using R ver-
sion 4.2 [18] and Stan 2.27 [19]. Convergence was evalu-
ated by the Brooks-Gelman-Rubin R statistic. All results 
are presented as medians and equal-tailed 95% credible 
intervals (CrI) unless specified otherwise.

We compared different models and selected the best 
one using the expected log point-wise predictive den-
sity (elpd) [20]. To give an informal insight, we vali-
dated our full and simplified prevalence model with the 
final hospital diagnosis as a pseudo gold standard—in 
which a patient is considered as having TBM if they were 

diagnosed with suspected or definite TBM. A proper 
validation of the selected model was performed on the 
observed confirmatory test results and is explained in 
the Statistical supplementary appendix, in which we also 
compared our estimated TBM probability with standard 
UCD [5]. All performance metrics were calculated using 
repeated cross-validation procedures.

Results
Clinical characteristics
Of the 692 participants, 659 were included in the analy-
sis (Fig. 2). All participants had at least one symptom sug-
gestive of a brain infection (headache, fever, neck stiffness, 
vomiting, convulsion). Characteristics of included indi-
viduals are summarised in Table  1, stratified by overall 
and specific confirmatory test results. The median age of 
included individuals was 40 years. HIV co-infection status 
was assessed for 448/659 (68%) individuals, amongst whom 
50 (11%) were positive. For each of the confirmatory tests, 
both HIV prevalence and duration from symptom onset to 
hospitalisation were higher in the test-positive group than 
in the negative and missing groups. There were 355 partici-
pants with valid TBM confirmatory test results, of whom 
138 were microbiologically confirmed TBM (Fig. 3), while 
118 were later confirmed with another disease. Amongst 
the 304 patients who were not tested microbiologically for 
TBM, 220 were confirmed with another pathogen. For 145 
patients, from both the tested and the untested groups, no 
confirmed diagnosis could be made.

Model estimates
Estimated coefficients for TBM diagnostic features in the 
prevalence model are shown in Fig.  4 and the Clinical 
supplementary appendix. HIV infection, miliary TB, and 
longer symptom duration were associated with a higher 
risk of TBM (median OR = 9.9, 166.2, and 1.9, respec-
tively). Of the laboratory variables, there was a strong 
increase in TBM risk with higher lymphocyte count 
(OR = 6.4, 95% CrI 1.2 – 69.1) and weaker increase with 
lower paired blood glucose (OR = 0.3, 0.1 – 1.2), lower 
CSF glucose (OR = 0.9, 0.5 – 1.5), higher CSF protein 
(OR = 1.2, 0.7 – 2.3), and higher lactate (OR = 2.3, 0.8 – 
6.6). The relationship between CSF WCC and TBM risk 
was nonlinear, peaking at 238 cells per  mm3 of CSF. HIV 
infection and higher CSF protein were associated with 
higher mycobacillary burden, while higher Glasgow coma 
score (GCS), CSF glucose, WCC and lymphocyte count 
all associated with lower mycobacillary burden.

Estimates of sensitivity and specificity of ZN-Smear, 
MGIT, and Xpert in diagnosing TBM are reported in 
Table  2. The specificity of each is > 99%. ZN-Smear was 
the most sensitive test with sensitivity of 62.5% (47.8%—
80.9%) for people without HIV and 89.0% (81.5%—94.6%) 
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for those with HIV. Xpert was the least sensitive, espe-
cially in the former group, at 33.8% (24.9%—45.7%). The 
sensitivity of Xpert was much higher in the group with 
HIV, at 75.5% (64.7%—84.3%) and comparable to MGIT 
sensitivity.

Model pseudo‑performance on diagnosing TBM
Our selected indicator model showed good discrimina-
tion with the Areas under the Receiver-operating-charac-
teristic curve (AUCs) of 92.6% for ZN Smear, 93.0% for 
MGIT, and 96.1% for Xpert (Statistical supplementary 
appendix). Assuming that the final hospital diagnosis was 
perfect, our selected prevalence model showed good dis-
crimination with AUC = 93.9% (Fig. 5A). At the cutpoint 
maximising Youden’s index of 36%, the model was 86% 
sensitive and 88% specific. Our prevalence model was 
also well-calibrated, with calibration intercept = 0.051 
and slope = 1 [21]. The calibration curve also showed 
a good correspondence between the estimated prob-
ability and the observed diagnosis of TBM (Fig. 5B). All 
fold-wise ROC and calibration curves showed consistent 
behaviour.

Updated TBM risk if some or all confirmatory tests are 
negative
The changes in TBM risk relative to the pre-test val-
ues are shown in Table  3. A negative ZN-Smear alone 
halved the probability of TBM regardless of HIV status. 

A negative ZN-Smear and Xpert were associated with a 
3.6-fold reduction in TBM risk for participants with HIV 
and a 2.4-fold reduction for those without HIV. With all 
tests negative, the TBM probability was reduced by 2.7 
and 4.7, respectively for the two groups above.

Simplified model
Most included diagnostic features in the simplified prev-
alence model associated with TBM status (Fig. 6A). The 
association was not clear with focal neurological deficit. 
Three of the four additional symptoms suggested a TBM 
diagnosis, only psychosis made another diagnosis more 
likely.

Our simplified model had good AUC. The cutpoint 
maximising Youden’s index is at a probability of having 
TBM of 30.7%, where our model was 79.0% sensitive and 
75.0% specific (Fig. 6B). We used this cutpoint to derive 
a screening score table by selecting rounded parameter 
values within the 50% credible intervals of every coeffi-
cient. All the scores and the threshold were subsequently 
multiplied by a factor of 2 to make the calculation easier 
(Table 4).

The model was also calibrated, with calibration 
slope = 0.94 and calibration intercept = -0.19. All the 
averaged and individual curves showed consistent behav-
iour (Fig.  6C), in which the estimated TBM probability 
corresponded well to the observed TBM diagnosis made 
at discharge or death.

Fig. 2 Participant recruitment flow



Page 6 of 13Dong et al. BMC Infectious Diseases          (2024) 24:163 

Ta
bl

e 
1 

Ba
se

lin
e 

ch
ar

ac
te

ris
tic

s 
of

 a
ll 

st
ud

y 
pa

rt
ic

ip
an

ts

A
ny

 te
st

ZN
‑S

m
ea

r
M

G
IT

Xp
er

t

Ch
ar

ac
te

ri
st

ic
N

 =
 6

59
Po

si
tiv

e,
 

N
 =

 1
38

a
N

eg
at

iv
e,

 
N

 =
 2

17
a

M
is

si
ng

, 
N

 =
 3

04
a

Po
si

tiv
e,

 
N

 =
 1

25
a

N
eg

at
iv

e,
 

N
 =

 2
30

a
Po

si
tiv

e,
 

N
 =

 8
5a

N
eg

at
iv

e,
 

N
 =

 2
70

a
Po

si
tiv

e,
 

N
 =

 7
4a

N
eg

at
iv

e,
 

N
 =

 2
81

a

A
ge

 (y
ea

r(s
))

65
9

42
; 3

9 
(2

9,
 5

1)
42

; 4
0 

(2
7,

 5
6)

42
; 4

0 
(2

6,
 5

6)
42

; 3
9 

(2
9,

 5
1)

42
; 4

0 
(2

7,
 5

6)
40

; 3
9 

(2
9,

 4
8)

43
; 4

0 
(2

8,
 5

6)
40

; 3
7 

(2
9,

 4
8)

43
; 4

0 
(2

8,
 5

6)

H
IV

 p
os

iti
ve

44
8

33
 (2

7%
)

8 
(5

.2
%

)
9 

(5
.3

%
)

31
 (2

7%
)

10
 (6

.1
%

)
26

 (3
3%

)
15

 (7
.5

%
)

26
 (3

7%
)

15
 (7

.2
%

)

 
- M

iss
in
g

14
63

13
4

11
66

6
71

4
73

Sy
m

pt
om

 d
ur

a-
tio

n 
(d

ay
(s

))
63

3
15

; 1
2 

(8
, 1

6)
12

; 8
 (5

, 1
4)

9;
 5

 (3
, 8

)
15

; 1
2 

(8
, 1

5)
12

; 8
 (5

, 1
4)

18
; 1

4 
(1

0,
 2

0)
12

; 8
 (5

, 1
4)

18
; 1

4 
(1

0,
 2

1)
12

; 8
 (5

, 1
4)

 
- M

iss
in
g

8
9

9
7

10
7

10
7

10

TB
-s

ug
ge

st
ed

 
sy

st
em

ic
 s

ym
p-

to
m

s

39
4

53
 (5

8%
)

42
 (3

1%
)

20
 (1

2%
)

49
 (6

0%
)

46
 (3

2%
)

36
 (6

8%
)

59
 (3

4%
)

33
 (7

0%
)

62
 (3

5%
)

 
- M

iss
in
g

47
83

13
5

44
86

32
98

27
10

3

N
ot

ic
ed

 
TB

 c
on

ta
ct

 
w

ith
in

 th
e 

la
st

 
12

 m
on

th
s

65
9

7 
(5

.1
%

)
3 

(1
.4

%
)

0 
(0

%
)

7 
(5

.6
%

)
3 

(1
.3

%
)

4 
(4

.7
%

)
6 

(2
.2

%
)

4 
(5

.4
%

)
6 

(2
.1

%
)

Fo
ca

l n
eu

ro
lo

gi
-

ca
l d

efi
ci

t
64

3
24

 (1
8%

)
27

 (1
3%

)
28

 (9
.4

%
)

23
 (1

9%
)

28
 (1

3%
)

17
 (2

0%
)

34
 (1

3%
)

16
 (2

2%
)

35
 (1

3%
)

 
- M

iss
in
g

4
7

5
4

7
2

9
2

9

C
ra

ni
al

 n
er

ve
 

pa
ls

y
65

9
31

 (2
2%

)
27

 (1
2%

)
24

 (7
.9

%
)

29
 (2

3%
)

29
 (1

3%
)

25
 (2

9%
)

33
 (1

2%
)

23
 (3

1%
)

35
 (1

2%
)

G
la

sg
ow

 C
om

a 
Sc

or
e

63
8

12
; 1

2 
(1

0,
 1

5)
12

; 1
2 

(1
0,

 1
4)

12
; 1

2 
(1

0,
 1

3)
12

; 1
2 

(1
0,

 1
5)

12
; 1

2 
(1

0,
 1

4)
11

; 1
1 

(1
0,

 1
4)

12
; 1

3 
(1

0,
 1

5)
11

; 1
1 

(9
, 1

4)
12

; 1
3 

(1
0,

 1
5)

 
- M

iss
in
g

1
4

16
1

4
1

4
1

4

X-
ra

y 
pu

lm
on

ar
y 

TB
 (e

xc
lu

di
ng

 
m

ili
ar

y 
TB

)

65
9

22
 (1

6%
)

5 
(2

.3
%

)
4 

(1
.3

%
)

20
 (1

6%
)

7 
(3

.0
%

)
17

 (2
0%

)
10

 (3
.7

%
)

18
 (2

4%
)

9 
(3

.2
%

)

X-
ra

y 
m

ili
ar

y 
TB

65
9

4 
(2

.9
%

)
0 

(0
%

)
1 

(0
.3

%
)

4 
(3

.2
%

)
0 

(0
%

)
4 

(4
.7

%
)

0 
(0

%
)

3 
(4

.1
%

)
1 

(0
.4

%
)

C
SF

 ly
m

ph
oc

yt
e 

co
un

t (
ce

ll(
s)

/
m

m
3 )

65
6

22
8;

 1
53

 (8
2,

 
30

2)
27

8;
 8

0 
(1

3,
 2

91
)

27
0;

 4
8 

(5
, 2

61
)

22
0;

 1
52

 (8
1,

 
29

2)
27

9;
 9

0 
(1

4,
 2

93
)

23
7;

 1
52

 (8
1,

 
32

9)
26

5;
 1

02
 (2

1,
 

29
0)

21
2;

 1
23

 (5
7,

 
28

5)
27

1;
 1

10
 (2

3,
 2

93
)

 
- M

iss
in
g

0
0

3
0

0
0

0
0

0

C
SF

 W
CC

 (c
el

l(s
)/

m
m

3 )
65

6
48

1;
 3

00
 (1

63
, 

55
9)

70
8;

 1
40

 (1
8,

 
46

0)
1,

94
0;

 6
8 

(8
, 8

56
)

48
3;

 2
80

 (1
60

, 
56

4)
69

3;
 1

64
 (2

4,
 

47
8)

49
2;

 3
30

 (1
90

, 
51

9)
65

9;
 1

66
 (3

2,
 

47
9)

48
5;

 3
00

 (1
84

, 
61

4)
65

5;
 1

76
 (3

5,
 4

75
)

 
- M

iss
in
g

0
0

3
0

0
0

0
0

0

C
SF

 e
os

in
op

hi
l 

co
un

t (
ce

ll(
s)

/
m

m
3 )

65
8

0;
 0

 (0
, 0

)
14

; 0
 (0

, 0
)

5;
 0

 (0
, 0

)
0;

 0
 (0

, 0
)

13
; 0

 (0
, 0

)
0;

 0
 (0

, 0
)

11
; 0

 (0
, 0

)
0;

 0
 (0

, 0
)

11
; 0

 (0
, 0

)

 
- M

iss
in
g

0
0

1
0

0
0

0
0

0



Page 7 of 13Dong et al. BMC Infectious Diseases          (2024) 24:163  

In
 th

e 
“A

ny
 te

st
” s

tr
at

um
: p

os
iti

ve
 w

he
re

 a
t l

ea
st

 o
ne

 a
m

on
gs

t Z
N

-S
m

ea
r, 

M
G

IT
, o

r X
pe

rt
 is

 p
os

iti
ve

. Z
N

-S
m

ea
r, 

M
G

IT
, a

nd
 X

pe
rt

 a
re

 th
e 

su
b-

po
pu

la
tio

ns
 w

he
re

 th
e 

re
sp

ec
tiv

e 
m

ic
ro

ba
ct

er
ia

l t
es

t w
as

 p
er

fo
rm

ed
 (N

 =
 3

55
)

a  M
ea

n;
 M

ed
ia

n 
 (1

st
,  3

rd
 q

ua
rt

ile
s)

 fo
r n

um
er

ic
 v

ar
ia

bl
es

; n
 (%

) f
or

 c
at

eg
or

ic
al

 v
ar

ia
bl

es

Ta
bl

e 
1 

(c
on

tin
ue

d)

A
ny

 te
st

ZN
‑S

m
ea

r
M

G
IT

Xp
er

t

Ch
ar

ac
te

ri
st

ic
N

 =
 6

59
Po

si
tiv

e,
 

N
 =

 1
38

a
N

eg
at

iv
e,

 
N

 =
 2

17
a

M
is

si
ng

, 
N

 =
 3

04
a

Po
si

tiv
e,

 
N

 =
 1

25
a

N
eg

at
iv

e,
 

N
 =

 2
30

a
Po

si
tiv

e,
 

N
 =

 8
5a

N
eg

at
iv

e,
 

N
 =

 2
70

a
Po

si
tiv

e,
 

N
 =

 7
4a

N
eg

at
iv

e,
 

N
 =

 2
81

a

C
SF

 R
BC

 C
ou

nt
 

(c
el

l(s
)/

m
m

3 )
65

9
87

4;
 2

5 
(2

, 1
23

)
2,

04
0;

 1
2 

(0
, 3

24
)

1,
67

3;
 1

8 
(0

, 
1,

00
0)

34
1;

 2
2 

(2
, 9

0)
2,

26
3;

 1
4 

(0
, 3

90
)

1,
16

4;
 2

5 
(0

, 1
40

)
1,

71
9;

 1
4 

(0
, 3

00
)

26
7;

 2
1 

(0
, 1

05
)

1,
93

4;
 1

6 
(0

, 3
00

)

C
SF

 p
ro

te
in

 (g
/l)

65
7

2.
44

; 1
.7

9 
(1

.1
8,

 
2.

45
)

1.
48

; 0
.8

8 
(0

.4
6,

 
1.

75
)

1.
73

; 0
.7

3 
(0

.3
7,

 
1.

98
)

2.
49

; 1
.8

6 
(1

.2
1,

 
2.

46
)

1.
50

; 0
.9

1 
(0

.4
6,

 
1.

82
)

2.
26

; 1
.8

9 
(1

.3
5,

 
2.

50
)

1.
72

; 1
.0

1 
(0

.5
0,

 
1.

93
)

2.
85

; 1
.8

8 
(1

.5
1,

 
2.

39
)

1.
59

; 1
.0

0 
(0

.5
1,

 
1.

97
)

 
- M

iss
in
g

0
0

2
0

0
0

0
0

0

C
SF

 la
ct

at
e 

(m
m

ol
/l)

65
7

5.
8;

 5
.4

 (3
.8

, 7
.8

)
4.

1;
 3

.1
 (2

.3
, 4

.6
)

5.
6;

 3
.0

 (2
.2

, 6
.8

)
5.

9;
 5

.4
 (3

.8
, 7

.8
)

4.
2;

 3
.2

 (2
.3

, 5
.0

)
6.

5;
 6

.1
 (4

.4
, 8

.0
)

4.
3;

 3
.4

 (2
.3

, 5
.0

)
6.

8;
 6

.6
 (5

.2
, 8

.3
)

4.
3;

 3
.4

 (2
.3

, 5
.0

)

 
- M

iss
in
g

0
0

2
0

0
0

0
0

0

C
SF

 g
lu

co
se

 
(m

m
ol

/l)
65

7
2.

21
; 1

.9
7 

(1
.3

4,
 

2.
80

)
3.

50
; 3

.5
1 

(2
.6

4,
 

4.
31

)
3.

55
; 3

.7
6 

(2
.6

7,
 

4.
54

)
2.

14
; 1

.9
7 

(1
.3

0,
 

2.
76

)
3.

47
; 3

.4
9 

(2
.5

9,
 

4.
30

)
2.

00
; 1

.7
6 

(1
.2

7,
 

2.
29

)
3.

32
; 3

.3
3 

(2
.4

7,
 

4.
08

)
1.

79
; 1

.6
7 

(1
.1

9,
 

2.
18

)
3.

32
; 3

.3
1 

(2
.4

2,
 

4.
08

)

 
- M

iss
in
g

0
0

2
0

0
0

0
0

0

Pa
ire

d 
bl

oo
d 

gl
u-

co
se

 (m
m

ol
/l)

65
1

6.
55

; 6
.4

1 
(5

.8
0,

 
7.

26
)

6.
96

; 6
.5

3 
(5

.4
4,

 
7.

51
)

7.
17

; 6
.5

4 
(5

.4
5,

 
8.

13
)

6.
51

; 6
.4

0 
(5

.7
8,

 
7.

20
)

6.
96

; 6
.5

3 
(5

.4
6,

 
7.

52
)

6.
60

; 6
.5

3 
(5

.7
8,

 
7.

28
)

6.
87

; 6
.4

8 
(5

.5
2,

 
7.

46
)

6.
49

; 6
.4

0 
(5

.7
0,

 
7.

14
)

6.
89

; 6
.4

9 
(5

.5
3,

 
7.

50
)

 
- M

iss
in
g

1
2

5
1

2
1

2
1

2

C
ry

pt
oc

oc
ca

l 
an

tig
en

/I
nd

ia
n 

in
k +

 

57
2

1 
(0

.7
%

)
5 

(2
.4

%
)

13
 (5

.8
%

)
1 

(0
.8

%
)

5 
(2

.3
%

)
1 

(1
.2

%
)

5 
(1

.9
%

)
1 

(1
.4

%
)

5 
(1

.8
%

)

 
- M

iss
in
g

1
8

78
1

8
0

9
0

9

Po
si

tiv
e 

C
SF

 
G

ra
m

 s
ta

in
64

4
0 

(0
%

)
7 

(3
.2

%
)

37
 (1

3%
)

0 
(0

%
)

7 
(3

.1
%

)
0 

(0
%

)
7 

(2
.6

%
)

0 
(0

%
)

7 
(2

.5
%

)

 
- M

iss
in
g

5
1

9
3

3
3

3
1

5

Fe
ve

r
65

9
13

4 
(9

7%
)

20
3 

(9
4%

)
27

6 
(9

1%
)

12
1 

(9
7%

)
21

6 
(9

4%
)

82
 (9

6%
)

25
5 

(9
4%

)
71

 (9
6%

)
26

6 
(9

5%
)

H
ea

da
ch

e
60

6
12

7 
(9

6%
)

16
2 

(8
1%

)
21

5 
(7

9%
)

11
5 

(9
6%

)
17

4 
(8

2%
)

79
 (9

8%
)

21
0 

(8
3%

)
68

 (9
6%

)
22

1 
(8

4%
)

 
- M

iss
in
g

6
16

31
5

17
4

18
3

19

N
ec

k 
st

iff
ne

ss
63

3
75

 (5
6%

)
11

4 
(5

4%
)

15
8 

(5
5%

)
67

 (5
6%

)
12

2 
(5

4%
)

46
 (5

5%
)

14
3 

(5
4%

)
39

 (5
4%

)
15

0 
(5

5%
)

 
- M

iss
in
g

5
4

17
5

4
2

7
2

7

Ps
yc

ho
si

s
64

7
4 

(2
.9

%
)

32
 (1

5%
)

63
 (2

1%
)

3 
(2

.4
%

)
33

 (1
5%

)
3 

(3
.6

%
)

33
 (1

2%
)

2 
(2

.7
%

)
34

 (1
2%

)

 
- M

iss
in
g

2
3

7
2

3
1

4
1

4



Page 8 of 13Dong et al. BMC Infectious Diseases          (2024) 24:163 

Discussions
We used a latent class approach to obtain a diagnostic 
model of TBM for adults with suspected brain infections. 
Upon validation, our model showed good calibration and 
discrimination. Using cutpoints based on Youden’s Index, 
both our full and simplified prevalence models surpassed 
the most sensitive confirmatory test ZN-Smear (86% 
and 79%, compared with 65% of ZN-Smear), while still 
obtaining good specificity (88% and 75%, respectively).

The association direction of the diagnostic features and 
the individual TBM risk mostly followed prior knowl-
edge. There are two differences compared with the UCD 
[5]. Firstly, we enforced a positive coefficient on HIV 
infection. Secondly, we found that a higher GCS was 
associated with a higher probability of TBM. Still, our 
estimated TBM risk was well-calibrated with the final 
hospital diagnosis made at discharge or death. This raises 
confidence that both are accurate. However, our model 
provides results far earlier in patients’ hospitalisation.

A novel quantification in our model is the latent myco-
bacterial burden. This estimate showed good corre-
spondence with another laboratory-based quantification 
(Clinical supplementary appendix). We found that higher 
lymphocyte count in CSF was associated with increased 
probability of having TBM but with reduced mycobacil-
lary burden. As lower mycobacillary burden is believed 
to be associated with reduced mortality, this was in line 

with a previous study, in which higher lymphocyte count 
was linked to increased survival from TBM [22].

As a by-product, we could re-evaluate the performance 
of the current microbiological assays. ZN-Smear had the 
highest sensitivity, 64.6% (95% CrI 50.9%—81.8%), con-
firming prior studies from our centre and reflecting the 
high level of technical expertise in conducting the test [1, 
11]. In our laboratory, Xpert performed poorly, especially 
for individuals without HIV, who on average had low 
mycobacillary burden. All tests performed much better 
for those with HIV, who tended to have higher burden. 
Within this group, ZN-Smear can be used as a reliable 
diagnostic standard, although the performance and util-
ity are likely to be reduced outside of expert laboratories.

We are not the first to use LCA to help improve TBM 
diagnosis. A previous study from the Vietnam National 
Lung Hospital in Hanoi [6] had a different target popula-
tion and estimated TBM prevalence amongst individuals 
with TB of any type. They made the strong assumption 
that all confirmatory test results were mutually inde-
pendent. We could relax that assumption by including a 
model for mycobacterial burden. Unlike previous studies 
[4, 6, 8], we used non-confirmatory biomarkers as predic-
tors, not as manifest variables. This implementation had 
two purposes: on the technical side, it lowered the risk of 
violating the aforementioned assumptions of independ-
ence if more manifest variables were included; and on the 

Fig. 3 Venn diagram for ZN-Smear, MGIT, and Xpert profile in the study population
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Fig. 4 Posterior estimates of our selected model. A Prevalence model: TBM odds ratios by diagnostic features, except WCC; B TBM odds ratio by CSF 
WCC ( cells/mm

3 ) over reference value = 154 cells/mm
3 ; C Modulating factors impacting individual bacillary burden, given they have TBM. In A 

and C: dot, thick and thin lines are medians, 50% and 95% credible intervals. In B: the blue line is median odds ratio, the inner and outer ribbon are 
50% and 95% credible intervals



Page 10 of 13Dong et al. BMC Infectious Diseases          (2024) 24:163 

prediction side, it allowed us to develop a calibrated diag-
nostic model for TBM based on disease-related clinical 
and laboratory characteristics.

Our study has some limitations. There were miss-
ing data, especially in test results and HIV status. When 
imputing missing values, we had to make several assump-
tions. These assumptions, despite the validity checks of 
the imputation (Statistical supplementary appendix), 
could have biased the results to some extent. In addi-
tion, this is a single-centre study conducted in a special-
ised brain infections centre. The prevalence of individuals 
with severe disease may be lower in other centres. Also, 
although the clinicians’ s assessment and diagnosis skills 

Table 2 Posterior estimates of test specificities and sensitivities to diagnose TBM, for overall population, and stratified by HIV infection. 
Test specificities are the same for all strata

Values are in the form Median (95% Credible interval)

Specificity (%) Sensitivity (%)

Test (All strata) Overall HIV infected HIV naive

ZN-Smear 99.9  (99.2—100.0) 64.6  (50.9—81.8) 89.0  (81.5—94.6) 62.5  (47.8—80.9)

MGIT 99.7  (98.4—100.0) 42.1  (33.0—52.7) 75.9  (65.7—84.2) 39.1  (29.6—50.4)

Xpert 99.9  (99.4—100.0) 37.2  (28.7—48.3) 75.5  (64.7—84.3) 33.8  (24.9—45.7)

Fig. 5 Performance of the selected prevalence model, assuming the final hospital diagnosis is the true status. A ROC curve and AUC: AUC values 
are presented as “average (min—max over 5 repetitions of cross-validation)”; B Calibration plot, showing the relationship between the predicted 
probability and observe outcome, smoothed by a loess curve. The grey lines are fitted curves from each 20-fold cross validation and coloured lines 
represents their average. The cross-validation procedure is explained in the Statistical supplementary appendix

Table 3 Change in probability of TBM after one or more 
negative confirmatory test results, relative to TBM probability 
when no test results are known

Values are in the form Median (95% Credible interval)

Assuming pre-test risk is 1, the values measure post-test risk in each scenario

In each scenario, “-” represents a negative test result and “?” represents an 
unknown (or unretrieved) test result

Scenario Smear MGIT Xpert HIV (‑) HIV ( +)

a - ? ? 0.46 (0.25—0.62) 0.49 (0.28—0.70)

b ? ? - 0.70 (0.58—0.79) 0.49 (0.31—0.69)

c - - ? 0.40 (0.19—0.56) 0.31 (0.15—0.52)

d - ? - 0.42 (0.21—0.58) 0.28 (0.14—0.48)

e - - - 0.38 (0.18—0.54) 0.21 (0.10—0.39)
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were supposedly high and followed a standardised guide-
line, we could not rule out the risk of biases induced 
by personal judgement, especially in detecting clinical 
symptoms. The levels of clinical and laboratory expertise 
at our tertiary hospital may also be higher; especially the 
performance of CSF ZN-smear may not generalise well to 
other laboratories. There is less inter-laboratory variabil-
ity in the performance of CSF Xpert and culture, but this 

does not detract from the need for external validation of 
our findings. In both cases, it highlights the benefit of a 
diagnostic tool that is less sensitive to expert judgement 
– which our prevalence models provide.

In conclusion, despite many past attempts to quantify 
microbiological test performance and develop diagnos-
tic methods for TBM, this is amongst the first studies to 
utilise LCM and rigorously validate many assumptions 

Fig. 6 Posterior estimates and performance of the simplified prevalence model, assuming the final hospital diagnosis is the true status. A 
Posterior estimates of coefficients of clinical TBM risk factors. Points, thick and thin lines are medians, 50% and 95% credible intervals. B ROC plot 
and AUC. AUC values are presented as “average (min—max over 20 repetitions of cross-validation)”. C Calibration plot, showing the relationship 
between the predicted probability and observe outcome, smoothed by a loess curve. The grey lines are fitted curves from each 20-fold 
cross validation and coloured lines represents their average. The cross-validation procedure is explained in the Statistical supplementary appendix
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made by the model. It was developed using a large cohort 
of adults with brain infection in Vietnam. Leveraging 
Bayesian inference, we extended the classical LCM and 
estimated individual mycobacillary burden. Our findings 
therefore have relevance for both clinical practice and 
research. Until a better gold standard for TBM diagnosis 
is developed, our model could be used as a reference for 
both the diagnosis of TBM and the estimation of severity, 
both for research and clinical care.
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Headache 0.62—1.10 Present 1.5

Fever 1.07—1.85 Present 2.5

Neck stiffness 0.26—0.57 Present 1.0
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