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Abstract 

Background Immunological nonresponders (INRs) living with HIV are at increased risk of co-infection and multi-
ple tumors, with no effective strategy currently available to restore their T-cell immune response. This study aimed 
to explore the safety and efficacy of thymosin α1 in reconstituting the immune response in INRs.

Methods INRs with CD4 + T cell counts between 100 and 350 cells/μL were enrolled and received two-staged 
1.6 mg thymosin α1 subcutaneous injections for 24 weeks (daily in the first 2 weeks and biweekly in the subsequent 
22 weeks) while continuing antiretroviral therapy. T cell counts and subsets, the expression of PD-1 and TIM-3 on T 
cells, and signal joint T cell receptor excision circles (sjTREC) at week 24 were evaluated as endpoints.

Results Twenty three INRs were screened for eligibility, and 20 received treatment. The majority were male (19/20), 
with a median age of 48.1 years (interquartile range: 40.5–57.0) and had received antiretroviral therapy for 5.0 (3.0, 
7.3) years. Multiple comparisons indicated that CD4 + T cell count and sjTREC increased after initiation of treatment, 
although no significant differences were observed at week 24 compared to baseline. Greatly, levels of CD4 + T cell 
proportion (17.2% vs. 29.1%, P < 0.001), naïve CD4 + and CD8 + T cell proportion (17.2% vs. 41.1%, P < 0.001; 13.8% vs. 
26.6%, P = 0.008) significantly increased. Meanwhile, the proportion of CD4 + central memory T cells of HIV latent hosts 
(42.7% vs. 10.3%, P < 0.001) significantly decreased. Moreover, the expression of PD-1 on CD4 + T cells (14.1% vs. 6.5%, 
P < 0.001) and CD8 + T cells (8.5% vs. 4.1%, P < 0.001) decreased, but the expression of TIM-3 on T cellsremained unal-
tered at week 24. No severe adverse events were reported and HIV viral loads kept stable throughout the study.

Conclusions Thymosin α1 enhance CD4 + T cell count and thymic output albeit as a trend rather than an endpoint. 
Importantly, it improves immunosenescence and decreases immune exhaustion, warranting further investigation.

Trial registration This single-arm prospective study was registered with ClinicalTrials.gov (NCT04963712) on July 15, 
2021.
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Background
Human immunodeficiency virus type 1 (HIV-1) infection 
leads to progressive depletion of CD4 + T cells and func-
tional impairment in people living with HIV (PLWH). 
The introduction of antiretroviral therapy (ART) has 
reduced morbidity and mortality in PLWH by suppress-
ing viral replication and promoting CD4 + T cell recov-
ery [1, 2]. However, approximately 20% of PLWH fail to 
restore CD4 + T cell counts despite persistent viral sup-
pression with ART, leading to a heightened susceptibility 
to opportunistic infections, non-AIDS-related diseases, 
and deteriorating quality of life as compared to immuno-
logical responders (IRs) who achieve substantial CD4 + T 
cell count recovery [3–5]. Currently, no definitive phar-
maceutical intervention exists to restore CD4 + T cell 
count in INRs. The failure to restore CD4 + T cell count 
following ART has been attributed primarily to a defect 
in recent thymic immigrants [6]. A cross-sectional study 
found INRs maintain a lower proportion of thymic immi-
grant CD4 + T cells and naïve CD4 + T cells, but a higher 
proportion of effector memory CD4 + T cells and ele-
vated levels of thymic immigrant CD4 + T cell pyroptosis 
compared with IRs [7]. Therefore, immunomodulatory 
agents may hold promise for enhancing thymic recovery 
and immune reconstitution in INRs.

Thymosin α1 (Tα1), a synthetic thymic polypeptide 
homologous to a natural product isolated from thymo-
sin fraction 5 of calf thymuses, has emerged as a poten-
tial candidate [8]. As an agonist of Toll-like receptors 2 
and 9, Tα1 can boost thymic output, stimulate various 
immune cells populations including dendritic cells, nat-
ural killer cells, B cells, and T cells, and promote their 
proliferation and adaptive response crucial for combatin 
viral, bacterial, and fungal infections, and cancers [9]. 
After the advent of the first antiretroviral drug, Tα1 was 
found to elevate CD4 + T cell levels only in combination 
with IFN-α and zidovudine [10]. However, a contempora-
neous study reporte that IL-2 led to significant increases 
in CD4 + T cells in the presence of zidovudine but does 
not when combined with Tα1 [11]. With the populari-
zation of ART, a phase II randomized, controlled open-
label trial noted changes primarily in signal joint T cell 
receptor excision circles (sjTREC) levels in peripheral 
blood mononuclear cells (PBMCs) but not in CD4 + , 
CD8 + , and CD45RA + T lymphocyte subsets after week 
12 of Tα1 treatment in PLWH [12]. Previous investiga-
tions have predominantly focused on antiretroviral-
naïve PLWH and considered Tα1 as an adjunct to ART. 
Here we would like to expand the applicability of Tα1 to 
explore its potential in immune reconstitution in INRs 
after long-term ART.

The present prospective pilot trial seeks to assess the 
safety and efficacy of Tα1 in restoring immune response 

in INRs. After Tα1 treatment, within 24  weeks, param-
eters related to thymic output, T cell subsets, immune 
exhaustion, and immunosenescence were evaluated 
to characterize the immunological profiles of these 
participants.

Methods
Participants
From September 2021 to October 2021, INRs meeting 
the inclusion criteria were enrolled at Shanghai Public 
Health Clinical Center, China. Specifically, all volunteers 
were between 18 to 65 years old, with HIV infection con-
firmed by positive ELISA, and achieved viral suppression 
(HIV RNA < 50 copies/mL) for at least two years follow-
ing ART. Participants with CD4 + T cell counts between 
100 to 350 cells/µL and without active opportunistic 
infection were eligible for the study. Any cases of allergy 
to Tα1, pregnancy, drug abuse, non-AIDS related tumors, 
severe cardiac or central nervous diseases, organ trans-
plantation, and immunotherapies were excluded. Written 
informed consent was obtained from all participants.

Design and procedures
The study was a single-arm trial with a longitudinal 
design. In the first two weeks, each participant got a 
daily subcutaneous injection of 1.6  mg Tα1, followed 
by a transition to twice-weekly injections for the subse-
quent 22 weeks. Following the guidance of the attending 
physician, participants continued original ART regimens 
throughout the study period. Zadaxin® (Sci Clone Phar-
maceuticals Inc., Shanghai, China) was supplied as a 
lyophilized powder in vials with 1.6  mg of Tα1, 50  mg 
mannitol, and sodium phosphate buffer to adjust the pH 
to 6.8. The powder was reconstituted with sterile water 
(1 mL) for injection. At week 0 (baseline), 4, 8, 12, and 24, 
peripheral venous blood (PVB) samples were obtained 
from each participant for routine laboratory tests. An 
additional 10  mL PVB was collected for extraction of 
PBMCs and successive immunological assays. In this 
study, the primary endpoint was the change in CD4 + T 
cell count and CD4/CD8 T-cell ratio from baseline to 
week 24. The secondary endpoints were changes in T cell 
counts and subsets, proportions of immune exhausted T 
cells expressed PD-1 and TIM-3, and PBMC sjTREC at 
each visit.

Flow cytometry
Flow cytometry (FACS Calibur, BD, USA) was used to 
measure CD4 + and CD8 + T cell counts immediately 
after PVB isolation. PBMCs were isolated from PVB 
using Ficoll density gradient centrifugation in the labora-
tory following the manufacturer’s instructions. The fol-
lowing cocktail of antibodies was used to stain PBMCs 
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immediately after isolation to avoid the loss of immune 
epitopes caused by freeze–thaw: CD3 APC-H7, CD4 
FITC, CD8 APC, CD45RA BV711, CCR7 BV650, PD-1 
PE-Cy7, Tim-3 PE, and FVS510 AmCyan (all from BD 
Biosciences, USA). Within 24  h, cell-surface recep-
tor expression was quantified by flow cytometry (FACS 
LSRFortess, BD, USA). At least  105 cell populations were 
acquired as gated events and collated for each sample. 
Subsets analysis was conducted using Flowjo software 
(version 10.0, BD, USA). Appropriate isotype-matched 
controls or fluorescence minus ones were run in parallel 
for each sample.

Quantitative polymerase chain reaction (qPCR)
Viral loads were observed using qPCR (Cobas Ampli-
cor, Roche, Switzerland). TIANamp Genomic DNA kit 
(TIANGEN, China) was used to extract genomic DNA 
from PBMCs. Real-time qPCR amplification of sjTREC 
was performed following the method outlined by Douek 
et al. [13] Tsingke corporations, Shanghai, provided tech-
nical support for the plasmid of the standard sample 
and the validation of the qPCR products using Sanger 
sequencing. Quantification of sjTREC copies was evalu-
ated using a standard curve, and highly conserved RAG2 
gene expression was measured to calculate the intracel-
lular copy numbers of sjTREC. Primers and TaqMan 
fluorescence probe were designed as follows: 1) sjTREC: 
forward primer 5’-ccatgctgacacctctggtt-3’; reverse primer 
5’-tcgtgagaacggtgaatgaag-3’; fluorescence probe 5’-FAM-
cacggtgatgcataggcacctgc-TAMRA-3’; 2) RAG2: forward 
primer 5’-tga agatgatactaatgaagagcagaca-3’; reverse 
primer 5’-cagagtcttcaaagggagtggaa-3’; fluorescence probe 
5’-FAM-cccctggatcttctgttgatgtttgactgttttg-TAMRA-3’.

Safety evaluation
The safety evaluation encompassed a review of clinical 
adverse events, electrocardiogram tests, and laboratory 
tests (blood tests, urine tests, renal and liver function, 
blood glucose, blood electrolyte, blood lipids, serum 
amylase, lipase, and cardiac muscle zymogram). Adverse 
events were evaluated according to the National Can-
cer Institute (NCI) Common Terminology Criteria for 
Adverse Events (CTCAE) version 5.0. This study is regis-
tered with ClinicalTrials.gov first time on 15/07/2021 as 
registration number NCT04963712.

Statistical analysis
The data are represented as median and interquartile 
range (IQR). Multiple comparisons were performed by 
One-way Repeated Measures Anova (RANOVA) test or 
Friedman test based on its distribution tested by Shap-
iro–Wilk test. In cases where the p-value for multiple 
comparisons was less than 0.05, two-by-two comparisons 

between W4/W8/W12/W24 and W0 were conducted to 
obtain Bonferroni-adjusted p-values. For lost-to-follow-
up data, the last assessable outcome was utilize as the fol-
low-up endpoin. The statistical analysis was using SPSS 
software (version 13.0, IBM, USA). GraphPad Prism (ver-
sion 7.0, GraphPad Software, USA) was used for visuali-
zatio and plotting.

Results
Demographic and baseline characteristics
We evaluated 23 INRs for eligibility, of whom three 
were excluded due to an undetectable viral load for 
less than 2  years and withdrawal of informed consent 
prior to the initiation of the first dose. Consequently a 
total of 20 INRs were enrolled and received Tα1 treat-
ment. The demographic and baseline characteristics of 
the participants are listed in Table 1. 95% of them were 
male, aged 48.1 (40.5, 57.0), and had received ART for 
5 (3, 7.3) years. The nadir CD4 + T cell count was 22.0 
(11.0, 109.0) cells/µL, with a corresponding CD4/CD8 
T-cell ratio of 0.06 (0.04, 0.18) before ART. The CD4 + T 

Table 1 Demographics and baseline characteristics of participants

ART  antiretroviral therapy, NRTI nucleoside reverse transcriptase inhibitor, 
NNRTI non-nucleoside reverse transcriptase inhibitor, PI protease inhibitor, INSTI 
integrase strand transfer inhibitors, IQR interquartile range

Characteristic N = 20 (%)

Sex

 Male 19 (95%)

 Female 1 (5%)

Median age, years (IQR) 48.1 (40.5, 57.0)

Nadir CD4 + T cell count (IQR, cells/μL) 22.0 (11.0, 109.0)

Nadir CD4/CD8 T-cell ratio (IQR, cells/μL) 0.06 (0.04, 0.18)

Viral load, > 2 years (copies/mL)  < 50 (100%)

ART duration, years (IQR) 5.0 (3.0, 7.3)

Baseline CD4 + T cell count (IQR, cells/μL) 215.3 (190.1, 269.2)

Baseline CD4/CD8 T-cell ratio (IQR, cells/μL) 0.35 (0.24, 0.43)

ART regimens

 NRTIs + NNRTI 14 (70%)

 NRTIs 3 (15%)

 NRTIs + PI 2 (10%)

 NRTI + INSTI 1 (5%)

Past history

 Hyperlipidemia 6 (30%)

 Syphilis 3 (15%)

 Hypercholesterolemia 2 (10%)

 Hypertension 2 (10%)

 Uarthritis 2 (10%)

 Diabetes 1 (5%)

 Renal insufficiency 1 (5%)

 Hepatitis C infection 0 (0%)
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cell count at baseline was 215.3 (190.1, 269.2) cells/µL, 
and CD4/CD8 T-cell ratio was 0.35 (0.24, 0.43). During 
the study, three participants withdrew their consents 
because of increased participation costs such as reloca-
tion or travel. Ultimately, 17 participants accomplished 
the protocol (Figure S1).

Safety evaluation
Twenty subjects received at least one dose of Tα1 
injection. No severe drug-related adverse events were 
observed over the study period. The HIV viral load 
remained consistently stable and below the minimum 
detection level. Among the reported adverse events, 
five were deemed potentially  drug-related, including 
hyperlipidemia, hypercholesterolemia, uarthritis, renal 
dysfunction, and sore throat (Table 2).

T cell counts
Lognitudinal changes in CD4 + T cell count, CD8 + T 
cell count, CD4/CD8 T-cell ratio, CD45 + lympho-
cyte count, CD3 + T cell count, and proportions of 
CD3 + CD4 + or CD3 + CD8 + T cell subsets within 
24 weeks were depicted in Fig. 1. Multiple comparisons 
revealed significant overall changes in CD4 + T cell 
count, but no difference was observed between base-
line and week 24 (Fig.  1A). The CD4/CD8 T-cell ratio 
and CD8 + T cell count had not change at week 24 and 
overall (Fig.  1B, C). The proportion of CD3 + CD4 + T 
cells increased (17.2% vs. 29.1%, P < 0.001; Fig.  1D), 
while CD3 + CD8 + T cells decreased (73.3% vs. 
56.0%, P < 0.001; Fig.  1E). No significant changes 
were observed in total CD45 + lymphocyte count and 
CD3 + T cell count between baseline and week 24. 
(Fig. 1F, G).

Thymic output measurement
Tα1 promotes the proliferation, differentiation and 
maturation of T cells in the thymus. Based on the 
level of PBMC sjTREC, we calculated the degree of 
thymic output. The level of PBMC sjTREC had trend of 
increase but no significance at week 24 in comparison 
to that at baseline (521.2 copies/106 cells vs. 753.3 cop-
ies/106 cells) (Fig. 1H). Thymic output was altered over-
all (p < 0.001) while a significant decrease was observed 
at week 12 (521.2 copies/106 cells vs. 216.4 copies/106 
cells, P = 0.008). One possible hypothesis is that the 
participants with impaired thymic function were astati-
cally hyposensitive to Tα1 treatment at that time.

T cell subsets and immune checkpoints
In Figs.  2A and 3A, both proportions of naïve 
(CD45RA + , CCR7 +) CD4 + T cell (17.2% vs. 41.1%, 
P < 0.001) and naïve CD8 + T cell (13.8% vs. 26.6%, 
P = 0.008) increased at week 24 compared to that at 
baseline. In contrast,, the proportions of central mem-
ory (CM, CD45RA-, CCR7 +) CD4 + T cell (42.7% vs. 
10.3%, P < 0.001) and CM CD8 + T cell (3.8% vs. 0.6%, 
P < 0.001) both decreased (Figs.  2B and  3B). The pro-
portion of effector memory (EM, CD45RA-, CCR7-) 
CD4 + T cell had no change, but the proportion of 
EM CD8 + T cell (60.8% vs. 29.9%, P < 0.001) sharply 
decreased (Figs. 2C and 3C). Additionally, proportions 
of terminal effector memory (TEMRA, CD45RA + , 
CCR7-) CD4 + T cell (0.2% vs. 5.8%, P < 0.001) and 
TEMRA CD8 + T cell (14.2% vs. 36.0%, P < 0.001) 
increased (Figs.  2D and 3D). In light of the notable 
changes in T cell subsets, the naïve/effector memory 
CD4 + T cell ratio (N/EM ratio) and the CD8 + N/EM 
ratio gained great increases at week 24 (0.48 vs. 0.92, 
P = 0.014, Fig. 2E and 0.25 vs. 0.95, P < 0.001, Fig. 3E).

The expression of immune checkpoints such as pro-
grammed cell death 1 (PD-1) and T cell immuno-
globulin and mucin domain-containing molecule-3 
(Tim-3) delineates the degree of immune exhaustion. 
In comparison to baseline, the proportions of CD4 + T 
cells and CD8 + T cells that expressed PD-1 signifi-
cantly decreased after Tα1 treatment (CD4 + PD-1 + , 
14.1% vs. 6.5%, P = 0.002; CD8 + PD-1 + , 8.5% vs. 4.1%, 
P < 0.001) at multiple time-points (Figs.  2F and 3F). 
Furthermore, the proportions of CD4 + T cells and 
CD8 + T cells expressed TIM-3 exhibited a decreas-
ing trend after Tα1 treatment, however, did not reach 
statistical significance (CD4 + TIM-3 + , 4.9% vs. 3.4%; 
CD8 + TIM-3 + , 12.3% vs. 8.9%, Figs. 2G and 3G). The 
gate strategy and representative diagram of flow cytom-
etry sorting were shown in Figure S2.

Table 2 Summary of adverse events

Preferred terms All events Drug-
associated 
likely

Abnormal indicators 62 (100%) 6 (9.6%)
Hyperlipidemia 24 (38.7%) 1 (1.6%)

Syphilis 1 (1.6%) 0

Hypercholesterolemia 8 (12.9%) 1 (1.6%)

Hypertension 3 (4.8%) 0

Uarthritis 9 (14.5%) 1 (1.6%)

Diabetes 9 (14.5%) 0

Renal insufficiency 6 (9.8%) 1 (1.6%)

Upper respiratory tract infection 1 (1.6%) 1 (1.6%)

Sore throat 1 (1.6%) 1 (1.6%)
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Discussion
In spite of the mounting life expectancy of PLWH after 
ART treatment worldwide, INRs living with HIV were 
still suffering from severe conditions due to diminished 
thymic output, bone marrow hematopoiesis dysfunction, 
residual virus replication, immune exhaustion, and aber-
rant immune activation [6, 7]. Impaired thymic function 
in patients with low CD4 + T cell counts may account for 
inadequate CD4 + T cell restoration [14]. In this study, 
Tα1 treatment altered CD4 + T-cell counts and thymic 
output characterized by PBMC sjTREC at an overall 
level after initiation. Previous studies have demonstrated 

a correlation between levels of PBMC sjTREC, recent 
thymic emigration, long-time CD4 + T count response, 
and survival in PLWH [13, 15, 16]. However, more in-
depth investigations have revealed that the elevation of 
sjTREC levels could be the consequence of homeostatic 
proliferation of CD45RA + naïve T cells in the periphery 
[17, 18]. Combined with the great increase of naïve T cells 
in this study, the use of sjTREC as a measure of thymic 
output might carry the risk of producing false-positive 
results. In contrast, the sj/βTREC ratio, serving as a sur-
rogate for thymic output, remained unaffected by periph-
eral proliferation and predicted the therapy-mediated 

Fig. 1 Lognitudinal changes in CD4 + T cell count (A), CD8 + T cell count (B), CD4/CD8 T-cell ratio (C), proportion of CD3 + CD4 + T cell (D), 
proportion of CD3 + CD8 + T cell (E), CD45 + lymphocyte count (F), CD3 + cell count (G), and PBMC sjTREC (H). PBMC: peripheral blood mononuclear 
cell; sjTREC: signal joint T cell receptor excision circles
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recovery of naive and total CD4 + T cells, as well as HIV 
disease progression [19, 20]. Given the positive correla-
tion between the sj/βTREC ratio and CD4 + naïve T cells 
as demonstrated (R = 0.504, P = 0.009 in Dion ML, Blood 
2007), the findings of increased thymic output in this 
study still hold merit.

Traditionally, the CD4 + T cell count and the CD4/CD8 
T-cell ratio serve as primary indicators for evaluating 
immune reconstitution in PLWH [21]. We observed a dif-
ference in multiple comparisons of CD4 + T cell counts 
and a gradual, albeit insignificant, increase in the median 
CD4 + T cell count throughout the treatment period 

Fig. 2 Longitudinal changes of proportions of CD4 + naive T cell (A), central memory T cell (B), effector memory T cell (C), TEMRA T cell (D), N/EM 
T cell ratio (E), and corresponding expression of immune checkpoints (F, G). N/EM: central memory/effector memory. TEMRA: terminal effector 
memory CD45RA re-expressing

Fig. 3 Longitudinal changes of proportions of CD8 + naive T cell (A), central memory T cell (B), effector memory T cell (C), TEMRA T cell (D), N/EM T 
cell ratio (E), and corresponding expression of immune checkpoints (F, G)
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(225.8 vs. 286.0 vs. 238.1 vs. 236.0 vs. 274.0). Although a 
large gap still existed from satisfactory level (> 350 cells/
μL), we had reason to believe that participants achieve 
an improved immune profile and prognosis. The feasibil-
ity of the N/EM T cell ratio as a useful predictive marker 
of immune reconstitution in chronic HIV patients sug-
gested the role of Tα1 in immune reconstitution [22]. 
In brief, our results suggest that INRs achieve partial 
immune reconstitution and probably a better prognosis 
after treatment.

We confirmed that Tα1 was safe and well tolerated in 
this group, consistent with previous clinical trials of Tα1 
in PLWH [10–12]. While different immunomodulat-
ing compounds like IL-2 were used to restore CD4 + T 
cell count in HIV infection, they failed to reduce the 
incidence of opportunistic disease or death because the 
expanded CD4 + T cells lacked host defense capacity. 
[23] Encouragingly, recombinant human IL-7 was proven 
well tolerated and result in a dose-dependent increase 
of CD4 + T cell and thymic output in patients with poor 
immune reconstitution [24]. Considering that Tα1 has 
demonstrated its effectiveness in elevating CD4 + T cells 
after 12 months [10], a larger and longer cohort study is 
necessary to further investigate the therapeutic efficacy 
of Tα1 for INRs living with HIV in the future.

Immunophenotyping analysis revealed the distinct 
roles played by T cell subsets at various stages of develop-
ment. The production of de novo naïve T cells in the thy-
mus has been demonstrated to push reconstitution of all 
T cell subsets [14]. Based on our findings, Tα1 reversed 
the decrease of proportions of naïve T cells in chronic 
HIV infection, and reduced the proportions of exhausted 
PD-1 + T cells caused by sustained abnormal immune 
activation. Besides, it significantly reduced the propor-
tion of CM CD4 + T cells, which have been identified as 
primary host cells for HIV reservoir [25]. Fromentin et al. 
found that CD4 + CM T cells co-expressing PD-1 and 
CTLA-4 exhibit diminished responsiveness to activat-
ing stimuli facilitating HIV latency, and the PD-1/PD-L1 
inhibitor Pembrolizumab induced HIV latency reversal 
in PLWH [26, 27]. HIV persists preferentially in CD4 + T 
cells expressing multiple immune checkpoint molecules, 
including PD-1, TIM-3, CTLA-4 and LAG-3. Therefore, 
combining immune checkpoints to reverse latency is a 
more effective strategy than using a single latency rever-
sal agent, like vorinostat and bryostatin [28]. In fact, 
some studies found INRs maintain a lower proportion of 
thymic migrated cells and naïve T cells, a higher propor-
tion of CD4 + PD-1 + T cells, and a higher level of HIV 
DNA and CA-RNA compared to IRs [7]. Mechanistically, 
HIV could evade host immune responses by upregulat-
ing the expression of immune checkpoint receptors, like 
PD-1, CTLA-4, and Tim-3 [29]. Our findings extend 

one underlying scientific hypothesis that Tα1 treatment 
exerts a positive effect on the regeneration of T-cell stor-
age, and participated in diminishing the HIV reservoir, 
which represents the focal point of our forthcoming 
investigations.

The present study has some limitations. First, the 
sample size is relatively small. Thus, a larger cohort is 
required to confirm the safety and efficacy of Tα1 on 
INRs living with HIV. Second, the absence of a con-
trol group, such as a placebo arm. Third, the utilization 
of sjTREC rather than sj/βTREC ratio as a surrogate for 
thymic output might introduce some degree of false-pos-
itive results. Lastly, longer duration of treatment might 
be necessary to achieve statistically significant increases 
in CD4 + T cell counts.

Conclusions
In summary, we first report that Tα1 treatment for 
INRs living with HIV was well-tolerated. Tα1 treatment 
improves the CD4 + T cell count at overall level but not at 
endpoint. Notably, Tα1 increases thymic output, rebuilds 
the composition of T cell subsets, and partially reverses 
immune exhaustion. The efficacy of Tα1 treatment in 
INRs necessitates further evaluation through extended 
and expanded clinical trials, as well as comprehensive 
mechanistic investigations.
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