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Abstract
Background  The Coronavirus disease 2019 (COVID-19) pandemic occurred due to the dispersion of severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2). Severe symptoms can be observed in COVID-19 patients with 
lipid-related comorbidities such as obesity and diabetes. Yet, the extensive molecular mechanisms of how SARS-CoV-2 
causes dysregulation of lipid metabolism remain unknown.

Methods  Here, an advanced search of articles was conducted using PubMed, Scopus, EBSCOhost, and Web of 
Science databases using terms from Medical Subject Heading (MeSH) like SARS-CoV-2, lipid metabolism and 
transcriptomic as the keywords. From 428 retrieved studies, only clinical studies using next-generation sequencing 
as a gene expression method in COVID-19 patients were accepted. Study design, study population, sample type, the 
method for gene expression and differentially expressed genes (DEGs) were extracted from the five included studies. 
The DEGs obtained from the studies were pooled and analyzed using the bioinformatics software package, DAVID, to 
determine the enriched pathways. The DEGs involved in lipid metabolic pathways were selected and further analyzed 
using STRING and Cytoscape through visualization by protein-protein interaction (PPI) network complex.

Results  The analysis identified nine remarkable clusters from the PPI complex, where cluster 1 showed the highest 
molecular interaction score. Three potential candidate genes (PPARG, IFITM3 and APOBEC3G) were pointed out from 
the integrated bioinformatics analysis in this systematic review and were chosen due to their significant role in 
regulating lipid metabolism. These candidate genes were significantly involved in enriched lipid metabolic pathways, 
mainly in regulating lipid homeostasis affecting the pathogenicity of SARS-CoV-2, specifically in mechanisms of viral 
entry and viral replication in COVID-19 patients.

Conclusions  Taken together, our findings in this systematic review highlight the affected lipid-metabolic pathways 
along with the affected genes upon SARS-CoV-2 invasion, which could be a potential target for new therapeutic 
strategies study in the future.
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Introduction
The novel severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) is the pathogen responsible for 
the Coronavirus Disease 2019 (COVID-19) pandemic. 
The virus comprises an enveloped single-stranded, pos-
itive-sense RNA and it belongs to the Betacoronavirus 
genus of the subfamily Orthocoronavirinae in the Coro-
naviridae family [1]. SARS-CoV-2 has a 79% common 
sequence identity with SARS-CoV-1, which caused the 
Asian SARS outbreak from 2002 to 2004 [2]. COVID-19 
was first reported in Wuhan, China, where the patient 
was hospitalized on December 12th, 2019 [3]. Since then, 
the pandemic has infected 634 million people worldwide 
and caused around 6.6  million deaths up to November 
2022, (WHO, 2022). Before the introduction of vaccines, 
the pandemic was considered a fatal threat to humanity. 
With the rapid rise in cases and no available cure, many 
healthcare systems worldwide were burdened, prompting 
governments to impose lockdowns in a bid to stem the 
infection.

However, with the introduction of vaccines and anti-
viral medications like Paxlovid, the disease has become 
manageable and less fatal. It is now commonly charac-
terized by systemic inflammation [4], with mild to severe 
fever and coughs, besides shortness of breath and chest 
pain. However, patients with comorbidities, such as car-
diovascular disease, diabetes, obesity and cancer, tend to 
develop severe consequences [5]. This may happen due 
to the dysregulation of genes responsible for various sig-
naling pathways associated with the comorbidities, such 
as the immune response and cell growth. The altera-
tion of the genes involved may subsequently lead to the 
enhancement of SARS-CoV-2 pathogenicity.

Recently, several studies have focused on the asso-
ciation between lipid metabolic pathways and the 
pathogenicity of SARS-CoV-2 because patients with 
co-morbidities tended to develop severe symptoms of 
COVID-19. A study by Al Heialy et al. (2020) found that 
obese and diabetic people were more likely to be afflicted 
with severe pulmonary inflammation and injury [6]. This 
observation is strengthened by the fact that obesity may 
lower the effectiveness of the immune response towards 
infection or vaccination [7]. It is known that obesity and 
diabetes are highly associated with the dysregulation 
of lipid synthesis and clearance [6]. Wang et al. (2021) 
proposed that the identification of host transcriptional 
response to SARS-CoV-2 infection be divided into two 
components, namely material metabolism and cytokine-
related transcriptional regulation [8]. Dysregulation of 
lipid metabolism may increase the expression of angio-
tensin converting enzyme 2 (ACE2), which was suggested 

by Al Heialy et al. (2020) based on in silico and in vitro 
findings. ACE2 is expressed in various tissues, such as 
the lungs, kidney, heart, gallbladder, liver and intestines, 
and is usually bound to the cell membrane, although 
some may exist in soluble form in the blood [9]. This 
enzyme plays an important role in the renin-angiotensin-
aldosterone system (RAAS) to control blood pressure 
in humans. However, membrane-bound ACE2 has also 
been identified as the binding site for SARS-CoV-2 infec-
tion. Therefore, patients with lipid dysregulation will sub-
sequently be at risk of severe SARS-CoV-2 infection due 
to their increased expression of ACE2.

A multi-omics study can analyze changes in host tran-
scriptomic profiling before and after COVID-19 infection 
[10]. At the transcriptomic level, many studies on clinical 
samples of SARS-CoV-2 patients have generated enor-
mous numbers of DEGs [11–15]. However, there is still 
no systematic reviews or in silico analyses of DEGs from 
COVID-19 patients to determine changes in molecular 
mechanisms related to lipid metabolism. Therefore, this 
study aims to identify the significant DEGs from previous 
studies and execute a bioinformatics analysis to identify 
the enriched lipid metabolic pathways that may facilitate 
or enhance viral pathogenicity. This systematic review 
and integrated bioinformatics analysis will provide an 
insight into molecular mechanisms involved in SARS-
CoV-2 infection, specifically those involving lipid metab-
olism-related pathways.

Methods
This review had been officially listed in PROSPERO (No. 
CRD42022336734).

Search strategy
This article search was systematically performed accord-
ing to the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guidelines. An 
extensive literature search on gene expression profiling 
of SARS-CoV-2 and host metabolism was conducted on 
PubMed, Scopus, EBSCOhost and Web of Science elec-
tronic databases, and all articles published until July 3, 
2022, were collected. The searching method involved 
the use of Medical Subject Heading (MeSH) terms from 
NCBI and Boolean operators, which were as follows: 
(“SARS-CoV-2” OR “2019-nCoV” OR “COVID-19” OR 
“2019 Novel Coronavirus” OR “Coronavirus Disease 
2019” OR “Severe Acute Respiratory Syndrome Corona-
virus 2” OR “Coronavirus Disease-19” OR “SARS Coro-
navirus 2”) AND (“Lipid Metabolism” OR “Lipogenesis” 
OR “Lipolysis” OR “Lipid” OR “Fatty Acid Metabolism” 
OR “Triglyceride Metabolism” OR “Triacylglycerol 
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Metabolism” OR “Cholesterol Metabolism” OR “Phos-
pholipid Metabolism” OR “Sphingolipid Metabolism” 
OR “Eicosanoids Metabolism” OR “Cholesterol”) AND 
(“Gene Expression” OR “Gene Expression Regulation” 
OR “Transcription” OR “Transcriptome” OR “Transcrip-
tomes” OR “Transcriptomic” OR “Transcriptional”). The 
term “Transcriptional” had been included in the litera-
ture search, which was obtained through the evaluation 
of relevant papers. Additional papers were picked out 
from the references of the collected studies.

Inclusion criteria
Gene expression profiling or transcriptomic studies ana-
lyzing DEGs of individuals infected with SARS-CoV-2 
were included. In addition, only clinical studies using 
RNA-sequencing (next-generation sequencing) to ana-
lyze DEGs in COVID-19 patients were selected to ensure 
the accuracy and uniformity of reported outcomes. For 
single-cell RNA-seq data, the DEGs data were analyzed 
using related software (e.g., MAST in Seurat v.3) to 
ensure the removal of data’s heterogeneity, make them 
comparable to standard RNA-seq data. Lastly, datasets 
of DEGs with absolute log fold change > 1 and p-value of 
< 0.1 were selected for further analysis.

Exclusion criteria
Studies without original data, such as case reports, edi-
torials, conference proceedings and review articles were 
rejected. Other exclusion criteria were studies on genom-
ics, proteomics and metabolomics, studies without a 
healthy control group, and in vitro, in silico and in vivo 
studies. This review is anchored on the outcome of DEGs 
between COVID-19 patients and healthy individuals. 
Therefore, any studies implementing treatment or inter-
vention, and those comparing DEGs between severities 
of infected patients were omitted. These criteria were 
used as selection guidelines for achieving the aim of this 
systematic review in analyzing the significant studies on 
gene expression of infected SARS-CoV-2 individuals, 
which facilitated the determination of dysregulated genes 
and pathways involved in infection.

Articles’ screening for acceptability
Article papers acquired from databases and other sources 
were screened in three stages. First, duplicates were 
removed and all articles having titles and abstracts that 
did not fulfill the inclusion criteria were not retrieved. 
Finally, the full texts of the retrieved studies were exam-
ined in-depth. All articles that did not meet the inclusion 
criteria and had any one of the exclusion criteria were 
excluded. All authors were engaged in screening and 
selecting the retrieved articles.

Data extraction
Data from the selected studies were extracted with 
the involvement of all authors to discuss differences in 
opinion. The following data were included: (A) title and 
author’s name, (B) study design, (C) study objective, (D) 
study population, (E) type of sample used, (F) method 
used in gene expression analysis, (G) number of DEGs 
and (H) conclusion.

Study quality assessment
All authors examined and reviewed the quality of the 
selected studies independently. The assessment was 
based on Joanna Briggs Institute critical tools (https://jbi.
global/critical-appraisal-tools) [16], according to the type 
of study. The exclusion of biases was done by attaching to 
the inclusion criteria. The quality assessment results were 
validated by discussion and consensus among reviewers.

Differentially expressed genes (DEGs) and functional 
annotation analysis
The DEGs were pooled from selected studies. The repli-
cates of the DEGs were removed and the common DEGs 
between at least three studies were selected for further 
analysis. Next, the DEGs identified were analyzed using 
the Database for Annotation, Visualization, and Inte-
grated Discovery (DAVID) software (https://david.ncif-
crf.gov/tools.jsp) [17, 18]. The analysis via DAVID was 
done to identify the set of genes displaying significant 
functional annotation during infection by SARS-CoV-2. 
The genes’ involvement in the pathways enriched in 
SARS-CoV-2 infected patients were determined accord-
ing to the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway, Biological Biochemical Image Data-
base (BBID), BIOCARTA pathway database and Reac-
tome. The terms acquired from the analysis were filtered 
by selecting terms with a p-value of < 0.05. Next, only 
lipid-related terms, which involved the dysregulation of 
host lipid metabolism upon SARS-CoV-2 infection, were 
selected through discussion.

Protein-protein interaction complex and clustering
The collected DEGs involved in lipid-related terms by 
DAVID were then analyzed at the protein level to iden-
tify the protein-protein interaction complex based on 
their related enriched pathways using the STRING (PPI 
Functional enrichment analysis) software (https://string-
db.org/) [19]. The data from STRING were then trans-
ferred to the Cytoscape bioinformatics software (http://
www.cytoscape.org/) to visualize the molecular interac-
tion complexes and incorporate gene expression profiles 
[20]. The Molecular Complex Detection (MCODE) plug-
in function in Cytoscape was used to execute the module 
analysis of targeted network and clustering of proteins 
[21]. The module-selection criteria included degree 

https://jbi.global/critical-appraisal-tools
https://jbi.global/critical-appraisal-tools
https://david.ncifcrf.gov/tools.jsp
https://david.ncifcrf.gov/tools.jsp
https://string-db.org/
https://string-db.org/
http://www.cytoscape.org/
http://www.cytoscape.org/
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cut-off of 2 for network scoring, node score cut-off of 0.2, 
node density cut-off of 0.1, K-score of 2, and maximum 
depth of 100 for cluster finding. The genes involved in 
each cluster were then analyzed separately in DAVID to 
determine the remarkable enriched ontology terms.

Results
Eligible studies selected according to PRISMA guidelines
The literature search produced 421 articles from the four 
databases (EBSCOhost, PubMed, Scopus, and Web of 
Science) and another seven from related sources. In the 
filtering process, 138 articles were identified as dupli-
cates. Based on the titles and abstracts, the first screen-
ing stage found that 134 articles were not related to the 
study and therefore, were removed. The second stage of 
the screening process was performed by reviewing the 
full texts of the remaining 156 articles, and after apply-
ing the inclusion and exclusion criteria, had resulted in 
the elimination of 151 articles. The final five articles were 
selected for systematic review. The flow diagram of the 
screening process and reasons for the articles’ exclusion 
are shown in Fig. 1.

Quality of selected studies
All selected studies have a low-risk bias scoring 70 to 
100% (high quality). The details of the studies’ quality 
assessment are shown in S1 Table.

Characteristics of selected studies
The selected studies were primary research articles pub-
lished from 2020 to 2022. The uniformity of the selected 
studies was assured by applying the inclusion and exclu-
sion criteria to avoid bias. All selected articles were 
case-control studies that used RNA-seq Next Genera-
tion Sequencing (NGS) to analyze gene expression. The 
population size in each study ranged from 2 to 430 sub-
jects, with a total of 565 individuals involved, including 
controls. The characteristics of these studies were sum-
marized in Table 1.

Identification of DEGs in COVID-19 patients
Blanco-Melo et al. (2020) provided the highest number of 
DEGs, with 23,710 genes having the expression of abso-
lute log2 fold change > 1 and p-value of < 0.05, obtained 
by comparing lung biopsies from COVID-19 patients 
with healthy lung tissue from uninfected individu-
als, who were all males aged above 60. Gill et al. (2020) 

Fig. 1  Flow diagram for selection of studies according to PRISMA guidelines

 



Page 5 of 14Munawar et al. BMC Infectious Diseases          (2024) 24:124 

and Lieberman et al. (2020) had provided 1.311 and 83 
DEGs, respectively. Gill et al. (2020) selected only genes 
with an expression level of more than absolute 1.5-fold 
change and false discovery rate (FDR) step-up p-value 
cut-off of ≤ 0.0545. As for Lieberman et al. (2020), the 
inclusion criteria were an absolute log2 fold change of 
> 1 and p-adjusted value of < 0.1. The study by Gill et al. 
(2020) collected blood samples from COVID-19 patients 
upon admission into the intensive care unit (ICU), while 

Lieberman et al. (2020) used nasopharyngeal (NP) swabs 
from infected individuals confirmed through RT-PCR 
and negative controls as well.

As for Liu et al. (2021), the Cellular Indexing of Tran-
scriptomes and Epitopes by Sequencing (CITE-seq) was 
done on peripheral blood mononuclear cells (PBMCs) 
from hospitalized COVID-19 patients and healthy con-
trols with matched age and gender. A total of 6187 DEGs 
were identified under their selection criteria; log-fold 
change greater than 0.25, expressed in at least 10% of the 
PBMC samples and p-value of < 0.01. Meanwhile, in Liao 
et al. (2020), scRNA-seq was performed on bronchoalve-
olar lavage fluid (BALF) cells from moderate and severe 
COVID-19 patients and healthy controls. The DEGs from 
macrophage subclusters and T lymphocyte cluster were 
further analyzed, which resulted in the discovery of 1547 
and 1327 DEGs with adjusted p-values of < 0.05, respec-
tively. The distribution of DEGs among five studies is 
summarized in Fig. 2. The DEGs were analyzed by select-
ing those that were common in at least three studies. As a 
result, 1464 DEGs were identified.

Functional annotation of DEGs and selection of lipid 
metabolism-related DEGs
A total of 1464 DEGs were analyzed to determine the 
genes’ functional annotation by Gene Ontology (GO) 
analysis using DAVID. The full record of remarkable 
functional annotations of DEGs common in at least three 
studies is provided in S2 Table. Then, the terms related 
to lipid metabolism were selected and further analyzed. 
The lipid-related terms were selected through discussion 
among the authors. The DEGs from lipid-related terms 
were then extrapolated. As a result, 213 DEGs were iden-
tified to be involved in lipid metabolisms-related terms.

Table 1  Summary of selected studies
Title 
(References)

Au-
thors 
(year)

Study 
Population

Sample 
type

Method 
for gene 
expression 
analysis

No. of 
DEGs

Imbal-
anced Host 
Response to 
SARS-CoV-2 
Drives De-
velopment 
of COVID-19 
[11]

Blan-
co-
Melo 
et al. 
(2020)

COVID-19 
human 
(n = 2)
Uninfected 
human 
(n = 2)

Lung 
tissues

RNA-seq 
analysis 
TruSeq 
(Illumina)

23,710

Transcrip-
tional 
profiling of 
leukocytes 
in critically 
ill COVID19 
patients: 
implications 
for interferon 
response 
and coagula-
tion [12]

Gill 
et al. 
(2020)

COVID-
19 + ICU 
patients 
(n = 7)
COVID-19- 
ICU patients 
(n = 7)

Buffy coat 
cells from 
blood 
(Leuko-
cytes)

RNA-seq 
(Illumina 
NextSeq 
500)

1311

Single-cell 
landscape 
of bron-
choalveolar 
immune cells 
in patients 
with COVID-
19 [13]

Liao 
et al. 
(2020)

COVID-19 
patients 
(n = 13)
Healthy con-
trols (n = 3)

Bron-
choalveo-
lar lavage 
fluids 
(BALFs)

single-cell 
RNA-seq 
(scRNA-seq)

2874

In vivo antivi-
ral host tran-
scriptional 
response to 
SARS-CoV-2 
by viral load, 
sex, and age 
[14]

Li-
eber-
man 
et al. 
(2020)

PCR-
confirmed 
SARS-CoV-2 
(n = 430)
Negative 
controls 
(n = 54)

Nasopha-
ryngeal 
swabs

Metage-
nomic next-
generation 
sequencing 
(mNGS) @ 
RNA-seq 
(Illumina 
NextSeq 
or Illumina 
NovaSeq)

83

Time-
resolved 
systems 
immunol-
ogy reveals a 
late juncture 
linked to 
fatal COVID-
19 [15]

Liu 
et al. 
(2021),

Hospitalized 
COVID-19 
patients 
(n = 33)
Healthy 
controls 
(n = 14)

Periph-
eral blood 
mononu-
clear cells 
(PBMCs)

Cellular 
Indexing of 
Transcrip-
tomes and 
Epitopes by 
Sequencing 
(CITE-seq)

6187

Table 2  Functional annotation of the DEGs related to lipid 
metabolisms terms
Term Description Count p-value
has05417 Lipid and atherosclerosis 54 8.18E-09
hsa04932 Non-alcoholic fatty liver disease 41 1.53E-07
GO:0043548 phosphatidylinositol 3-kinase 

binding
7 0.006106

GO:0071404 cellular response to low-density 
lipoprotein particle stimulus

9 7.05E-05

GO:0019216 regulation of lipid metabolic process 8 0.024861
GO:0042953 lipoprotein transport 6 0.010306
GO:0070542 response to fatty acid 6 0.027794
GO:0010875 positive regulation of cholesterol 

efflux
6 0.044065

GO:0010888 negative regulation of lipid storage 5 0.004233
GO:0032367 intracellular cholesterol transport 5 0.012068
GO:0010887 negative regulation of cholesterol 

storage
4 0.041673

KW-0449 Lipoprotein 118 3.34E-05
KW-0564 Palmitate 52 0.001456
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The pathways/terms identified were categorized into 
three databases; Uniprot (UP), KEGG pathway, and GO 
term enrichment analysis (GOTERM). Most DEGs were 
involved in the lipoprotein’s (KW-0449) post-transla-
tional modification (UP_KW_PTM). This finding is par-
allel with functional annotation of biological process (BP) 
by GO that includes the cellular response to low-density 
lipoprotein particle stimulus, lipoprotein transport and 
cholesterol regulation. The record of functional annota-
tions of the genes related to lipid metabolisms terms is 
summarized in Table 2.

Potential DEGs and their terms in protein-protein 
interaction (PPI) complex
All 213 DEGs identified to be involved in lipid metabo-
lism pathways were analyzed using the STRING online 
database. The list of 213 DEGs is provided in S3 Table. 
As a result, 213 proteins were refined into a protein-pro-
tein interaction complex, displaying 210 nodes and 1929 
edges with a PPI enrichment p-value of < 1.0e-16.

The STRING outcome data were exported to Cyto-
scape to provide a vision on the molecular interaction 
networks. Nine remarkable clusters from the PPI network 
complex were identified using the Cytoscape MCODE 
plug-in. Figure 3 shows the PPI complex results from the 
DEGs involved in human lipid metabolism-related terms 
upon SARS-CoV-2 infection.

Functional annotation clustering revealed that cluster 
1 (score = 17.765) encompassed 35 nodes and 302 edges. 
Most of the DEGs in cluster 1 were located in the mito-
chondria, which were involved in aerobic respiration and 
protein binding, and associated with non-alcoholic fatty 
liver disease. Cluster 2 (score = 16.091) comprised 23 
nodes and 177 edges. The locations of the DEGs in this 
cluster were the plasma membrane and cytosol. Most of 
the DEGs were associated with transcription regulation, 
as well as contributors to lipid dysfunction and athero-
sclerotic pathways.

Cluster 3 (score = 6.909) comprised 12 nodes and 38 
edges, mostly in the plasma membrane, which were asso-
ciated with immunity and host-virus interaction. Cluster 

Fig. 2  Distribution of DEGs among the five selected studies. Each study is represented in different colors. The overlapping areas indicate the common 
DEGs
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4 (score = 5.2), comprised of six nodes and 13 edges, and 
was linked to responses towards virus infection. Cluster 
5 (score = 4.235), comprising 18 nodes and 36 edges, was 
associated with protein binding and negative regulation 
of apoptosis.

Clusters 6 and 7 (score = 4, respectively) comprised 
five nodes and eight edges. Cluster 6 was associated with 
chaperone binding, while cluster 7 was highly associated 
with lipoprotein. The last two clusters, cluster 8 and clus-
ter 9 (score = 3 each), each shared three nodes and three 
edges, respectively. Cluster 8 was involved in the estro-
gen signaling pathway, while cluster 9 was associated 

with ribosomal protein functions and translation. The list 
of DEGs according to their cluster is shown in Table 3.

The record of remarkable functional annotations of all 
DEGs in their corresponding clusters is shown in Table 4. 
The full record of remarkable functional annotations of 
all DEGs in their corresponding clusters is provided in S4 
Table.

Based on the PPI network, three potential candidate 
genes had been chosen for further analysis, which were 
peroxisome proliferator-activated receptor gamma 
(PPARγ), apolipoprotein B mRNA editing enzyme cata-
lytic subunit 3G (APOBEC3G) and interferon-induced 
transmembrane protein 3 (IFITM3). Those genes were 

Fig. 3  PPI complex and modular analysis of selected DEGs. A total of 198 proteins were refined into a PPI complex from STRING online databases analysis. 
Cytoscape MCODE plug-in identified nine clusters from the DEGs
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chosen based on their protein functions, which signifi-
cantly regulated lipid metabolism. Based on the MCODE 
algorithm, the scores for the candidate genes were as fol-
lows; PPARγ = 18, APOBEC3G = 14 and IFITM3 = 8. The 
details on the functions and terms related to candidate 
genes are provided in S5 Table.

PPARγ (score = 18) was highly interconnected with 
other genes in the same and other clusters, which were 
cluster 2, cluster 3, cluster 5, cluster 6, and cluster 8. It 
had the greatest number of interactions with cluster 2 (17 
out of 23 DEGs). The highest interaction of PPARγ in this 
cluster was with JUN (combined score = 0.984), followed 
by TNF (combined score = 0.979). The PPARγ interac-
tions with other DEGs are shown in Fig. 4.

APOBEC3G was highly interacted with cluster 1 (15 
out of 35 DEGs), followed by cluster 4 and cluster 7. The 
highest interaction of APOBEC3G could be seen with 
BST2 (combined score = 0.88) in cluster 4, followed by 
interaction with CYC1 (combined score = 0.772) in clus-
ter 1, as shown in Fig. 5.

IFITM3 was interconnected with all DEGs in the 
same cluster (cluster 4), which was IFITM1, BST2, 
OAS2, GBP5, and IFITM2, where the highest interac-
tion could be seen between IFITM3 and IFITM2 (com-
bined score = 0.988), followed by IFITM3 and IFITM1 

(combined score = 0.973). Plus, IFITM3 also had interac-
tions with cluster 2 (IRF7 and STAT3) and 80% of DEGs 
from cluster 7, which were LY6E, OAS1, GBP1, and 
GBP2. The interactions held by IFITM3 could be seen in 
Fig. 6. All the data regarding the edges (combined score 
of DEG interactions) are provided in S6 Table.

Discussion
The comprehension of dysregulated genes during infec-
tion by SARS-CoV-2 was indispensable to determine the 
potential pathways involved during viral entry into the 
host cell, in this case, lipid metabolism-related pathways. 
Based on this systematic review, several clinical studies 
had investigated the changes in gene expression of SARS-
CoV-2-infected patients [11–15]. Therefore, through 
integrated bioinformatics analysis, the DEGs provided 
by those studies were analyzed for their contribution in 
altering the host lipid metabolism during infection. The 
analysis results in the identification of nine clusters that 
were interconnected in a network complex, namely the 
PPI network. Three potential candidate genes were iden-
tified from the PPI network, which were PPARγ, APO-
BEC3G and IFITM3. These genes were selected based 
on their significant function in regulating host lipid 
metabolism.

The PPARγ protein is a nuclear receptor that binds 
peroxisome proliferators like fatty acids. Once a ligand 
activates this receptor, it will bind to DNA-specific 
PPAR-response elements. PPARγ is a crucial regulator 
for adipocyte differentiation and glucose homeostasis. 
In addition, it is also a transcription factor that coor-
dinates the expression of genes related to reproduc-
tion, metabolism and immune response. Due to their 
anti-inflammatory properties, PPARγ ligands had been 
proposed as anti-SARS-CoV-2 drugs [22]. PPARγ was 
arranged in cluster 1, where it was found to be involved 
in several terms, such as in innate immune response 
(GO:0045087), negative regulation of inflammatory 
response (GO:0050728) and cellular response to low-
density lipoprotein particle stimulus (GO:0071404). 
PPARγ is responsible for regulating lipid metabolism 
and adipogenesis [23–25], where it controls the genes 
involved in the release, transport and storage of fatty 
acids, such as the fatty acid transporter CD36 [25]. Many 
diseases had been linked to the dysregulation of PPARγ, 
such as obesity, type 2 diabetes and atherosclerosis [25]. 
The gene seemed to interact with TNF, which might be 
related to the suppression of PPARγ expression by TNF-
a [26]. PPARγ dysregulation can also be strengthened 
by the metabolomic and proteomic study analyzing the 
serum of COVID-19 patients by Yang et al. (2021), who 
reported that differential metabolites obtained were 
responsible for the PPAR signaling pathway and dif-
ferentially expressed proteins (DEPs) were involved in 

Table 3  Clustering details of DEGs involved in lipid metabolism 
terms in SARS-CoV-2-infected individuals
Cluster Score Nodes Edges DEGs
1 17.765 35 302 COX7B, NDUFA11, NDUFA1, SYK, 

NDUFA4, NDUFB1, SOCS3, NDU-
FAB1, COX8A, NDUFA6, UQCRQ, 
MYD88, NDUFS5, NDUFV2, TN-
FRSF1A, COX5A, CYC1, NDUFB7, 
UQCRH, NDUFB9, NDUFB11, 
NDUFS6, COX4I1, NDUFA2, 
NDUFS7, CCL3, UQCRC1, CXCL2, 
CASP1, CD40LG, NLRP3, CYBB, 
NDUFB2, CCL5, PPARγ

2 16.091 23 177 JUN, TGFB1, FASLG, IRF7, ICAM1, 
STAT3, FAS, APOBEC3G, IL1B, 
TLR2, TNFSF10, CAT, CD4, NCF1, 
KRAS, TNF, NFKB1, IL6, NFKBIA, 
HSP90AA1, PRKACB, FOS, CD8A

3 6.909 12 38 TFRC, LYN, LCK, MAPK1, CD24, 
NCAM1, FYN, IL6R, ITGB2, HCK, 
PECAM1, FGR

4 5.2 6 13 GBP5, IFITM3, IFITM2, OAS2, 
IFITM1, BST2

5 4.235 18 36 CD63, FCER1G, HSPA5, CD48, 
RAC1, CD9, SOD2, LAT2, BAX, 
PRDX3, PARK7, HSPA8, PIK3R1, 
CD59, LAT, NCF2, ERN1, CD55

6 4 5 8 DNAJA4, SOD1, HSP90B1, 
HSPD1, DNAJA1

7 4 5 8 OAS1, GBP1, PLSCR1, LY6E, GBP2
8 3 3 3 HSP90AB1, CALM3, CALM1
9 3 3 3 RPS11, RPL15, RPS8
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NF-kappa B signaling pathway, respectively [27]. The 
interplay between PPARγ and NF-kappa B is one of the 
immune responses’ critical regulators, via the antagoniz-
ing ability of PPARγ towards NF-kappa B [28].

PPARγ had the greatest number of interactions with 
cluster 2. DAVID analysis of cluster 2 revealed that sev-
eral terms were related to lipid metabolism, as PPARγ 
also regulated lipid metabolism. The terms involved were 
response to insulin (GO:0032868), negative regulation of 
lipid storage (GO:0010888), regulation of insulin secre-
tion (GO:0050796), negative regulation of fat cell dif-
ferentiation (GO:0045599), sequestering of triglyceride 
(GO:0030730), insulin resistance (hsa04931), adipocyto-
kine signaling pathway (hsa04920) and lipoprotein (KW-
0449). These DEGs in cluster 2 were highly responsible 

for lipid-related disorders, such as diabetes and obesity, 
where insulin resistance occurs, and differentiation of 
adipocytes is disrupted. This result was in parallel with 
the function of PPARγ as a vital regulator of adipocyte 
differentiation and glucose homeostasis. Not to men-
tion, some of the terms in cluster 2 were also associ-
ated with pathogenicity and replication of SARS-CoV-2. 
Some of the related terms were inflammatory response 
(GO:0006954), defense response to virus (GO:0051607), 
and positive regulation of cell division (GO:0051781). 
These terms were also related to PPARγ-associated terms 
in cluster 1, which was the innate immune response and 
inflammatory response, where they were activated upon 
virus infection. Plus, disruption in cell division and pro-
liferation regulation might indicate that these genes in 

Table 4  Functional annotation clustering of each cluster determined from the DEGs
Cluster Term Description Count p-value
1 CC_GO:0005743 mitochondrial inner membrane 23 1.61E-28

CC_GO:0005739 mitochondrion 19 1.07E-12
CC_GO:0005747 mitochondrial respiratory chain complex I 15 4.57E-29
MF_GO:0005515 protein binding 28 0.041873
BP_GO:0009060 aerobic respiration 16 8.63E-29
BP_GO:0042776 mitochondrial ATP synthesis coupled proton transport 14 1.74E-24
BP_GO:0006120 mitochondrial electron transport, NADH to ubiquinone 13 4.93E-24
hsa04932 Non-alcoholic fatty liver disease 26 5.56E-37

2 CC_GO:0005886 plasma membrane 16 2.05E-05
CC_GO:0005829 cytosol 14 0.001414
BP_GO:0045893 positive regulation of transcription, DNA-templated 11 2.25E-09
BP_GO:0045944 positive regulation of transcription from RNA polymerase II promoter 11 2.78E-07
MF_GO:0042802 identical protein binding 15 3.93E-10
hsa05417 Lipid and atherosclerosis 17 1.97E-21

3 hsa04650 Natural killer cell mediated cytotoxicity 4 0.000541
hsa04062 Chemokine signaling pathway 4 0.001838
hsa04660 T cell receptor signaling pathway 3 0.008202
hsa04659 Th17 cell differentiation 3 0.008822

4 CC_GO:0016020 membrane 4 0.015637
BP_GO:0045071 negative regulation of viral genome replication 5 1.41E-10
BP_GO:0009615 response to virus 5 5.15E-09
BP_GO:0051607 defense response to virus 5 1.02E-07
KW-0391 Immunity 6 3.32E-06
KW-0051 Antiviral defense 5 9.92E-08

5 BP_GO:0043066 negative regulation of apoptotic process 5 0.000977
KW-0564 Palmitate 7 3.33E-06
KW-0945 Host-virus interaction 5 0.002533

6 MF_GO:0051087 chaperone binding 4 7.68E-07
KW-0143 Chaperone 4 2.77E-05

7 KW-0449 Lipoprotein 5 1.8E-05
8 BP_GO:0071902 positive regulation of protein serine/threonine kinase activity 3 1.05E-05

hsa04915 Estrogen signaling pathway 3 0.000284
9 CC_GO:0022626 cytosolic ribosome 3 1.38E-05

CC_GO:0005840 ribosome 3 7.29E-05
BP_GO:0002181 cytoplasmic translation 3 2.15E-05
BP_GO:0006412 translation 3 0.000133
MF_GO:0003735 structural constituent of ribosome 3 9.98E-05
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Fig. 5  First DEGs neighbors of APOBEC3G in PPI network and modular analysis

 

Fig. 4  First DEGs neighbors of PPARγ in PPI network and modular analysis
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cluster 2 were responsible for viral replication in the host. 
Therefore, further study on the relationship of PPARγ 
and DEGs in cluster 2 with association towards viral rep-
lication should be taken into consideration to get insight 
regarding viral replication at the transcriptomic level.

APOBEC3G encodes for apolipoprotein B mRNA edit-
ing enzyme, catalytic subunit 3G. APOBEC3G is a mem-
ber of the cytidine deaminase gene family. The protein 
encoded by this gene catalyzes site-specific deamination 
of both RNA and single-stranded DNA, inducing the 
conversion of cytosine to uracil [29]. This protein had 
been observed to act as an inhibitor of retrovirus repli-
cation through hypermutations, as well as other APO-
BEC3s, which were involved in restricting infection 
of viruses and propagation affecting viruses [30]. Cur-
rently, the SARS-CoV-2 genomic variations from analy-
sis of databases presented a high C-to-U mutation rate, 
accounting for about two out of five single nucleotide 
variations, which was assumed to be the consequences 
of RNA editing by host APOBECs instead of mutations 
at random. Plus, the involvement of several APOBECs 
in gene editing of the SARS-CoV-2 genome was revealed 
where APOBEC3G shows the highest C > U editing rate 
at motif CC > CU compared to other APOBECs, which 
contributes to the viral mutation [29].

APOBEC3G is located in cluster 2, where it is involved 
in the following terms; defense response to virus 

(GO:0051607), protein binding (GO:0005515), identical 
protein binding (GO:0042802), cytosol (GO:0005829), 
host-virus interaction (KW-0945), human immunode-
ficiency virus 1 infection (hsa05170), Ubl conjugation 
(KW-0832) and lipoprotein (KW-0449). Interestingly, 
APOBEC3G was the first APOBEC known to be involved 
in antiviral immunity through its activity against HIV 
[30]. The binding of APOBEC3G with RNA has contrib-
uted towards its packaging during virus encapsidation 
[31]. Previously, a study had discovered a novel interrela-
tionship between APOBEC3G raft association and virus 
encapsidation. A total of nine APOBEC3G derivations 
were analyzed, which resulted in all packaging-compe-
tent APOBEC3G derivations being related to lipid rafts, 
while all packaging-incompetent APOBEC3G derivations 
were unable to do so [31]. This viral encapsidation was 
necessary for APOBEC3G to confer its antiviral activity 
on the replication of progeny virions in the target cells 
[32]. APOBEC3G-mediated editing also contributed to 
the activation of effectors of adaptive immunity, which 
was CD8 + cytotoxic T cells (CTLs) [30]. This evidence 
explained the interaction of APOBEC3G with CD8A 
shown in the PPI network. Therefore, further studies 
on analyzing the involvement of APOBEC3G in regulat-
ing lipid-metabolic pathways, specifically upon SARS-
CoV-2 infection, should be initiated since the details of 
its involvement are still unclear.

Fig. 6  First DEGs neighbors of IFITM3 in PPI network and modular analysis
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IFITM3 is a gene that encodes for Interferon (IFN) 
induced transmembrane protein 3. Increased IFITM3 
expression was a regular feature of severe COVID-19 
cases, which was reported in a study by Regino-Zamar-
ripa et al. (2022) [33]. IFITM3 is an IFN-induced antivi-
ral protein that could cause havoc in the homeostasis of 
intracellular cholesterol. The disruption of cholesterol 
homeostasis was part of a mechanism to inhibit the entry 
of the COVID-19 virus by preventing its fusion with cho-
lesterol-depleted endosomes. Therefore, this response 
would restrict cellular entry by many viral pathogens, 
such as Ebola virus and SARS-CoV-2 [34]. IFITM3 
interacted with all DEGs in the same cluster. The terms 
lysosome (KW-0458), endosome (KW-0967), response 
to virus (GO:0009615), defense response to virus 
(GO:00516057), lysosomal membrane (GO:0005765) and 
late endosome membrane (GO:0031902) contributed to 
virion degradation by the lysosome. IFITM3 is concen-
trated in endo-lysosomal membranes [35] since IFITM 
proteins are one of the host factors that restrict virus 
infection by impeding with cellular entry at endosomes 
[33]. Furthermore, the mechanisms involved block-
ing membrane fusion pore formation by IFITM3 in late 
endosomes [33, 36]. The viral particles would be retained 
in late endosomes, which would then be targeted for 
lysosomal degradation [37].

Next, lipoprotein (KW-0449) and negative regulation 
of viral entry into host cell (GO:0046597) were associated 
with disruption of cholesterol trafficking. As mentioned, 
previously, IFITM3 was shown to agitate trafficking 
of cholesterol. A study had shown that the amphipa-
thic helix of IFITM3 could make alterations on lipid 
membranes in vitro in a cholesterol-dependent man-
ner. Cholesterol could regulate the access of the envel-
oped virus into the cell since it was a vital regulator of 
the biomechanical properties of lipid bilayers. IFITM3 
disrupted the protein-regulating transportation func-
tion of cholesterol between the endoplasmic reticulum 
and late endosomes/multivesicular bodies, known as 
VAMP-associated Protein A (VAPA). The disruption of 
the protein resulting in IFITM3 would trigger the accre-
tion of cholesterol within late endosomes [36]. Another 
piece of evidence to support the disruption of choles-
terol trafficking was the interaction between IFITM3 and 
80% of DEGs in cluster 7, where they were involved in 
lipoprotein (KW-0449). Plus, changes in the concentra-
tion of lipoprotein metabolites were also associated with 
COVID-19 severity as assessed by Chen et al. (2020). 
Most of the high-density lipoprotein (HDL) subclasses 
were observed to significantly drop from mild to severe 
patients when compared to healthy control while many 
of the low-density lipoprotein (LDL) subclasses were 
elevated from mild to severe patients [38]. These find-
ings had proven that IFITM3 played an essential role 

in degrading the viral particles through lysosomes and 
increased the membrane rigidity to prevent entry of 
SARS-CoV-2 in the host cell. Therefore, an investigation 
on utilizing IFITM3 as another therapeutic target for 
SARS-CoV-2 infection should be further studied.

Limitations
One of the limiting factors in this review is the refining 
of papers obtained from database searching due to dif-
ferent types of study, various methods, and statistical 
approaches applied by the studies. Moreover, the patient’s 
demographic profiles, such as age and comorbidities, fol-
lowed by the type of clinical samples, might contribute 
to biasness of the retrieved DEGs. However, data homo-
geneity was could be maintained by strictly adhering to 
the inclusion criteria and selecting shared DEGs between 
retrieved studies. Plus, the data bias could be avoided 
by selecting next-generation sequencing results only 
for further analyses. Applying bioinformatics analyses 
would also help avoid bias due to human error, since the 
tools used were computational-based. Therefore, further 
in vitro, in vivo and clinical studies of PPARγ, IFITM3 
and APOBEC3G genes were needed to decipher the 
genes’ involvement in regulating lipid metabolic path-
ways and viral pathogenicity as predicted through these 
in silico analyses. Currently, an experimental validation 
for assessing these genes at the molecular level is being 
pursued, by referring to a study by Samad et al., (2020) 
[39] as an example. Notwithstanding the limitations, this 
review had provided new intuition into the dysregulation 
of lipid metabolism upon SARS-CoV-2 infection for fur-
ther studies.

Conclusions
From the results of this review, fatty acid and cholesterol 
homeostasis could be considered the main biological 
processes altered by SARS-CoV-2 infection. Dysregula-
tion of these pathways would affect the pathogenicity of 
the virus, mainly for inflammation and prevention of viral 
replication. Thus, the importance of PPARγ, APOBEC3G 
and IFITM3 upon viral infection could not be denied due 
to their involvement in pathways affecting viral pathoge-
nicity, specifically in viral replication. Therefore, further 
studies on targeting these lipid metabolic pathways-asso-
ciated genes were needed to identify potential biomark-
ers that could lead to the development of new therapeutic 
strategies to prevent viral replication and enhance the 
treatment of COVID-19.
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