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Abstract 

Background The differential diagnosis between tuberculous meningitis (TBM) and viral meningitis (VM) or bacte-
rial meningitis (BM) remains challenging in clinical practice, particularly in resource-limited settings. This study aimed 
to establish a diagnostic model that can accurately and early distinguish TBM from both VM and BM in adults based 
on simple clinical and laboratory parameters.

Methods Patients diagnosed with TBM or non-TBM (VM or BM) between January 2012 and October 2021 were ret-
rospectively enrolled from the General Hospital (derivation cohort) and Branch Hospital (validation cohort) of Ningxia 
Medical University. Demographic characteristics, clinical symptoms, concomitant diseases, and cerebrospinal fluid 
(CSF) parameters were collated. Univariable logistic analysis was performed in the derivation cohort to identify signifi-
cant variables (P < 0.05). A multivariable logistic regression model was constructed using these variables. We verified 
the performance including discrimination, calibration, and applicability of the model in both derivation and validation 
cohorts.

Results A total of 222 patients (70 TBM and 152 non-TBM [75 BM and 77 VM]) and 100 patients (32 TBM and 68 non-
TBM [31 BM and 37 VM]) were enrolled as derivation and validation cohorts, respectively. The multivariable logistic 
regression model showed that disturbance of consciousness for > 5 days, weight loss > 5% of the original weight 
within 6 months, CSF lymphocyte ratio > 50%, CSF glucose concentration < 2.2 mmol/L, and secondary cerebral 
infarction were independently correlated with the diagnosis of TBM (P < 0.05). The nomogram model showed excel-
lent discrimination (area under the curve 0.959 vs. 0.962) and great calibration (P-value in the Hosmer–Lemeshow test 
0.128 vs. 0.863) in both derivation and validation cohorts. Clinical decision curve analysis showed that the model had 
good applicability in clinical practice and may benefit the entire population.

Conclusions This multivariable diagnostic model may help clinicians in the early discrimination of TBM from VM 
and BM in adults based on simple clinical and laboratory parameters.
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Background
Tuberculosis is caused by an infection with Mycobac-
terium tuberculosis and is one of the most prevalent 
infections in the world, with an estimated 2–3 billion 
individuals infected worldwide [1]. Tuberculous menin-
gitis (TBM) is the most severe form of extrapulmonary 
tuberculosis [2] and leads to exceptionally high mortality 
and morbidity, largely due to difficulties in early diagno-
sis and treatment initiation [3–5], especially in resource-
limited settings. Although the detection of pathogenic 
microorganisms is a reliable basis for TBM diagnosis, it 
is not only restricted by unsatisfactory sensitivity but also 
time-consuming [6, 7]. In recent years, emerging molecu-
lar biology detection techniques, such as the Xpert MTB/
RIF assay [8, 9], have provided better diagnostic means. 
Although advanced molecular biology techniques have 
enabled great progress in the diagnosis of TBM, they have 
not been widely used in resource-limited high-risk areas 
for TBM owing to the high costs of these techniques. 
Therefore, simple, economical, and practical techniques 
that can be implemented effectively in resource-limited 
settings must be explored.

This study aimed to develop and validate a diagnostic 
score that can accurately predict TBM at an early stage 
by comparing TBM with other clinically common men-
ingitis types (viral meningitis [VM] and bacterial men-
ingitis [BM]) as they may mimic each other due to the 
nonspecific clinical presentations of these three menin-
gitis types.

Methods
Derivation and validation cohorts
From January 2012 to October 2021, patients (≥ 18 years 
of age) with a diagnosis of TBM, BM, or VM in the Gen-
eral Hospital (derivation cohort) and Branch Hospital 
(validation cohort) of Ningxia Medical University were 
retrospectively reviewed. We strictly followed the pro-
tocol and guidance set out according to the TRIPOD10 
(Transparent Reporting of a Multivariable Prediction 
Model for Individual Prognosis or Diagnosis) [10] state-
ment for reporting multivariable prediction model devel-
opment and validation.

Individuals were enrolled in the TBM group when they 
had been diagnosed with highly probable or definite TBM 
according to the Marais uniform TBM case definition 
[11]. A definite diagnosis of TBM was made when one or 
more of the following criteria were met: 1) positive stain-
ing for acid-fast bacilli in the cerebrospinal fluid (CSF); 
2) M. tuberculosis was cultured from the CSF; or 3) a M. 
tuberculosis nucleic acid amplification test was positive in 
the CSF from a patient who presented with symptoms or 
signs suggestive of meningitis. Highly probable TBM was 
determined using a diagnostic scoring system requiring 

the presence of symptoms or signs indicative of meningi-
tis plus additional clinical, CSF, or imaging criteria, with 
the exclusion of the most likely alternative diagnoses. The 
diagnostic criteria for VM [12] were as follows: 1) viruses 
were isolated or specific antibodies were identified from 
CSF, or 2) the patients presented with meningitis symp-
toms, and there was no evidence of additional pathogenic 
microorganisms, the antiviral treatment was effective. A 
BM diagnosis was required to fulfil the following crite-
ria [13]: 1) a pathogenic bacterium was isolated or cul-
tured from the CSF or 2) the patients presented with 
meningitis symptoms and the following conditions were 
simultaneously met: 2a) the CSF white blood cell count 
was > 1000 ×  106 cells/L and 2b) there was no evidence of 
additional pathogenic microorganisms, and the antibac-
terial treatment was effective.

Patients with any of the following conditions were 
excluded from the study: 1) age < 18 years, 2) insufficient 
data, 3) mixed infection, 4) anti-tuberculosis treatment 
before admission, and 5) symptoms were attributed to 
cerebral trauma or neurosurgery.

Candidate predictor variables
We identified candidate predictor variables for inclu-
sion in our model from literature reports and clinical 
experience, then collated information on these potential 
predictor variables during the index hospitalisation for 
meningitis. Briefly, we collected information on demo-
graphic data (age at onset, sex), duration (interval from 
symptom onset to hospital admission), clinical symptoms 
(headache, fever, vomiting, nuchal rigidity, convulsions, 
disturbance of consciousness, persistent cough, weight 
loss, cranial nerve palsy, and focal neurologic deficit), 
concomitant diseases (cerebral infarction, hydrocepha-
lus, extracranial tuberculosis, and hyponatremia), and 
CSF parameters (intracranial pressure, cell count, lym-
phocyte percentage, protein, glucose, and chloride) in the 
first lumbar puncture.

Model construction and validation
First, predictive factors independently related to TBM 
diagnosis were screened in the derivation cohort by 
univariable regression analysis. Then, logistic multivari-
able regression analysis was performed, and the TBM 
diagnosis model was established using stepwise back-
ward regression. Subsequently, the model was evalu-
ated and validated under the aspects of discrimination, 
calibration, and clinical applicability. The area under the 
receiver operating characteristic (ROC) curve (AUC) was 
used to evaluate differentiation. The Hosmer–Lemeshow 
goodness-of-fit test and calibration curve were used to 
evaluate calibration, and decision curve analysis was used 
to evaluate clinical applicability. Finally, we generated a 
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nomogram to visualise the model, thereby making it sim-
ple and intuitive for practical applications.

Statistical analysis
Demographic characteristics, clinical symptoms, con-
comitant diseases, and CSF parameters of patients who 
fulfilled the diagnostic criteria for TBM and non-TBM 
(BM and VM) were compared. Categorical variables are 
expressed as numbers (percentages) and compared using 
the chi-square test. All statistical tests were two-sided, 
and statistical significance was set at P < 0.05. Variables 
with P < 0.05 were entered stepwise into logistic regres-
sion analysis using the backward conditional method. 
Before introducing candidate variables into the logistic 
regression analysis, all variables were dichotomised based 
on clinical experience. Multivariable logistic regression 
was used to create the diagnostic model. The regression 
coefficients of the model were regarded as weights for the 
respective variables, and the scores for each patient were 
calculated. Data were analysed using Stata version 15.0.

Results
Characteristics of the derivation and external validation 
cohorts
In total, 322 patients were enrolled in either the deriva-
tion (n = 222) or external validation (n = 100) cohort. 
The details of the enrolment process are shown in the 

flowchart (Fig.  1). The 23 relevant demographic char-
acteristics, clinical symptoms, concomitant diseases, 
and CSF parameters of the two cohorts are summarised 
in Table 1. Headache and fever were the most common 
symptoms in both cohorts. Compared with patients in 
the derivation cohort, patients in the external validation 
cohort were more likely to present with cranial nerve pal-
sies (P = 0.041) and less prone to developing headaches 
(P = 0.005). The remaining 21 variables were not signifi-
cantly different between the two cohorts (P > 0.05).

Identification of variables to differentiate TBM 
from non‑TBM
Univariable regression analysis was performed on 23 
variables from the two groups (70 patients in the TBM 
group and 152 patients in the non-TBM group) in the 
derivation cohort to identify variables of diagnostic sig-
nificance (Table  2). The results demonstrated many 
significant differences between the TBM group and 
non-TBM group, including age at onset (≤ 60 years), sex, 
duration (> 5 days), disturbance of consciousness, persis-
tent cough (> 2 weeks), weight loss (> 5% of the original 
weight within 6  months), focal neurologic deficit, cer-
ebral infarction, hydrocephalus, extracranial tuberculo-
sis, hyponatraemia < 135  mmol/L, intracranial pressure 
(> 180  mmH2O), CSF cell count (> 500 ×  106 /L), CSF lym-
phocyte percentage (> 50%), CSF protein concentration 

Fig. 1 Flowchart of patient enrolment into the derivation and validation cohorts. BM: bacterial meningitis, TBM: tuberculous meningitis, VM: viral 
meningitis
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(> 1  g/L), CSF glucose concentration (< 2.2  mmol/L), 
and CSF chloride concentration (< 120  mmol/L). The 
full details of the results of this analysis are presented in 
Table 2.

Establishing the diagnostic model discriminating TBM 
from non‑TBM
Significant variables in the univariable analysis were 
subsequently included in the multivariable logistic 
regression analysis. Six variables (duration, disturbance 
of consciousness, weight loss, cerebral infarction, CSF 
lymphocyte percentage, and CSF glucose concentra-
tion) were found to be independently associated with 
TBM according to stepwise backward logistic regres-
sion analysis (Table  3). A logistic regression equation 
for determining the joint probability of the six variables 
was then obtained to predict the probability of a TBM 
diagnosis. The score for each predictor was determined 
using the odds ratio (OR) in the logistic regression 
equation.

Validation and evaluation of the established diagnostic 
model by an independent cohort
The ROC curves and AUC values are shown in Fig.  2. 
The AUC value was 0.9596 (95% confidence inter-
val [CI] 0.9308–0.9884) in the derivation cohort and 
0.9621 (95% CI 0.9247–0.9995) in the validation cohort. 
The optimal cut-off value in the derivation cohort with 
a sensitivity of 91.4% and a specificity of 90.8% was set 
at 0.217. A similar result was obtained in the valida-
tion cohort; the optimal cut-off value with a sensitiv-
ity of 93.8% and a specificity of 91.2% was set at 0.213. 
These results indicate that the model has a reason-
ably good discrimination ability for separating TBM 
from non-TBM. Calibration refers to the accuracy 
of a model in predicting the probability of an event. 
Model calibration evaluates the degree to which the 
model predictions fit the observed data across differ-
ent stratifications. The Hosmer–Lemeshow goodness-
of-fit test indicated that the predictive performance 
of the model was excellent (Fig.  3). Good agreement 
was observed between the observed and predicted 

Table 1 Demographic and clinical characteristics of the derivation and validation cohorts

CSF cerebrospinal fluid

Variable Derivation cohort (n = 222) Validation cohort (n = 100) P‑value

Age at onset ≤ 60 years, n (%) 195 (87.8) 82 (82.0) 0.162

Male sex, n (%) 129 (58.1) 65 (65.0) 0.242

Duration of symptoms > 5 days, n (%) 113 (50.9) 54 (54.0) 0.607

Symptoms

 Headache, n (%) 215 (96.8) 89 (89.0) 0.005

 Fever, n (%) 202 (91.0) 86 (86.0) 0.177

 Vomiting, n (%) 152 (68.5) 60 (60.0) 0.138

 Nuchal rigidity, n (%) 145 (65.3) 66 (60.0) 0.905

 Convulsions, n (%) 29 (13.1) 12 (12.0) 0.791

 Disturbance of consciousness, n (%) 66 (29.7) 37 (37.0) 0.196

 Persistent cough > 2 weeks, n (%) 7 (3.2) 3 (3.0) > 0.99

 Weight loss > 5% of the original weight within 6 months, n (%) 24 (10.8) 9 (9.0) 0.620

 Cranial nerve palsies, n (%) 4 (1.8) 7 (7.0) 0.041

 Focal neurologic deficit, n (%) 10 (4.5) 2 (2.0) 0.435

Concomitant diseases

 Cerebral infarction, n (%) 11 (5.0) 8 (8.0) 0.283

 Hydrocephalus, n (%) 13 (5.9) 11 (11.0) 0.104

 Extracranial tuberculosis, n (%) 37 (16.7) 22 (22.0) 0.252

 Hyponatremia < 135 mmol/L, n (%) 71 (32.0) 39 (39.0) 0.219

CSF alterations

 Intracranial pressure (> 180  mmH2O), n (%) 172 (77.5) 69 (69.0) 0.105

 CSF cell count (> 500 ×  106 /L), n (%) 64 (28.8) 29 (29.0) 0.975

 CSF lymphocyte percentage (> 50%), n (%) 137 (61.7) 61 (61.0) 0.903

 CSF protein concentration (> 1 g/L), n (%) 153 (68.9) 72 (72.0) 0.577

 CSF glucose concentration (< 2.2 mmol/L), n (%) 103 (46.4) 49 (49.0) 0.665

 CSF chloride concentration (< 120 mmol/L), n (%) 151 (68.0) 60 (60.0) 0.161
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probabilities of TBM (P = 0.1278 in the derivation 
cohort and P = 0.8634 in the validation cohort). The 
practicability of this model was analysed using a deci-
sion curve, as shown in Fig.  4. The decision curve 
showed that the models presented net benefits over 
the entire range of threshold probabilities 0–1.0, with 
better performance than the two extreme conditions 
(treat-none and treat-all). Thus, decision curve analysis 

demonstrated that this model has high clinical useful-
ness. Multivariable regression models are widely used 
in medical literature for the purpose of diagnosis or 
prediction. Conventionally, the adequacy of these mod-
els is assessed using metrics of diagnostic performances 
such as sensitivity and specificity, which fail to account 
for clinical utility of a specific model. Decision curve 
analysis is a widely used method to measure this utility. 

Table 2 Univariable analysis of predictors distinguishing between TBM and non-TBM

CI confidence interval, CSF cerebrospinal fluid, OR odds ratio, TBM tuberculous meningitis, non-TBM viral or bacterial meningitis

Variable TBM (n = 70) Non‑TBM (n = 152) P‑value OR (95% CI)

Age at onset ≤ 60 years, n (%) 56 (80.0) 139 (91.4) 0.015 0.88 (0.77–0.99)

Male sex, n (%) 31 (44.3) 98 (64.5) 0.005 0.69 (0.52–0.92)

Duration of symptoms > 5 days, n (%) 63 (90.0) 50 (32.9) < 0.001 2.74 (2.15–3.48)

Symptoms

 Headache, n (%) 65 (92.9) 150 (98.7) 0.058 0.94 (0.88–1.01)

 Fever, n (%) 63 (90.0) 139 (91.4) 0.726 0.98 (0.90–1.08)

 Vomiting, n (%) 47 (67.1) 105 (60.1) 0.773 1.06 (0.71–1.60)

 Nuchal rigidity, n (%) 52 (74.3) 93 (61.2) 0.057 1.21 (1.01–1.46)

 Convulsions, n (%) 10 (14.3) 19 (12.5) 0.714 1.14 (0.56–2.33)

 Disturbance of consciousness, n (%) 37 (52.9) 29 (19.1) < 0.001 2.77 (1.87–4.11)

 Persistent cough > 2 weeks, n (%) 6 (8.6) 1 (0.7) 0.006 13.03 (1.50–106.18)

 Weight loss > 5% of the original weight within 6 months, n (%) 20 (28.6) 4 (2.6) < 0.001 10.86 (3.86–30.58)

 Cranial nerve palsies, n (%) 1 (1.4) 3 (2.0) > 0.99 0.72 (0.08–6.84)

 Focal neurologic deficit, n (%) 61 (87.1) 151 (99.3) < 0.001 0.88 (0.80–0.96)

Concomitant diseases

 Cerebral infarction, n (%) 10 (14.3) 1 (0.7) < 0.001 21.7 (2.84–166.34)

 Hydrocephalus, n (%) 13 (18.6) 0 (0.0) < 0.001 -

 Extracranial tuberculosis, n (%) 37 (52.9) 0 (0.0) < 0.001 -

 Hyponatremia < 135 mmol/L, n (%) 43 (61.4) 28 (18.4) < 0.001 3.34 (2.28–4.89)

CSF alterations

 Intracranial pressure (> 180  mmH2O), n (%) 61 (87.1) 111 (73.0) 0.019 1.19 (1.05–1.36)

 CSF cell count (> 500 ×  106 /L), n (%) 3 (4.3) 61 (40.1) < 0.001 0.11 (0.04–0.33)

 CSF lymphocyte percentage (> 50%), n (%) 57 (81.4) 80 (52.6) < 0.001 1.55 (1.28–1.87)

 CSF protein concentration (> 1 g/L), n (%) 61 (87.1) 92 (60.5) < 0.001 1.44 (1.23–1.68)

 CSF glucose concentration (< 2.2 mmol/L), n (%) 58 (82.9) 45 (29.6) < 0.001 2.80 (2.14–3.66)

 CSF chloride concentration (< 120 mmol/L), n (%) 66 (94.3) 85 (55.9) < 0.001 1.69 (1.45–1.96)

Table 3 Results of multivariable logistic regression analysis in the derivation cohort

CI confidence interval, CSF cerebrospinal fluid, OR odds ratio

Predictors β S.E Wald χ2 OR 95% CI P‑value

Duration of symptoms (> 5 days) 3.21 0.67 23.29 24.82 6.74–91.48 < 0.001

Disturbance of consciousness 1.79 0.67 7.08 5.97 1.60–22.27 0.008

Weight loss (> 5% of the original weight 
within 6 months)

3.50 0.98 12.71 33.17 4.84–227.33 < 0.001

Cerebral infarction 2.86 1.25 5.22 17.51 1.50–204.18 0.022

CSF lymphocyte percentage (> 50%) 2.73 0.71 14.71 15.28 3.79–61.52 < 0.001

CSF glucose concentration (< 2.2 mmol/L) 3.45 0.66 27.20 31.44 8.61–114.89 < 0.001
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In this framework, a clinical judgment of the relative 
value of benefits (treating a true positive case) and 
harms (treating a false positive case) associated with 
prediction models is made. As such, the preferences of 
patients or policy-makers are accounted for by using 

a metric called threshold probability. A decision ana-
lytic measure called net benefit is then calculated for 
each possible threshold probability, which puts benefits 
and harms on the same scale. In brief, decision curve 
analysis calculates a clinical “net benefit” for prediction 

Fig. 2 The ROC curves of the TBM diagnostic model in the derivation (A) and validation (B) cohorts. The ROC curves show the specificity 
and sensitivity of predicting TBM in the derivation and validation cohorts based on the model output. These values indicate the good discrimination 
ability of the diagnostic model. AUC: area under the curve, CI: confidence interval, ROC: receiver operating characteristic, TBM: tuberculous 
meningitis

Fig. 3 Calibration curves for the nomogram model in the derivation (A) and validation (B) cohorts. The x-axis represents the forecasted TBM 
risk, whereas the actual diagnosed TBM is shown on the y-axis. For each subsequent decile, the observed TBM rate in the cohort was plotted 
against the model prediction (black circle, average; grey line, 95% CI). The diagonal dotted line represents the ideal model with perfect prediction 
ability, and the solid line (bias-corrected line) represents the real performance of the nomogram. The closer the fit to the diagonal dotted line, 
the better the prediction ability of the nomogram. The nomogram model was excellently calibrated in both derivation and validation cohorts. AUC: 
area under the curve, CI: confidence interval, TBM: tuberculous meningitis
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models in comparison to default strategies of treating 
all or no patients. This function also allows to calcu-
late the different kinds of net benefits (treat all, treat 
none, and different threshold probability. To visualise 
the model, we constructed a nomogram to predict the 
probability of TBM in patients with meningitis based 
on six variables (duration, disturbance of conscious-
ness, weight loss, cerebral infarction, CSF lymphocyte 

percentage, and CSF glucose concentration). The higher 
the total score, the higher the risk of TBM (Fig. 5).

Discussion
Owing to the often atypical clinical presentation of TBM 
and the low bacterial load in the CSF, early diagnosis of 
TBM can be challenging, frequently leading to misdiag-
noses as purulent, viral, or cryptococcal meningitis. TBM 
diagnosis is primarily based on CSF smear detection or 

Fig. 4 Clinical usefulness measured by decision curve analysis. The y-axis represents the net benefit. Net benefit is calculated across a range 
of threshold probabilities, defined as the minimum probability of disease at which further intervention would be warranted, as net 
benefit = sensitivity × prevalence – (1 – specificity) × (1 – prevalence) × w where w is the odds at the threshold probability. The green line represents 
the predicted line for a diagnostic model of tuberculous meningitis at a threshold probability ranging from 0 to 1.0. The nomogram adds net 
benefits compared to the treat-none (blue) and treat-all (pink) conditions in the decision curve

Fig. 5 Nomogram for predicting the probability of TBM. Individual patient values were based on each variable axis of the nomogram, 
and the number of points obtained for each variable was determined using a line drawn downward. The sum of the points is located on the total 
score axis, which corresponds on the line below to the probability of TBM. CSF: cerebrospinal fluid, TBM: tuberculous meningitis
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cultures of isolated M. tuberculosis. However, both strate-
gies have limited clinical value for the early diagnosis of 
TBM owing to their low positive rates [14, 15]. Although 
Xpert MTB/RIF has improved the accuracy of TBM 
diagnosis and shortened the time required to initiate 
appropriate treatment [8, 9], this technique is not widely 
available, particularly in resource-limited settings due 
to the requirement for specialized equipment and high 
costs. Potential proteome [16], metabolome [17], and 
transcriptome [18] biomarkers have been identified for 
TBM diagnosis in recent years; however, these markers 
have not been sufficiently verified. Therefore, clinicians 
still depend on medical history, clinical presentation, and 
simple laboratory parameters to aid TBM diagnosis.

In the past few years, an increasing number of stud-
ies have attempted to distinguish TBM from non-TBM 
using clinical prediction models [19–23] which were 
constructed by integrating clinical presentation, labo-
ratory tests, and imaging examinations. A recent study 
[24] successfully uncovered and established a diagnostic 
model based on a combination of the TB-specific anti-
gen/phytohemagglutinin (TBAg/PHA) ratio, CSF chlo-
ride concentration, CSF nucleated cell count, and CSF 
lymphocyte proportion, with excellent utility in distin-
guishing TBM from BM. However, this model has several 
limitations. First, the prior study included only patients 
with microbiologically confirmed TBM; in clinical prac-
tice, the diagnosis of possible TBM is often critical [11, 
25]. Second, its clinical value is limited because it could 
not discriminate between TBM, VM, and BM simultane-
ously, as the model only used the BM group as a control. 
More importantly, the predictor TBAg/PHA is laborious 
and requires specialised equipment that is unavailable in 
economically underdeveloped and geographically remote 
areas. Other TBM diagnostic models have similar limita-
tions. For example, they were only compared with VM 
[21, 26] or ignored the cost-effectiveness of model appli-
cations in actual clinical environments [24, 25]. However, 
the development and performance of an accurate predic-
tion model will depend to a large extent on the popula-
tion studied and the factors involved in developing and 
testing the prediction model.

In the current study, we developed and validated a new 
diagnostic scoring system by simultaneously compar-
ing 23 factors (including clinical symptoms, concomi-
tant diseases, and CSF parameters) of TBM with those 
of VM and BM in adult patients. Univariable analysis of 
admission variables suggested a set of potentially dis-
criminative clinical and laboratory features (Table  2). 
Multivariable logistic regression analysis defined six 
characteristics independently predictive of the distinc-
tion between TBM and non-TBM: duration of symp-
toms > 5 days, weight loss > 5% of the original weight 

within 6 months, disturbance of consciousness, CSF 
lymphocyte percentage > 50%, CSF glucose concen-
tration < 2.2  mmol/L, and secondary cerebral infarc-
tion (Table  3). Although Marais et  al. [11] have used 
these parameters in the clinical practice for the diagno-
sis of tuberculous meningitis, we have taken a different 
approach. We have developed a predictive model for the 
diagnosis of tuberculous meningitis, incorporating these 
valuable parameters as variables. Instead of relying on a 
single independent parameter, our model utilizes mul-
tiple variables, which may enhance the accuracy of the 
TBM diagnosis.

As in previous reports, we found that a symptom 
duration ≥ 5 days was an important predictor for TBM 
because patients with TBM do not suddenly present 
classic meningitis symptoms [11]. The pathogenesis 
of TBM mainly manifests as the accumulation of M. 
tuberculosis in the body. When host immunity is low, 
M. tuberculosis weakens the blood–brain and blood-
CSF barriers through molecular biological mecha-
nisms, and these processes require some time. This 
explains the longer course of TBM compared to those 
of other meningitis types [27]. Patients with TBM often 
manifest nonspecific symptoms, including fatigue, 
fever, and weight loss, prior to onset. Our results dem-
onstrated that weight loss > 5% of the original weight 
within 6  months was the strongest significant predic-
tor for the diagnosis of TBM, which can be attributed 
to tuberculosis bacteria consuming calories. Our study 
also suggested that disturbance of consciousness is an 
independent risk factor associated with TBM diagno-
sis. TBM is more likely to affect the brain parenchyma 
than VM or BM. Tuberculoma, brain abscess, and cer-
ebral infarction are important causes of consciousness 
disturbances. In an observational study of patients 
newly diagnosed with TBM [28], neuroendocrine dys-
function occurred in half of the study population. This 
is likely due to the tendency of TBM to affect basal 
structures such as the pituitary gland, pituitary stalk, 
and hypothalamus. Exudates lead to oedema, perivas-
cular infiltration, and subsequent microglial reactions. 
Hydrocephalus and cerebral oedema may also be the 
main mechanisms leading to disorders of conscious-
ness. The incidence of cerebral infarction in patients 
with TBM ranges from 6 to 47%, and cerebral infarc-
tion is the main risk factor for disability and death from 
TBM [29, 30]. Our study showed that cerebral infarc-
tion was observed in 14.3% of patients with TBM, and 
multivariable regression analysis identified cerebral 
infarction as an independent risk factor associated with 
the diagnosis of TBM. However, the pathogenesis of 
TBM-associated cerebral infarction remains unclear. 
The intracerebral pathology of TBM is mediated by 



Page 9 of 10Liu et al. BMC Infectious Diseases          (2023) 23:901  

dysregulated inflammatory responses, which may 
involve thickening of the vessel intima, resulting in 
vessel stenosis or occlusion [31]; this is probably the 
main mechanism. Various other pathogenetic mecha-
nisms have been suggested, including vasculitis, arterial 
thrombosis, and vascular proliferation [32, 33].

It is well-known that CSF laboratory data play a vital 
role in the diagnosis of meningitis. This study indicated 
that CSF-glucose content (< 2.2 mmol/L) has a strong 
independent association with TBM, which is in line with 
the manifestations of TBM in a previous report [34]. 
Notably, the results of previous studies [11, 19, 24, 35, 
36] were inconsistent with regard to the classification of 
the dominant proportion of CSF cells in the diagnosis of 
TBM. The crucial element of our TBM scoring system is 
a predominance of CSF lymphocytes but not neutrophils. 
Meninges are a special type of membrane in the brain 
containing blood and lymphatic vessels that contain 
large numbers of lymphocytes. In TBM, the interaction 
of M. tuberculosis with meningeal epithelium and lym-
phocytes causes an inflammatory reaction. The pathogen 
enters the lymph nodes through the blood and lymphatic 
vessels, causing infiltration of inflammatory cells, lead-
ing to an inflammatory reaction in the meninges and an 
increase in the number of lymphocytes in the CSF [27, 
37]. We speculate that the predominance of cell classifi-
cation varies in different studies, which may be attributed 
to differences in the methods of classifying CSF cells, dif-
ferences in the timing of CSF collection, and differences 
in the patient populations referenced [24, 36].

Overall, our TBM diagnostic model has been an 
improvement compared with those of previous studies 
and is particularly suitable for resource-limited settings. 
First, highly probable and definite TBM was included in 
our model according to international diagnostic criteria 
and expert consensus. This is more in line with clinical 
practice in comparison to most previous models which 
only included patients with definite TBM. Second, the 
predictors in our model were primarily based on demo-
graphic, clinical, and laboratory features found in the 
literature review and clinical experience. Remarkably, all 
are inexpensive, easy to obtain in clinical practice, highly 
feasible, and can be carried out widely in hospitals at all 
levels, which is instructive in clinical practice. Third, the 
present study conducted an external validation by col-
lecting data from an independent cohort of another grade 
IIIA hospital, and the model was evaluated and validated 
based on differentiation, calibration, and clinical applica-
bility. Both derivation and validation cohorts presented 
very high AUC values in their ROC curves (Fig.  2) and 
excellent calibration for the full model (Fig. 3). Moreover, 
clinical decision curve analysis demonstrated that most 
patients with TBM benefit from the diagnostic model 

(Fig. 4). In addition, our diagnostic model was visualised 
in the form of a nomogram which could be effectively 
applied to clinical decision making (Fig. 5).

Limitations
Although we achieved satisfactory clinical outcomes, this 
study has several limitations. First, only a limited num-
ber of variables were included in the logistic regression 
analysis because this was a retrospective study, and some 
patients were excluded. Second, the sample size was rela-
tively small, and the data were limited to the northwest-
ern region of China. In the future, the sample size should 
be expanded to explore whether different hospitals in dif-
ferent regions can validate our model. Finally, non-TBM 
in this study cohort included only VM and BM. However, 
in clinical practice, meningitis can have a wider range of 
causes, including fungal infections and autoimmune dis-
eases. This slightly affects the accuracy of the model in 
clinical applications.

Conclusions
Our study established a novel diagnostic model based on 
a combination of six indicators with excellent utility in 
distinguishing TBM from non-TBM, particularly in set-
tings with limited resources for pathogen detection and 
molecular biology techniques.
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