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Abstract 

Background France implemented a combination of non-pharmaceutical interventions (NPIs) to manage the COVID-
19 pandemic between September 2020 and June 2021. These included a lockdown in the fall 2020 – the second 
since the start of the pandemic – to counteract the second wave, followed by a long period of nighttime curfew, 
and by a third lockdown in the spring 2021 against the Alpha wave. Interventions have so far been evaluated in isola-
tion, neglecting the spatial connectivity between regions through mobility that may impact NPI effectiveness.

Methods Focusing on September 2020–June 2021, we developed a regionally-based epidemic metapopulation 
model informed by observed mobility fluxes from daily mobile phone data and fitted the model to regional hos-
pital admissions. The model integrated data on vaccination and variants spread. Scenarios were designed to assess 
the impact of the Alpha variant, characterized by increased transmissibility and risk of hospitalization, of the vaccina-
tion campaign and alternative policy decisions.

Results The spatial model better captured the heterogeneity observed in the regional dynamics, compared to mod-
els neglecting inter-regional mobility. The third lockdown was similarly effective to the second lockdown after dis-
counting for immunity, Alpha, and seasonality (51% vs 52% median regional reduction in the reproductive number  R0, 
respectively). The 6pm nighttime curfew with bars and restaurants closed, implemented in January 2021, substantially 
reduced COVID-19 transmission. It initially led to 49% median regional reduction of  R0, decreasing to 43% reduction 
by March 2021. In absence of vaccination, implemented interventions would have been insufficient against the Alpha 
wave. Counterfactual scenarios proposing a sequence of lockdowns in a stop-and-go fashion would have reduced 
hospitalizations and restriction days for low enough thresholds triggering and lifting restrictions.

Conclusions Spatial connectivity induced by mobility impacted the effectiveness of interventions especially 
in regions with higher mobility rates. Early evening curfew with gastronomy sector closed allowed authorities to delay 
the third wave. Stop-and-go lockdowns could have substantially lowered both healthcare and societal burdens 
if implemented early enough, compared to the observed application of lockdown-curfew-lockdown, but likely 
at the expense of several labor sectors. These findings contribute to characterize the effectiveness of implemented 
strategies and improve pandemic preparedness.
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Background
Non-pharmaceutical interventions (NPIs) represented 
the primary response to the COVID-19 pandemic in 
2020–2021 before mass vaccination campaigns reached a 
substantial fraction of the population in Europe [1]. After 
the generalized use of strict lockdowns during the first 
wave [2–9], combinations of NPIs reached finer granu-
larity in the second and third waves [10], occurring in 
the fall 2020 and in the spring 2021, respectively. These 
included the closure of certain business sectors (e.g. res-
taurants, retail and leisure venues), remote education for 
specific school levels (e.g. high school), bans of gather-
ings, mobility restrictions, and nighttime curfews at dif-
ferent hours, in addition to less stringent lockdowns. 
They were meant to manage a rapidly evolving context 
characterized by the emergence of the first variant of 
concern [11, 12] and the rollout of vaccination [1], while 
pandemic fatigue developed in the population [13–15].

Spatial heterogeneities in COVID-19 resurgence 
[16] and in the geographic seeding of the Alpha variant 

further added to the complexity of the pandemic phase 
between the fall 2020 and the summer 2021. In France, 
the second wave showed a clear spatial pattern with a 
resurgence in the south-east of the country (Fig.  1a), 
likely fueled by summer displacements to touristic desti-
nations. In contrast, the third wave was initially shaped 
by the seeding of the Alpha variant in the north and in 
the region of Marseille (Provence-Alpes-Côte d’Azur; 
Fig.  1a) then invading other regions through mobility. 
Population response to nationwide restrictions varied 
regionally [17, 18] with the potential to affect the epi-
demiological impact both locally and in other regions 
connected through mobility fluxes. Spatial connectiv-
ity determines geographic spillover events [19–21] and 
source-sink mechanisms [22, 23] that can weaken local 
control policies. Estimating NPIs’ effectiveness and soci-
etal burden while accounting for all these elements is 
key to adequately plan for the medium-term phase of a 
pandemic, i.e. following the initial emergency and before 
mass vaccination allows lifting restrictions.

Fig. 1 COVID-19 pandemic in French regions between September 2020 and June 2021. a Regional maps of the per capita hospital admissions 
as of October 30, 2020 (left, start of the first lockdown) and March 20, 2021 (center, start of the third lockdown in regions IDF, HDF, in one 
department of NOR and one department of PACA). Hospital admissions displayed on the maps are obtained from a weekly rolling mean of the data. 
Regional map of the frequency of the Alpha variant (%) as of January 27, 2021 (right, date of the second genomic surveillance survey). Abbreviations 
refer to the regions: ARA, Auvergne-Rhône-Alpes; BFC, Bourgogne-Franche-Comté; BRE, Brittany; CVL, Centre-Val de Loire; GRE, Grand Est; HDF, 
Hauts-de-France; IDF, Île-de-France, the region of Paris; NAQ, Nouvelle Aquitaine; NOR, Normandy; OCC, Occitanie; PACA, Provence-Alpes-Côte 
d’Azur; PDL, Pays de la Loire. b Variation of regional outgoing mobility from Île-de-France to other regions with respect to pre-pandemic levels. 
The time intervals indicated over the x-axis refer to (planned or enforced) school closures. c For each region, the panel shows the model (orange 
curve and shaded area indicating the median and 95% probability range) fitted to daily hospital admissions data (gray dots). Each plot also shows 
the percentage of Alpha variant over time (blue histogram, right y-axis). The dashed horizontal line refers to the threshold triggering the second 
lockdown. Black arrows at the top of each plot correspond to social distancing measures: the second lockdown during the second wave 
in the fall 2020 (continuous line), followed by the curfew (dashed line) from January to March 2021, and the third lockdown during the third wave 
in the spring 2021 (continuous line)
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Here, we introduced a regionally-based spatially-
explicit epidemic metapopulation model that integrates 
mobility fluxes estimated from mobile phone data to 
study the COVID-19 pandemic in France between Sep-
tember 2020 and June 2021. Accounting for spatiotem-
poral heterogeneities, we estimated the effectiveness of 
implemented NPIs by disentangling spatial and tempo-
ral effects (inter-regional mobility, Alpha variant seeding 
and penetration, seasonality, vaccination). We also exam-
ined alternative policy options to the ones implemented 
by authorities to best balance the epidemiological and 
healthcare impacts of interventions with the resulting 
burden of restrictions. The aim was to improve the guid-
ance of policy decisions for the medium-term manage-
ment of future pandemic threats.

Methods
Restrictions
In Table 1 we describe the main restrictions implemented 
in France during the study period (September 2020–June 
2021). In response to the second wave, on October 17, 
2020, a nighttime curfew from 9pm to 6am was enforced 
in several areas with degrading indicators. Due to the 
rapid surge in the number of infections, a national lock-
down was put in place starting October 30, 2020. The 
restrictions imposed were less stringent compared with 
the first national lockdown in the spring 2020, as schools 
and a larger number of job sectors were allowed to 
remain open. Bars, restaurants, gyms, leisure venues and 
other non-essential services were closed. Displacements 

were limited to a maximum radius of one kilometer 
from home. The lockdown was lifted on December 15, 
2020, with the application of a nighttime curfew (8pm–
6am). Soon after the detection of the Alpha variant on 
the French territory in early 2021, curfew hours were 
extended nationally between 6pm and 6am on January 
16, 2021. Following the rise in cases due to the Alpha 
epidemic initiating the third wave, on March 20, 2021 
localized lockdowns were implemented in the regions 
of Île-de-France, Haute-de-France and in few other 
French departments at high incidence. The lockdown 
was extended to the whole country soon after on April 
3, 2021, with the closure of non-essential activities. The 
gastronomy sector remained closed and the curfew was 
maintained starting at 7  pm. However, differently from 
the second lockdown, schools were closed for most of the 
period, extending the planned closure for school holidays 
of 1 week in the primary schools, and of 2 weeks in the 
middle and high schools. Movements restrictions were 
only applied to trips exceeding 10 km from the place of 
residence. Also, stay-at-home orders of the second lock-
down were converted into recommendations to spend 
time outdoor to limit transmission in closed settings in 
this period. The third lockdown ended on May 3, 2021.

Data
Mobility
Anonymized aggregated mobility fluxes extracted 
from mobile phone signaling data were provided 
by the Orange business service Flux Vision [17, 18]. 

Table 1 Description of the restrictions applied in France between September 2020 and June 2021

a We splitted the period of curfew 6pm into three distinct phases: before school holidays, during school holidays, and after school holidays. These three phases vary by 
region because the 2-week school breaks are applied at different times in France (see Table S2)

Period Brief description of the applied NPIs Abbreviation

October 17–October 29 Night-time curfew (9pm to 6am) in several French departments. -

October 30–December 14 Second nationwide lockdown. Primary and secondary schools remained open, 
subject to strict health protocols. Grocery shops and factories continued to operate, 
medical-related appointments remained possible. Bars, restaurants, gyms and other 
non-essential services were closed. Displacements were limited to a maximum radius 
of one kilometer from home.

LD2

December 15–January 15 Night-time curfew in place between 8pm and 6am every day. Curfew 8pm

January 16–March 19 Night-time curfew hours extended to between 6pm and 6am every day. Curfew 6pm
pre-holidays / 
holidays / post-
holidaysa

March 20–May 2 Third lockdown imposed on March 20 in in 16 departments at high incidence 
(including the whole of Île-de-France, Hauts-de-France, one department of Nor-
mandy and one department of Provence-Alpes-Côte d’Azur). The lockdown was then 
extended nationwide on April 3. Schools remained closed for an extended duration, 
with the planned holiday closure being prolonged of an additional 1 or 2 weeks (for 
primary and middle/high schools, respectively). Non-essential activities were closed. 
A declaration was required for travel beyond 10 km of one’s place of residence. Stay-
at-home orders were replaced with recommendations to encourage spending time 
outdoors, aiming to reduce transmission in closed spaces.

LD3
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Data included de-identified origin-destination matri-
ces reporting the daily number of user displacements 
among 1,436 EPCI (Établissements Publics de Coopé-
ration Intercommunale) areas in mainland France. The 
anonymization procedure was approved by the French 
data protection authority CNIL (Commission Nationale 
de l’Informatique et des Libertés). Origin-destination 
matrices were aggregated at the regional level to compute 
weekly coupling probabilities pij between regions i and 
j and inform our model (see the Model subsection). The 
coupling probability pij for a given week is defined as the 
probability that a resident in i visits j due to his mobility 
trajectory:

where wij is the average number of daily trips between 
i and j for a given week. We considered the average to 
avoid daily fluctuations in the weekly pattern. We chose 
as a pre-pandemic baseline period  the week 6, 2020 
(February 03, 2020–February 09, 2020), as in previous 
work [17].

Seasonality
A number of studies have suggested that SARS-CoV-2 
transmission is seasonally varying, modulated by envi-
ronmental variables and environmentally-mediated 
social behavior [24–27]. We integrated seasonality in the 
regional transmissibility (see Model subsection) based on 
estimates provided in Ref. [28]. These estimates quantify 
the impact of seasonal climatic conditions on transmis-
sion rate based on daily data from the National Oceanic 
and Atmospheric Administration (Fig. S12). We fitted the 
estimates with a sinusoidal function with 1-year period, 
one per each region, in order to obtain daily values of the 
seasonality factor σi(t) affecting transmission in region i 
on day t . We used a least-squares optimization function 
for the fit.

Alpha variant
According to genomic surveillance data [29], the Alpha 
variant started to circulate in France at the end of 2020 
and replaced the previous SARS-CoV-2 strains in March 
2021 [30]. Results of a large-scale genome sequencing ini-
tiative launched in January (so-called Flash surveys [29]) 
showed that the Alpha variant was responsible for 3.3% 
of detected COVID-19 cases on January 8, 2021 at the 
national level, with large spatial heterogeneity, ranging 
from 0.2% penetration to 6.9%. We modeled the overall 
virus transmissibility (i.e. wild strain and Alpha variant) 
by accounting for the regional frequency of Alpha over 
time (Fig. S12) and its transmission advantage, to be fit-
ted. In agreement with prior estimates [29], we found 

pij =
wij

k wik

that the SARS-CoV-2 Alpha variant was 58% more trans-
missible than the wild type in the invasion phase. We also 
considered a 64% increase in hospitalization rate [31].

Vaccination
We modeled three different vaccination strata, i.e. 
unvaccinated, vaccinated with one dose or with two 
doses, based on data on the administration of doses 
by region [32] (Fig. S12). We assumed vaccines to be 
effective 14  days after injection. We considered 60% 
vaccine effectiveness against infection and 15% against 
transmission after the first injection [33, 34], increasing 
to 87.5% and 68%, respectively, after the second injec-
tion [34, 35]. We considered 80% vaccine effectiveness 
against hospitalization after one dose, and 97,2% after 
two doses [33, 35]. We did not consider waning in vac-
cine effectiveness in the timeframe under study.

Normalcy index
The Economist’s Normalcy index [36] is a measure of 
the impact of the pandemic on human behavior, inte-
grating multiple daily indicators of human activities in 
a score from 0 to 100, with 100 representing the pre-
pandemic level (Fig. S1). We used the Normalcy index 
to define the effective days under restrictions (see the 
corresponding subsection).

Model
Metapopulation model summary
We used a discrete stochastic transmission model with 
a metapopulation structure at the regional level. The 
population was divided in the 12 regions of mainland 
France (excluding Corsica). The daily force of infection 
�i in region i at time t accounts for disease transmis-
sion due to (i) infected residents not moving out of 
the region ( �ii ) (ii) infected visitors coming from other 
regions j ( �vji ) and (iii) returning residents previously 
infected in other regions j ( �rij ) [37]:

Let βi(t) be the transmission rate of region 
i on day t, pij(t) the coupling probability 
between regions i and j estimated from mobil-
ity data. Let N̂i(t) = pii(t)Ni +

∑
j �=i pji(t)Nj and 

Îi(t) = pii(t)Ii(t)+
∑

j �=i pji(t)Ij(t) be the effective pop-
ulation and the effective number of infections in region 
i on day t, respectively [37]. Then the daily force of 
infection can be written as

�i = �ii +
∑

j �=i

�
v
ji +

∑

j �=i

�
r
ij
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where βi(t) accounts for both seasonality and the pres-
ence of the Alpha variant. All variables in the previ-
ous equations depend on daily time t , but we dropped 
the dependence for the sake of clarity. We indicate with 
Ai(t) ∈ [0, 1] the variant’s penetration in region i on day 
t , with ηi(t) the transmission advantage of the Alpha vari-
ant, and with σi(t) the seasonality factor. The resulting 
transmission rate in region i on day t can be written as:

with β intrinsic
i (t) being the fitted transmission rate.

We considered a SEIHR compartmental scheme (Fig. 
S2 of the Supporting information, SI), including suscepti-
ble, exposed, infectious, hospitalized and recovered. The 
model was stratified by three different vaccination sta-
tus. All the data presented before were integrated in the 
model at the regional level (SI). Parameters, values, and 
sources used to define the compartmental scheme are 
listed in Table S1. The study period ranges from Septem-
ber 21, 2020 to June 13, 2021 (w39-2020 to w23-2021), to 
capture the second and third COVID-19 waves.

Inference framework and validation
Model parameters were estimated in a Bayesian frame-
work using Markov Chain Monte Carlo (MCMC) 
method (SI). The likelihood function was evaluated on 
daily data of regional hospital admissions. The log-likeli-
hood function is of the form:

where � =
{
β intrinsic
1 , . . . ,β intrinsic

12

}
 indicates the regional 

transmission rates to be estimated, Hobs(t, i) is the 
observed number of hospital admissions on day t in the 
region i , Hpred(t, i,�) is the number of hospital admis-
sions predicted by the model using parameter values � , 
Poiss

(
·|Hpred(t, i,�)

)
 is the probability mass function 

of a Poisson distribution with mean Hpred(t, i,�), and 
[tstart , tend] is the time window considered for the fit. 
These time windows are defined based on the interven-
tions applied in France (Table  1). When the time win-
dow includes a lockdown, we also fitted the time from 
lockdown implementation to hospitalization peak for 
each region, to better capture the peak and the decline 
of the epidemic curve that may vary regionally based on 
population response [38] (Table S3). We validated the 






�ii = βip
2
ii

Ii
�Ni

�
v
ji = βipiipji

Ij
�Ni

�
r
ij = βjpij

�Ij
�Nj

βi(t) = β intrinsic

i
(t) · [(1− Ai(t))+ ηi(t) · Ai(t)] · σi(t)

logL(data|�) =

12∑

i=1

tend∑

t=tstart

logPoiss
(
Hobs(t, i)|Hpred(t, i,�)

)

model by comparing its predictions of the percentage of 
antibody-positive people with seroprevalence estimates 
from multiple studies at different dates [39, 40]. Modeling 
results were in good agreement with the serological esti-
mates, both at the regional and national levels (Figs. S13 
and S14, SI subsection 2.4).

Reproductive numbers
We computed the regional basic reproductive numbers 
with the next-generation approach [41] for each time 
window of the fit. The resulting estimates are obtained 
from the fitted transmissibility values of the metapopu-
lation model that account for the mobility process. We 
distinguished between the basic reproductive num-
ber  R0 obtained from the fitted transmissibility βi(t) 
that includes seasonality and the increasing frequency 
of Alpha, and the intrinsic basic reproductive num-
ber  R0

intrinsic that discounts for the seasonal and vari-
ant effects, in order to compare different time windows. 
Analogously, we computed the corresponding effective 
reproductive numbers, R and  Rintrinsic, accounting for 
immunity.

Counterfactual lockdown scenarios
We modeled alternative policy scenarios with respect to 
the lockdown-curfew-lockdown policy implemented in 
France, and considered stop-and-go nationwide lock-
downs, i.e. repeated lockdowns intercut by periods with 
no restrictions. As French authorities did not establish 
thresholds to apply restrictions, we considered stop-and-
go lockdown scenarios triggered and released by a given 
threshold of per-capita hospital admissions, and then we 
systematically explored these thresholds. We used as ref-
erence value T of the trigger threshold the hospitaliza-
tions per capita in the region at the highest hospitalization 
incidence when the second lockdown was applied, i.e. the 
Auvergne-Rhône-Alpes region (ARA). This level corre-
sponds effectively to the highest hospital occupation that 
authorities deemed sustainable. For the release threshold 
R we considered instead the average hospitalization inci-
dence reported across regions at the moment of lifting the 
second lockdown. We used the average value because, dif-
ferently from the triggering threshold, the release thresh-
old is not constrained to a maximum capacity.

We systematically explored different values of trig-
ger and release thresholds, expressed as percentage 
threshold variations (from T to T-95%, from R + 5% to 
R-90%). Given a pair of values of trigger and release 
thresholds, a nationwide lockdown is activated in the 
stop-and-go lockdown scenarios when a region first 
reaches T, and it is lifted when the last region reaches 
R. A table with the threshold values is included in the SI 
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(Table S5). In the scenarios we simulate a repetition of 
lockdowns, triggered and lifted according to the above 
rules, assuming that their stringency would be equal to 
the one estimated for the second lockdown applied in 
France (LD2) for the first lockdown in the stop-and-go 
series, and to the one estimated for the third lockdown 
applied in France (LD3) for the following lockdowns 
simulated in the series. This was done to align with the 
observed political choice of moving from a lockdown 
largely imposing at-home restrictions (LD2) to one pro-
moting time spent outdoors (LD3). In each simulated 
nationwide lockdown in the stop-and-go scenarios, 
the transmissibility and the inter-regional mobility are 
set to the estimated values of the corresponding lock-
down applied in France in the period under study (LD2 
or LD3, Fig. S23). The phasing out of each lockdown 
was simulated through a 2-week piecewise linear func-
tion to capture a progressive return to normality after 
restrictions [42] (Fig. S22).

Effective days under restrictions
We used the Normalcy index [36] to weigh the days 
under restrictions by capturing population response 
and to compare restriction days across intervention 
scenarios. We defined an “effective day” Dt spent under 
restrictions as

where N (t) is the Normalcy index at time t . Dt ranges 
from 0 to 1, with 0 corresponding to the pre-lockdown 
situation in early October 2020 and 1 representing a day 
under the second lockdown. We estimated Dt = 0.58 
under curfew (average over all curfew types applied from 
December 2020 to April 2021) and Dt=0.77 in the third 
lockdown. Effective days are also computed for the coun-
terfactual scenarios, based on the duration of implemen-
tation emerging from the choice of the trigger and release 
thresholds.

Non‑spatial model
We tested a non-spatial model, i.e. a model where 
regions are not coupled by mobility ( pij = 0). We fit-
ted the model to the regional hospital admission data 
(Fig. S15) and evaluated its performance in compari-
son to the metapopulation model integrating mobility. 
We performed a model selection test using the devi-
ance information criterion (DIC) and we evaluated the 
errors of each model using the mean absolute error 
(MAE) metric (Subsection 2.5 of the SI).

Dt =
N (preLD2)−N (t)

N (preLD2)−N (LD2)
,

Role of the funding source
The funders had no role in study design, data collection, 
data analysis, data interpretation, writing of the manu-
script, and decision to submit.

Results
In the fall of 2020, French authorities introduced control 
measures in response to the growing epidemic (Fig.  1, 
Table  1). The nighttime curfew implemented in few 
departments on October 17 was followed by a national 
lockdown on October 30, the second since the start of the 
pandemic. Inter-regional mobility dropped by 43–85% 
in the first 3 weeks of lockdown compared to pre-pan-
demic levels, depending on the region (Fig. 1b). By fitting 
the metapopulation model to hospital admission data 
(Fig. 1c), we estimated a regional median reduction of the 
basic reproductive number  R0 of 45% (IQR 42–52%) dur-
ing the second lockdown compared to the pre-lockdown 
value in early October 2020 (Fig. 2a). The 8pm nighttime 
curfew implemented to phase out the second lockdown 
in mid-December was not enough to limit community 
transmission (R > 1; Fig.  2b), due to winter seasonality 
and Alpha initial spread. Anticipating at 6  pm the start 
of the nighttime curfew on January 16, 2021 resulted in 
R < 1 in all regions except Île-de-France and Hauts-de-
France. Such control however deteriorated over time, 
due to Alpha becoming dominant in the country. Inter-
regional mobility remained fairly stable during this time, 
with a reduction of 23–70% across regions compared to 
pre-pandemic level, with the exception of the increase 
registered in February for the school holidays.

Discounting for Alpha and seasonality allows us to 
compare the effectiveness of the 6 pm curfew throughout 
the period in which the variant was becoming dominant, 
while entering into the spring season. Little change was 
estimated during the school holidays  (R0

intrinsic reduction 
of 49% (IQR 46–51%) vs. 48% (IQR 44–52%) in the pre-
holiday period), but the effectiveness lowered afterwards 
 (R0

intrinsic reduction of 43% (IQR 40–44%) post-holiday). 
Effectiveness varied comparably in all regions during 
these 3 periods with the 6 pm curfew (Spearman corre-
lation r = 0.9, p < 0.01; Fig. S19), but less so when com-
paring 8pm and 6pm curfew periods (r = 0.6, p = 0.04). 
With hospital admissions rapidly increasing (estimated 
regional median R = 1.14 (IQR 1.11–1.19)), on March 
20 authorities enforced a third lockdown in the highest 
incidence areas (Île-de-France, Haute-de-France, and few 
other departments; Fig. 1a), then extended it nationwide 
on April 3, till May 3.

The third lockdown resulted in a 6% higher Normalcy 
index compared to the second lockdown (Fig. S1). A 
small mobility drop was registered passing from the 
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curfew to the third lockdown (Fig.  1b). We estimated a 
20% (IQR 18–23%) regional median reduction of  R0 dur-
ing the third lockdown (Fig.  2a), i.e. less than half the 
value achieved with the application of the second lock-
down. By discounting seasonality and the Alpha variant, 
our model indicates however that the intrinsic effective-
ness of the two lockdowns was rather similar  (R0

intrinsic 
reduction of 52% (IQR 49–59%) in the second lockdown 
vs. 51% (IQR 48–52%) in the third).

NPI effectiveness varied regionally throughout the 
period under study (Figs. 2c and 3a). The metapopulation 
model integrating observed inter-regional mobility was 
found to be statistically preferable with respect to a non-
spatial model neglecting connectivity (Table S4), yielding 
a lower mean absolute error in 64% of the regions (Fig. 
S16). Relative deviations on the estimates of R obtained 
with a non-spatial model compared to the metapopula-
tion approach could be > 40% and were found to increase 
with increasing mobility for a given regional population 
(Spearman correlation r = 0.46, p <  10–4, Fig. 3b).

Alpha spread was estimated to be responsible for 
129,335 (IQR 112,290–144,396) hospitalizations in main-
land France, corresponding to 41% of the overall hospi-
talizations recorded in the study period (Fig. S10). Our 
model predicted that Île-de-France, the region of Paris, 
was the most impacted by the variant (50% of the over-
all hospitalizations), followed by Hauts-de-France (48%). 
The least impacted was Nouvelle Aquitaine (29%). This 
result was not exclusively explained by the geographical 

seeding of Alpha (Fig.  1a). Indeed, if Île-de-France 
reported the largest variant frequency at the start of 
January 2021 (Fig. S20), such ranking was rapidly altered 
by mid-January, despite the same control measures were 
being applied nationwide. Vaccination was estimated to 
prevent 255,195 (IQR 224,993–279,502) hospitalizations 
in mainland France in the time period under study, equal 
to 81% of the hospitalizations that were actually reported 
(Fig. S20). An anticipated and faster vaccination rollout, 
as implemented in the UK, would have prevented addi-
tional 122,877 (IQR 107,404–137,971) hospitalizations 
(i.e. additional 39%). Most importantly, without vaccina-
tion, implemented NPIs would have not been sufficient 
to control the Alpha variant (Fig. S20c).

The application of nighttime curfew allowed authorities 
to manage the pandemic between the second and third 
waves, albeit maintaining a high incidence of cases and 
hospitalizations. To examine whether additional policies 
could have been more beneficial, we explored counter-
factual scenarios with stop-and-go lockdowns. With the 
trigger and release thresholds (T and R in Figs. 4 and 5; 
see also Methods) computed from the experience of the 
second lockdown in France in the fall 2020, three lock-
downs would have been needed to manage the pandemic 
between September 2020 and June 2021, reducing by 
22% the effective days under restrictions, but increas-
ing hospitalizations by 40%. Also, the impact on regional 
healthcare would have largely varied, with Bretagne, for 
example, predicted to have an increase of 190% of its 

Fig. 2 Estimated impact of implemented NPIs. a Reduction in the estimated regional basic reproductive numbers  R0 associated 
to the implemented NPIs compared with the values estimated before the second lockdown. Box plots represent the median (line in the middle 
of the box), interquartile range (box limits) and 2.5th and 97.5th percentiles (whiskers) of the estimated values for the 12 French regions. Filled 
boxplots represent reductions estimated by the fit accounting for all time-varying processes  (R0); void boxplots represent the same reductions 
discounting the seasonal and Alpha effects  (R0

intrinsic). b Estimates of the regional effective reproductive numbers R for the implemented NPIs; 
box plots as defined in (a). Filled boxplots represent fit estimates accounting for all time-varying processes (R); void boxplots represent the same 
estimates discounting the seasonal and Alpha effects  (Rintrinsic). c Regional effective reproductive numbers R for the second lockdown (LD2, dark 
blue dots), third lockdown (LD3, light blue dots) and the 6 pm nighttime curfew in the period following the winter holidays (yellow dots). Dots 
represent median reproductive number values and error bars the 95% confidence interval. LD2: second lockdown in the fall 2020; curfew 8 pm: 
nighttime curfew starting at 8 pm, from mid December 2020 to mid January 2021; curfew 6 pm pre-holidays: mid January 2021 to mid February 
2021; curfew 6 pm holidays: mid February 2021 to late February 2021; curfew 6 pm post-holidays: late February 2021 to early April 2021 (see Table 
S2); LD3: third lockdown in the spring 2021
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hospitalizations (Fig.  5c). The second of the three lock-
downs foreseen under this scenario would have lasted 
more than 3 months to control the rise of the Alpha wave 
(January– April 2021; Fig. 5b).

Reducing the trigger and release thresholds, i.e. apply-
ing and lifting the lockdowns at lower per capita hospital 
admissions than observed, would have decreased hospi-
talizations (Figs.  4a and 5a) and increased the effective 
days under restrictions (Fig.  4b), through two to four 
lockdowns (Fig. 4c). For example, maintaining the same 
number of effective days under restriction as observed, 
our model predicts that it could have been possible to 
largely reduce national hospitalizations by around 40% 
through the early application of two (e.g. with T-35% and 
R-70% thresholds) or three lockdowns (e.g. with T-70% 
and R-35% thresholds). However, this would have been 
achieved with a long uninterrupted lockdown period (> 4 
months; Fig. 5b).

The interface between decreasing hospitalizations and 
increasing restriction days yields an intermediate region 
of threshold values where both quantities are reduced 
compared to observations, thus limiting both the health-
care and societal burdens. Adopting these criteria, a 
higher benefit would be on average achieved in the 
reduction of hospital patients (17%, IQR 9–27%; Fig. 4d) 
compared to the reduction of effective days under restric-
tions (6%, IQR 3–10%; Fig.  4e), and with a benefit for 

more than 70% of the regions (Fig. S21). This would be 
obtained with two lockdowns in most of the cases (59% 
of the scenarios), whereas higher lifting thresholds would 
induce three (38% of scenarios) or four (3%) lockdowns 
(Fig. 4f ).

Discussion
Using an epidemic metapopulation model integrating 
time-varying inter-regional mobility and spatial effects, 
we provided a detailed analysis of the impact of different 
measures applied in France between September 2020 to 
June 2021. Despite their different nature, we showed that 
the third lockdown (spring 2021) was similarly effective 
to the second lockdown (fall 2020), after discounting for 
the transmissibility of the circulating variants, immunity, 
and seasonal effects. We found a strong difference in the 
estimated impact of the nighttime curfew starting at 8pm 
or 6pm, with the latter being able to considerably reduce 
community transmission (coupled with gastronomy and 
leisure sectors closed). Under the observed vaccination 
campaign and NPIs, Alpha was estimated to be respon-
sible for 41% of observed hospitalizations. Conversely, 
without vaccines, we found that implemented meas-
ures would not have been enough to control the Alpha 
wave. Finally, stop-and-go lockdowns triggered early 
enough would have resulted in lower hospitalizations 

Fig. 3 Spatial vs. non spatial model. a Regional effective reproductive numbers R for the second lockdown (LD2, dark blue dots), third 
lockdown (LD3, light blue dots) and the 6 pm nighttime curfew in the period following the winter holidays (yellow dots). Dots represent median 
reproductive number values. Filled symbols refer to the estimates obtained with the spatial model, void symbols represent the estimates obtained 
with the non-spatial model, i.e. neglecting inter-regional mobility. b Scattered plot between the incoming mobility divided by the patch population 
and the relative deviation in the estimated effective reproductive numbers obtained with the non-spatial model, for the different NPIs applied 
(six dots for each region, referring to six different NPIs). Colors of the dots refer to the regions. Results of a Spearman correlation test (r = 0.46, 
p-value <  10–4). LD2: second lockdown in the fall 2020; curfew 8 pm: nighttime curfew starting at 8 pm, from mid December 2020 to mid January 
2021; curfew 6 pm pre-holidays: mid January 2021 to mid February 2021; curfew 6 pm holidays: mid February 2021 to late February 2021; curfew 
6 pm post-holidays: late February 2021 to early April 2021 (see Table S2); LD3: third lockdown in the spring 2021



Page 9 of 13Sabbatini et al. BMC Infectious Diseases           (2024) 24:21  

and effective days under restrictions compared to the 
observed lockdown-curfew-lockdown.

Our analysis demonstrates that the spatial model bet-
ter captures the observed regional dynamics compared 
to non-spatial models that neglect case importations 
across regions coupling regional epidemics (Fig. S15, 
Table S4). This finding highlights the importance of con-
sidering mobility and spatial data to better characterize 
epidemic transmission processes and evaluate interven-
tions. Even if these interventions are applied nation-
wide, local conditions (e.g. incidence, penetration of a 
variant of concern, seasonal effects, human response to 
interventions) can be rather heterogeneous geographi-
cally, so that spillover events across different areas have 

unexpected implications for the local epidemic dynam-
ics and control [19, 20]. We found that reproductive 
number estimates were largely affected by the spatial 
connectivity fueling regional epidemics, with relative 
deviations that on average may be larger than 40% and 
generally higher for higher shares of incoming mobility 
compared to the number of inhabitants (Fig. 3b). Care-
ful considerations should therefore be given to local esti-
mates neglecting the impact of continuous importations 
from outside areas.

Our analysis confirms the large effectiveness of lock-
downs in controlling transmission, in line with prior 
works [5, 7, 8, 43, 44]. Despite their difference in the 
granularity and definition of restrictions (stay-at-home 

Fig. 4 Impact of stop-and-go lockdown scenarios on hospitalizations, effective days under restrictions, and number of lockdowns. a-c Heatmaps 
showing the relative variation in cumulative hospital admissions (a), the relative variation in effective days under restrictions (b), and the number 
of lockdowns (c), as functions of the thresholds for trigger (y-axis) and release (x-axis) of nationwide lockdowns. Relative changes are computed 
with respect to observations. The red squares indicate specific values of trigger and release threshold that are discussed in the main text 
and presented in detail in Fig. 5. Numerical values are reported only in the area where both hospitalizations and effective days under restrictions are 
reduced by the lockdowns compared to observations. d, e Probability distributions of the relative variations in hospitalizations (d) and in effective 
days spent under restrictions (e) compared to observations, in the region of the trigger-release parameter space where both quantities are reduced 
by the lockdowns. The vertical dashed lines represent the median values of the distribution. f Histogram of the percentage of scenarios with a given 
number of lockdowns, among the scenarios that reduce both hospitalizations and effective days
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orders with schools open during the second lockdown 
vs. stay-outdoor recommendations with extended 
school holidays in the third lockdown), the two lock-
downs implemented in France in the period under study 
had a similar impact on the epidemic. They reduced the 
intrinsic transmissibility by 52% and 51%, respectively 
(Fig. 2a), compared to the situation in October 2020 for 
a rather similar Normalcy index. Our findings therefore 
suggest that the higher effective reproductive number 
reached during the third lockdown in France compared 
to the second (R = 0.89 vs. R = 0.67, respectively; Fig. 2b) 
was mainly the result of the Alpha variant spread, char-
acterized by a higher transmissibility, and not of differ-
ent stringency of restrictions or lower adherence of the 
population [30]. Similar transmission reductions were 
estimated for the most stringent tier applied in Italy in 
the same period (52% reduction) [45], and corresponding 
to Normalcy index values close to the ones of the French 
lockdowns.

We produced new evidence on the effectiveness of 
intermediate-stringency NPIs, such as nighttime cur-
fews, for which there was little available literature [30, 
46, 47]. Coupled with the closure of the gastronomy 
sector, the curfew starting at 6pm was found to be con-
siderably effective, suggesting that a moderate inter-
vention focusing restrictions on certain sectors and 
times of the day may be a viable control option while 
ensuring a larger functioning of the economy. Over a 
longer period of time, however, we found that curfews 
lost effectiveness in all regions (Fig. 2b), suggesting that 
pandemic fatigue [13–15] likely settled in the popula-
tion. Maintaining it for a long time (in France it was 
implemented for a total of 188 consecutive days) should 
therefore be evaluated in light of expected population 
adherence [15] and the potential increase in the preva-
lence of mental health issues [15]. Regional responses 
changed in a similar way to changing NPIs, but to a 
lesser degree when comparing the nighttime curfew 

Fig. 5 Regional trajectories of stop-and-go lockdown scenarios for specific trigger and release thresholds. a Trajectory of regional daily hospital 
admissions, model fit vs. stop-and-go lockdown scenarios for three different choices of the trigger and release thresholds, indicated by the dashed 
horizontal lines (top: T,R; center: T-70%,R-35%; bottom: T-35%,R-70%). b Regional timeline of lockdowns, observed (gray areas) vs. lockdown 
scenarios (red bars). Gray shaded areas in the plots correspond to social distancing measures: the second lockdown during the second wave 
in the fall 2020 (darker gray), followed by the curfew (lighter gray) from January to March 2021, and the third lockdown during the third wave 
in the spring 2021 (darker gray). The vertical dashed line denotes the anticipation of the nighttime curfew at 6 pm, on January 16, 2021. c Variation 
in hospitalizations by region under the lockdown scenario compared to observations
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starting at 8pm with the one starting at 6pm. This sug-
gests that anticipating the start of the curfew required 
different organizations of daily routines which may be 
specific to the regional contexts. Prior work already 
pointed out the role of local socio-economic factors 
and labor structure in driving the response to restric-
tions [17, 18, 48]. This also limits the generalizability of 
our curfew results to other societal contexts, as it will 
depend on local social habits involving mixing activi-
ties that may be efficiently restricted by the curfew.

The first half of 2021 witnessed a race between the 
rollout of vaccines and the spread of the Alpha variant. 
We found that both vaccines and NPIs were key to con-
trol the Alpha wave [49]. Specifically, without vaccines, 
stricter measures should have been adopted to avoid 
hospital saturation (Fig. S18).

Other countries opted for different policies, repeat-
ing lockdowns. We showed that stop-and-go lock-
downs (intercut with periods of no restrictions) could 
have achieved a substantial reduction of hospitaliza-
tions (-40%) for similar number of effective days under 
restrictions compared to the policy implemented in 
France, i.e. the application of two lockdowns intercut 
with a long period of curfew (Figs. 4 and 5). This result 
would require however acting early, at low hospitali-
zation incidence [42, 50–52]. In the balance between 
ensuring epidemic control and limiting societal 
impact, we also found a range of thresholds to trigger 
and release lockdowns that would reduce both hos-
pitalizations and overall effective days under restric-
tions. However, in the pandemic phase characterized 
by a more transmissible and severe variant, this would 
translate in the implementation of a rather long second 
lockdown (to compensate for the absence of the curfew 
in between lockdowns), raising again issues of sustain-
ability and acceptance [14, 15] (Fig. 5).

Our work has a number of limitations due to simpli-
fying assumptions in our analysis. First, we did not con-
sider the age structure of the population, asymptomatic 
transmission, or changes of travel behavior when infec-
tious, similarly to what commonly done in COVID-19 
metapopulation models [42, 53] where the complexity of 
the model lies in its spatial dimension. Age-specific mix-
ing and the impact of asymptomatic transmission and 
travel avoidance behavior are effectively absorbed in the 
estimate of the regional transmissibility and may be a fac-
tor behind resulting regional variations [17, 54]. Second, 
in the stop-and-go lockdown scenarios, we considered a 
2-week relaxation to phase out restrictions [42], repro-
ducing what happened in France. Other countries opted 
instead for more structured tiered systems to guarantee 
a better control in lifting interventions [45, 55]. Also, the 
thresholds considered to trigger and lift interventions 

in the scenarios are based on per-capita hospital admis-
sions, implicitly assuming equal hospital capacity across 
regions. While regional variations exist, the crisis also 
showed a certain flexibility in adjusting such capacity 
according to needs [7]. Finally, we used the Normalcy 
index to define the effective days under restrictions and 
compare interventions of different stringencies. Other 
indicators can be defined using the mobility data, which 
was at the core of restrictions, as we did in prior work 
[15]. Different indicators should instead be used for a 
more comprehensive analysis that may include also eco-
nomic aspects and the impact on mental health whose 
prevalence was found to increase substantially through-
out the curfew in France [15].

Conclusions
Our analysis provides a detailed overview of the epidemi-
ological impact of the various NPIs and of the vaccination 
campaign implemented in France from September 2020 
to June 2021. Using a spatially-explicit regional metap-
opulation model allows us to disentangle the effects of 
spatial and temporal drivers – seasonality, Alpha variant 
geographic seeding and penetration over time, vaccina-
tion rollout, time-varying inter-regional mobility – in the 
estimates of the effectiveness of lockdowns and curfews 
of different type. Our findings help the design of prepar-
edness plans for the medium-term management of res-
piratory virus pandemics.
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