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Abstract 

Background Sepsis is a life-threatening condition caused by an excessive inflammatory response to an infection, 
associated with high mortality. However, the regulatory mechanism of sepsis remains unclear.

Results In this study, bioinformatics analysis revealed the novel key biomarkers associated with sepsis and potential 
regulators. Three public datasets (GSE28750, GSE57065 and GSE95233) were employed to recognize the differentially 
expressed genes (DEGs). Taking the intersection of DEGs from these three datasets, GO and KEGG pathway enrich-
ment analysis revealed 537 shared DEGs and their biological functions and pathways. These genes were mainly 
enriched in T cell activation, differentiation, lymphocyte differentiation, mononuclear cell differentiation, and regula-
tion of T cell activation based on GO analysis. Further, pathway enrichment analysis revealed that these DEGs were sig-
nificantly enriched in Th1, Th2 and Th17 cell differentiation. Additionally, five hub immune-related genes (CD3E, HLA-
DRA, IL2RB, ITK and LAT) were identified from the protein–protein interaction network, and sepsis patients with higher 
expression of hub genes had a better prognosis. Besides, 14 drugs targeting these five hub related genes were 
revealed on the basis of the DrugBank database, which proved advantageous for treating immune-related diseases.

Conclusions These results strengthen the new understanding of sepsis development and provide a fresh perspec-
tive into discriminating the candidate biomarkers for predicting sepsis as well as identifying new drugs for treating 
sepsis.
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Background
Sepsis is a fatal organ dysfunction produced by a dys-
regulated response to infection [1]. Sepsis is responsi-
ble for an increasing number of deaths worldwide each 
year [2]. According to the World Health Organization, 
sepsis causes around 6 million deaths worldwide each 
year and the majority of which can be prevented [3]. The 
World Health Organization adopted a resolution in 2017 
to enhance sepsis prevention, detection, and treatment, 
recognizing it as a global health priority [4]. Accord-
ing to a newly published comprehensive review, among 
all patients treated for sepsis in hospital, HA (hospital 
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acquired) sepsis accounted for 23.6% of cases, with a 95% 
confidence interval of 17% to 31.8%, and a range span-
ning from 16% to 36.4%. Within the intensive care unit 
(ICU), 24.4% of sepsis cases involving organ dysfunction 
occurred during the patient’s stay in the ICU, and this 
estimate had a 95% confidence interval of 16.7% to 34.2%, 
along with a range from 10.3% to 42.5%. Additionally, 
nearly half of all cases of sepsis, specifically 48.7%, origi-
nated within the hospital, with a 95% confidence interval 
of 38.3% to 59.3%, and a range extending from 18.7% to 
69.4% [5]. The complicated host immune response dur-
ing and after sepsis includes an early, excessively inflam-
matory reaction of the host in response to infection 
resulting in tissue damage, organ failure, and impaired 
endothelial function [6]. However, decades of attempts 
to reduce the harmful effects of this excessive inflam-
mation through anti-inflammatory treatment methods 
have failed, which prompting medical professionals and 
academics to reevaluate the biology of sepsis [7]. Treat-
ment for sepsis remains largely supportive, with simple 
measures; we still don’t have a single treatment that can 
consistently save the lives of patients with sepsis [8–10]. 
Therefore, it is better to further elucidate the mechanism 
of sepsis to find more efficient drugs for effective and 
precise treatment reducing unnecessary costs, mortality 
and complications.

The use of biomarkers is extremely important for iden-
tifying, diagnosing, therapy, following up, stratification 
and predicting outcomes of diseases like sepsis. Biomark-
ers can provide important information because they can 
indicate the severity of sepsis, guide the clinicians to 
rapid diagnosis and treatment beyond the standard ther-
apy and provide ongoing information on disease activ-
ity [11]. A wide range of sepsis biomarkers (cytokines, 
cell membrane receptors, metabolites, chemokines, cell 
proteins, complement component system etc.) has been 
described. However, their effectiveness in many instances 
is limited by insufficient specificity or sensitivity [12]. In 
addition, no single biomarker has been found to have suf-
ficient diagnostic power to be used as a standard diag-
nostic tool. Consequently, there is a need to search for 
effective biomarkers in sepsis to improve early diagnosis, 
monitor therapeutic efficacy and improve prognosis.

Early diagnosis is crucial for prompt treatment, 
enhancing sepsis outcomes [13]. Delaying sepsis treat-
ment increases the chance of mortality [14]. Sepsis is a 
highly heterogeneous syndrome with complex patho-
physiology, excessive inflammation and immunosuppres-
sion [9]. The occurrence and progression of sepsis are 
significantly influenced by the immunological response 
of immune cells, such as T cells, NK cells, macrophages, 
and others [9]. In sepsis, severe lymphopenia and apop-
tosis of lymphocytes may be a significant cause of death 

[15]. Therefore, the differences in molecular expres-
sion patterns linked to immunological and inflamma-
tory pathways require deep consideration and rigorous 
research.

Infection prevention is the only way to prevent sepsis, 
and vaccines are an important tool in reducing the risk of 
infections. Vaccines work by imitating the viral infection, 
causing the body to produce t-lymphocytes and antibod-
ies that can recognize and destroy the invading organism 
[16, 17]. Vaccination can be an effective way to prevent 
infections that can lead to sepsis. Many infections that 
can lead to sepsis are becoming resistant to antibiotics, so 
preventing them by vaccination is becoming increasingly 
important [17, 18].

Despite advancements in the last ten years in describ-
ing sepsis-induced immunological dysfunctions, many 
unanswered concerns still exist, and several issues 
require additional studies [1]. Since high-throughput 
technologies generate large amounts of data, there is a 
need for effective bioinformatics tools that enable us to 
comprehend how molecules interact and control the var-
ious biological processes of health and disease [19–21]. 
The molecular understanding of sepsis has opened  a 
new chapter because of transcriptome-based research. 
The transcriptome is the collection of all RNA molecules 
transcribed by the genome of a specific cell at a specific 
physiological or pathological condition [22, 23]. Each of 
these specific molecules presents a different functional 
spectrum in the cell and responds differently to environ-
mental stimuli [24, 25]. By analyzing the gene expression, 
researchers can explore the molecular basis of sepsis in 
multiple ways and provide information about sepsis pro-
gression, as well as the discovery of new and previously 
unknown biomarkers.

Consequently, it is very important and urgent to explore 
the genetic changes that occur during the pathogenesis 
of sepsis. Finding a biomarker and panel of biomark-
ers could be a new avenue to provide new approaches to 
treat sepsis. Based on the above-discussed facts, the cur-
rent research aims to explore the genetic changes asso-
ciated with disease development and understand the 
pathophysiology of sepsis to find novel biomarkers and 
candidate drugs that may be useful for sepsis therapy. We 
hope these biomarkers will reveal important insights and 
impact on sepsis treatment.

Materials and methods
Data acquisition and processing
Three microarray datasets (GSE28750 [26], GSE57065 
[27] and GSE95233 [28]) which made by the same 
platform were downloaded from the GEO database. 
Immune-related genes were extracted from the ImmPort 
website [29]. The immune-related gene sets contained 
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1793 genes after removing the duplicated genes. The 
detail is shown in Supplementary Table 1.

When multiple probes correspond to a gene, the aver-
age value is taken. When the probe had no corresponding 
gene symbol, the probe was eliminated. The matrix data 
for each GEO dataset was normalized and converted to 
base-2 logarithms using the R software’s "limma" (version 
3.54.2) function [30].

Differential expression analysis or Identification of shared 
DEGs among different microarray datasets
Differential expression analysis was conducted sepa-
rately by the “limma” package [30] for GSE28750, 
GSE57065 and GSE95233 datasets. DEGs were genes 
with an adjusted P-value of 0.05 and |log2 fold change 
(log2FC)|> 1. DEGs found in each microarray dataset 
were shown with a volcano plot by the Enhancevolcano 
package (version 1.16.0) in R, and the common DEGs 
among these three datasets were shown with a Venn plot. 
Common DEGs with the same expression trends in each 
dataset were further selected.

To obtain genes related to immune and sepsis, the 
intersection of common DEGs obtained from three 
microarray datasets and genes in the immune-related 
gene set were taken using the Venn Diagram package 
(version 1.7.3) in R.

DEGs enrichment analysis
The potential function of target genes was performed 
by GO and KEGG [31–33] enrichment analysis through 
clusterProfiler (version 4.7.1.003) [34] in R. Adjusted 
P-value < 0.05 was taken into account as statistically 
significant.

PPI network construction and module analysis
The PPI network of immune-related DEGs was con-
structed by STRING [35] with an interaction score > 0.7. 
The PPI network was visualized using Cytoscape (ver-
sion 3.8.2) [36], and core functional modules were ana-
lyzed using the plugin Molecular Complex Detection 
(MCODE) with default settings.

Hub genes identification and analysis
Using the Cytoscape plugin cytoHubba to screen hub 
genes, then 12 topological algorithms (BottleNeck, 
Closeness, Betweenness, ClusteringCoefficient, Degree, 
DMNC, EPC, EcCentricity, MCC, MNC, Radiality and 
Stress) were exploited to confirm the final hub genes, 
which were visualized by UpSetR package (version 1.4.0). 
Subsequently, GeneMANIA [37] was exploited to con-
struct an identified hub gene co-expression network.

ROC curves and KM survival curves of hub genes
The hub genes identified were confirmed in GSE54514 
and GSE65682. ROC curves were constructed and 
the area under the ROC curve (AUC) was calculated 
respectively, and R package “pROC” (version 1.18.4) 
[38] was used to measure the diagnostic capability of 
the hub genes. The best cutoff performed the classifi-
cation of patients into high or low expression levels of 
hub genes. The difference between the high and the low 
survival curves was assessed using a log-rank test.

Drugs from the DrugBank
Drugs targeting hub genes were retrieved from the 
DrugBank database [39]. Drugs including investigational 
drugs, FDA-approved drugs, experimental drugs, etc.

Preparation of peripheral blood samples
Peripheral blood mononuclear cells (PBMCs) were 
obtained from heparin-anticoagulated fresh blood 
samples by density gradient centrifugation. After the 
collection of 2mL of EDTA-anticoagulated blood, we 
immediately isolated peripheral blood mononuclear 
with lymphocyte separation medium (Beyotime).

Flow cytometry analysis
For surface staining, cells were washed and stained for 
30 min with fluorescently conjugated monoclonal anti-
bodies (mAbs). The mAbs of human targets for flow 
cytometry were as follows: CD4-APC (300,514, BioLe-
gend), CD3E-FITC (300,405, BioLegend), HLA-DR-PE 
(307,605, BioLegend), CD25 (IL-2R)-PEcy7 (302,611, 
BioLegend). After staining, cells were washed in cold 
phosphate-buffered saline (PBS).

Real‑Time quantitative Polymerase Chain Reaction 
(RT‑qPCR)
Total RNA was isolated with TRIzol reagent (Thermo 
Fisher Scientific). First-strand complementary DNA 
(cDNA) was obtained with a Synthesis Kit (Thermo 
Fisher Scientific); 2 μL of total cDNA and Synergy Brands 
(SYBR) Green PCR Master Mix (Applied Biosystems) 
were mixed. Then Eppendorf Master Cycle Realplex2 was 
used for real-time PCR (40 cycles). The RT-qPCR condi-
tions were as follows: 3 min of enzyme activation at 95 °C, 
followed by denaturation at 95 °C for 20 s and annealing 
of primers at 60  °C for 20  s, and extension at 72  °C for 
20 s. qPCR data were analyzed by the ΔΔCT method.

Statistical analysis
All analyses were performed in R software. Wilcox 
test was used to compare the significant levels of hub 
genes in validated datasets. Significance was defined as 
p < 0.05.
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Results
Identification of DEGs and common DEGs among three 
microarray datasets of sepsis
The overall flow chart of this study was shown in Fig. 1. To 
explore the differentially expressed genes in sepsis, three 
public datasets (GSE28750, GSE57065 and GSE95233) 
were used. For the GSE28750 dataset, 403 down-reg-
ulated genes and 471 up-regulated genes were identi-
fied (Fig. 2A). The GSE57065 dataset showed 936 DEGs, 
including 485 up-regulated genes and 451 downregulated 
genes (Fig. 2B). For the GSE95233 dataset, a total of 1180 
DEGs were obtained, among which 544 were down-reg-
ulated and 636 were up-regulated (Fig.  2C). Then, tak-
ing the intersection of DEGs from three datasets, there 
were 537 shared DEGs with consistent expression trends 
(Fig. 2D). The top significant DEGs among three datasets 
were MCEMP1, HP, S100A12, ANXA3, HK3, CD177, 
GPR84, UPP1, GYG1, and so on (Supplementary Table 2).

GO and KEGG pathway enrichment analysis
We performed the GO and KEGG pathway enrichment 
analysis to analyze the biological functions and pathways 
of each group (sepsis vs healthy controls) and 537 com-
mon DEGs. For each group of GO analysis, we selected 
the top 20 GO terms in the biological process, and there 
were 15 GO terms shared in all datasets, such as T cell 
differentiation, leukocyte cell–cell adhesion, T cell acti-
vation, and leukocyte differentiation (Fig.  3A). In addi-
tion, there were also 15 KEGG pathways shared in all 
datasets, such as hematopoietic cell lineage, Staphylo-
coccus aureus infection, Th1 and Th2 cell differentiation, 

Th17 cell differentiation, etc. (Fig.  3B) [31–33]. As for 
common DEGs among three datasets, these genes were 
mainly enriched in T cell differentiation (P = 2.64e-19), 
T cell activation (P = 7.18e-25), lymphocyte differen-
tiation (P = 9.61e-19), mononuclear cell differentiation 
(P = 5.94e-18), regulation of T cell activation (P = 9.47e-
15), etc. according to GO analysis (Supplementary 
Fig. 1A). In terms of KEGG pathway analysis, three sig-
nificantly enriched pathways were hematopoietic cell 
lineage (P = 1.85e-14), Th1 and Th2 cell differentiation 
(P = 1.85e-14) and Th17 cell differentiation (P = 6.42e-13) 
(Supplementary Fig.  1B) [31–33]. These results strongly 
implied that T cells are actively engaged in the occur-
rence and development of sepsis.

Immune‑related DEGs involved in the progression of sepsis
To identify the feature immune-related genes in sepsis, 
genes at the intersection between 537 common DEGs 
and immune-related gene set were analyzed. There were 
85 immune-related DEGs (47 down-regulated and 38 up-
regulated) (Fig. 4A). GO and KEGG enrichment analysis 
revealed that these genes were mainly associated with the 
biological processes of T cell activation (P = 1.53e-20), 
leukocyte mediated immunity (P = 2.99e-19), lympho-
cyte-mediated immunity (P = 1.41e-16), and pathways of 
Th1 and Th2 cell differentiation (P = 5.65e-26) and Th17 
cell differentiation (P = 1.72e-22) (Fig. 4B, C) [31–33].

PPI network analysis and submodule analysis
PPI network allows the detection of the modules or hub 
genes associated with sepsis. A total of 85 overlapped 

Fig. 1 The flowchart for this research
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genes were analyzed to characterize the potential 
protein–protein interaction. The PPIs with a confi-
dence score ≥ 0.7 were selected and then imported 
into Cytoscape for further complex network analysis. 
The network contained 61 nodes and 408 interaction 
pairs (Fig.  5A). Three tightly connected gene submod-
ules including 30 immune-related DEGs were obtained 
through the MCODE plugin of Cytoscape (Fig.  5B-D). 
GO analysis revealed that these genes were associated 
with T cell activation and cell–cell adhesion (Supplemen-
tary Fig. 2A). KEGG pathway enrichment analysis dem-
onstrated that these genes primarily participated in Th1 
and Th2 cell differentiation and Th17 cell differentiation 
(Supplementary Fig. 2B) [31–33].

Identification and functional analysis of hub genes
To predict and explore the significant hub genes in the 
PPI network, cytoHubba with default parameters was 
used. The top 30 genes ranked by 12 different cyto-
Hubba algorithms in the PPI network were intersected. 

Five hub genes, CD3E, HLA-DRA, IL2RB, ITK and LAT, 
were obtained for further exploration. The expression 
level of these five genes between sepsis and healthy con-
trols has been summarized in a heatmap (Fig. 6A-B). The 
Wilcox test showed that the differences between sepsis 
and healthy controls in the three datasets were statisti-
cally significant. The details of these five hub genes were 
shown in Supplementary Table 3. The co-expression net-
work of these genes was analyzed based on the GeneMA-
NIA database. These genes displayed the complicated 
PPI network with physical interactions of 77.64%, co-
expression of 8.01%, predicted of 5.37%, co-localization 
of 3.63%, genetic interactions of 2.87%, pathway of 1.88% 
and shared protein domains of 0.60% (Fig. 6C).

To verify the reliability of these five hub genes’ expres-
sion levels, we have utilized another dataset to analyze 
the expression levels. The results presented that all five 
hub genes were significantly down-regulated in sepsis 
patients compared with healthy controls (Fig.  7A, B). 
The five hub genes’ diagnostic efficacy was evaluated 

Fig. 2 Volcano plots and Venn diagram of DEGs in sepsis and healthy at three datasets. A-C The volcano plots of DEGs in datasets of GSE28750, 
GSE57065 and GSE95233, red circles indicate significant DEGs (FDR p-value < 0.05) with minimum absolute fold change = 2. D The Venn diagram 
exhibited an overlap of 537 DEGs in these three datasets
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Fig. 3 Enrichment analysis results of DEGs identified in the three datasets. A Top 20 GO terms in the biological process of DEGs identified in each 
dataset (a: GSE28750; b: GSE57065; c: GSE95233). B Top 20 KEGG pathways of DEGs identified in each dataset (a: GSE28750; b: GSE57065; c: 
GSE95233)

Fig. 4 Venn diagram and enrichment analysis results of immune-related DEGs. A The Venn diagram showed 85 immune-related DEGs 
for common DEGs among three datasets, of which 38 are up-regulated, and 47 are down-regulated. B Top 10 GO terms in the biological process 
of immune-related DEGs. Low p-values are in orange red and high p-values are in green; the size of the circle is proportional to the number 
of enriched genes. C Top 20 KEGG pathways of immune-related DEGs. Low p-values are mentioned in red and high p-values are mentioned in blue
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by plotting the ROC curves. In the GSE65682 dataset, 
CD3E (AUC:0.9509), HLA-DRA (AUC:0.974), IL2RB 
(AUC:0.9931), ITK (AUC:0.9727) and LAT (AUC:0.9575) 
showed good diagnostic efficiency in distinguishing sep-
sis patients from healthy controls (Fig. 7C). In addition, 
the Kaplan–Meier analysis showed that sepsis patients 
with lower expression of hub genes had a worse overall 
survival (Fig. 7D).

Drugs from DrugBank
A total of 14 drugs targeting five hub genes were obtained 
in reliance on drug and target information from the 
DrugBank database (Fig.  8). Of these, 10 drugs were 
approved, 10 were investigational drugs, one was experi-
mental drug and two were withdrawn from the market.

Muromonab (DB00075) and Mosunetuzumab 
(DB15434) are binders of CD3E. Muromonab is an immu-
nosuppressive therapy in kidney, heart, and liver trans-
plant patients. While Mosunetuzumab is used to treat 
relapsed or refractory follicular lymphoma. Catumax-
omab (DB06607) is an agonist of CD3E that facilitates 
the immune system-mediated destruction of cancer cells. 
Teplizumab (DB06606) targets CD3E being investigated 
for treating Type 1 diabetes (T1D). 1D09C3 (DB05121) 
targeting HLA-DRA is investigated for killing tumor cells 
by inducing programmed cell death. Coccidioides immi-
tis spherule (DB11294) is a binder of HLA-DRA used to 
detect the late-onset hypersensitivity to Coccidioides 
immitis in individuals with a history of pulmonary coc-
cidioidomycosis. Aldesleukin (DB00041) is not only an 
IL2RB agonist, but also a modulator of IL2RB which is 
used to induce the adaptive immune responses in renal 
cell carcinoma treatment. Basiliximab (DB00074) and 

Daclizumab (DB00111) are antibodies to IL2RB. Basilixi-
mab is used as an immunosuppressive therapy in kidney 
transplant patients, whereas Daclizumab treats relapsed 
multiple sclerosis by blocking the interleukin-2 recep-
tor. Denileukin diftitox (DB00004) is an agonist of IL2RB 
for the remedy of cutaneous T-cell lymphoma. Stauro-
sporine (DB02010) is experimentally used to enhance 
the cAMP-mediated responses in human neuroblastoma 
cells. Pazopanib (DB06589), Fostamatinib (DB12010), 
and Zanubrutinib (DB15035) are inhibitors of ITK. Pazo-
panib is indicated for the treatment of advanced renal cell 
carcinoma and advanced soft tissue sarcoma in patients 
with prior chemotherapy. Fostamatinib is used to treat 
chronic immune thrombocytopenia after another treat-
ment has been tried, and Zanubrutinib is used to treat 
mantle cell lymphoma.

The potential therapeutic effects of catumaxomab 
and aldesleukin in sepsis
PBMC  samples were collected from 15 patients with 
sepsis and 15 healthy controls, and CD3E, HLA-DR 
and IL-2R were tested with flow cytometry. The pro-
tein expression of these molecular were significantly 
decreased in the peripheral blood of patients with sep-
sis (Fig. 9A). Based on target-based drug screen results, 
catumaxomab (CD3E agonist antibody) and aldesleukin 
(Recombinant protein of IL-2R) were chosen to exam-
ine the therapy effect. In  vitro, the sepsis PBMCs were 
treated with catumaxomab and aldesleukin. After stimu-
lation for 24 h,  CD4+ T cell was significantly higher in the 
stimulants group than of the mock group (Fig. 9B). Fur-
thermore,  CD3E+CD4+IL2R+ cells, so-called regulatory 
T cells (Treg), were also increased with treatment. Treg 

Fig. 5 PPI network and three significant modules of immune-related DEGs. A PPI network of immune-related DEGs generated by STRING. Circles 
represent genes and lines represent PPIs. B-D The top three significant modules identified by MCODE scored 12.77, 6, and 4.67, respectively
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functions as a protector in sepsis by secreting IL-10 [40]. 
Thus, we also detected the expression levels of cytokines 
upon catumaxomab and aldesleukin treatments. As 
expected, IL-10 was increased after T cell specific stimuli 
(Fig. 9C). While the expression of proinflammatory fac-
tors in sepsis (IL-6, IL-1β and TNF-α), which contributed 
to septic shock, were decreased (Fig.  9D). These results 
indicated that catumaxomab and aldesleukin treatment 
induced Treg cell activity and alleviated sepsis.

Discussion
Sepsis is a clinical syndrome defined as "life-threatening 
organ dysfunction caused by a dysregulated host immune 
response to infection" [41]. The host response to sepsis is 
characterized by both pro-inflammatory responses and 

anti-inflammatory immune suppressive responses [42]. 
Sepsis clearly alters the innate and adaptive immune 
responses for sustained periods of time after clinical 
recovery, with immune suppression, chronic inflamma-
tion, and immune paralysis being common [43]. Deficits 
in the adaptive immune response may play a major role in 
sepsis patient mortality. The adaptive immune response 
involves a number of cell types including T cells, B cells, 
and dendritic cells, all with immunoregulatory roles 
aimed at limiting damage and returning immune homeo-
stasis after infection [41, 44]. Our ability to discriminate 
adaptive and maladaptive immune responses in sepsis is 
limited. The dysregulated host immune response acti-
vated during sepsis may persist for  up to 1 year [44]. 
Transcriptomic research turns out to be an effective tool 

Fig. 6 UpSet diagram, heatmap plot and co-expression network of hub genes. A UpSet diagram of 12 topological algorithms determined by PPI 
network analysis screened out five overlapping hub genes. B Expression patterns of hub genes between sepsis and healthy in each dataset. C 
GeneMANIA analyzed hub genes and their co-expression genes
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for elucidating the molecular processes that regulate sep-
sis. This study aimed to identify significant genes and 
molecular dysregulation pathways associated with sepsis 
by applying bioinformatics analysis to sequencing data 
related to sepsis. Previous studies have limitations of the 
negligible amount of individuals in each study due to the 
high cost of these techniques, as well as the differences 
between different analysis and their platforms which are 
challenging to interpret and compare the results between 
different research groups. Three publicly accessible data-
sets were used in the analysis for this study. A total of 

537 shared DEGs with similar expression patterns were 
discovered by identifying the overlapping DEGs that 
were present in all three datasets. One of these DEGs, 
MCEMP1, for instance, is highly expressed in sepsis, its 
down-regulation inhibited the inflammation of septic 
mice [45]. In our study, it was shown that sepsis cases 
had a noticeably higher expression of CD177. The find-
ing aligns with earlier research that connected neutro-
phil transmigration and CD177 to inflammatory diseases 
[46, 47]. It also protects the intestines from inflamma-
tion in IBD [46]. S100A12 is highly increased during 

Fig. 7 Validation of diagnostic hub genes. A Hub gene expression patterns in sepsis and healthy in GSE65682. B The heatmap shows 
the significantly different expression of hub genes between sepsis and healthy in GSE65682. C The ROC curve shows the diagnostic efficacy 
verification in GSE65682. D Kaplan–Meier survival curves by the expression level of hub genes. The sepsis patients were divided into high 
and low-expression groups based on the best cut-off value of gene expression
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Fig. 8 Drugs targeting five hub genes were extracted on the basis of the DrugBank database. Drug statuses, including approved, experimental, 
investigational and withdrawn, are indicated by colored squares. Drug types, including agonist, modulator, antibody, antagonist, binder 
and inhibitor, are indicated by colored starriness

Fig. 9 Catumaxomab and aldesleukin have the potential to inhibit sepsis. A The frequency of  CD3E+ T cells, HLA-DR+T cells and IL-2R+ T cells 
in PBMC from patients with sepsis or healthy controls (n = 15). B The proportion of  CD4+ T cells and  CD4+  CD25+ T cells (gated in CD3E.+) 
after stimulated with catumaxomab (1 μg/ml) and aldesleukin (20 ng/ml) for 24 h (n = 5). IL-10 (C), IL-1β, TNF-α and IL-6 (D) expression level were 
measured by QPCR (n = 5)



Page 11 of 14Liang et al. BMC Infectious Diseases           (2024) 24:32  

inflammation, which induces monocyte activation [48–
50]. As mentioned in one literature review, ANXA3 was 
also up-regulated in sepsis, but its role is unclear [51]. It 
may enhance the prolonged survival of neutrophils and 
pathogen clearance in the early phase, but result in organ 
failure at a later stage [51]. GYG1 is an enzyme of glyco-
gen synthesis, which was up-regulated in sepsis. Glyco-
gen metabolism also regulated macrophage-mediated 
acute inflammatory responses [52]. Glycogen disorder is 
common in patients with severe sepsis [53].

This study demonstrated that different biological pro-
cesses were significantly enriched in the DEGs, whether 
these genes were found in individual groups or were 
shared by several groups. T cell activation, leukocyte cell–
cell adhesion, T cell differentiation, leukocyte differen-
tiation, mononuclear cell differentiation, and pathways of 
hematopoietic cell lineage, as well as Th1, Th2 and Th17 
cell differentiation were among these processes, but they 
were not limited to them. Furthermore, DEGs were also 
found to be enriched in pathways related to Staphylococ-
cus aureus infection, among others [31–33]. This strongly 
suggests that T cells are involved in the occurrence and 
development of sepsis. The pathophysiology of T cell 
modifications may involve both intrinsic processes that 
directly affect T cells as well as indirect mechanisms that 
affect antigen-presenting cell or immature neutrophil 
activities, according to previous studies [54–57]. Th17 
cells, a distinct subset of T helper (Th) cells recognized for 
their production of IL-17, have been strongly related to 
the onset and development of a number of inflammatory 
reactions and autoimmune diseases [58]. Additionally, 
the 28-day mortality among patients with severe sepsis 
and ICU-acquired infections have both been linked to a 
continually shifting Th2 / Th1 cell ratio [58]. Our findings 
strongly indicate that T cells, particularly Th1, Th2 and 
Th17, play a pivotal role in sepsis development.

In our study, the PPI network analysis and submodule 
analysis also suggested that these genes in most top sub-
modules were also related to T cell activation, cell–cell 
adhesion as well as Th1, Th2 and Th17 cell differentiation. 
Moreover, we used the plug-in cytoHbba to disclose the 
essential hub genes in the PPI network. Five hub genes, 
CD3E, HLA-DRA, IL2RB, ITK and LAT were explored. 
CD3E forms the T-cell receptor-CD3 complex, which cou-
ples antigen recognition to intracellular signal transduc-
tion pathways and is down-regulated in sepsis [59]. Prior 
studies have highlighted the importance of HLA-DRA 
as a promising future biomarker for evaluating immu-
nosuppression in sepsis [60]. IL2RB is a crucial media-
tor of Th1 and Th17 cellular immunity, which plays vital 
roles in the immune response against bacteria and fungi 
[61]. The expression level of IL2RB negatively correlates 
with mortality [61]. ITK is involved in regulating thermal 

homeostasis in mast cell responses in LPS-induced sep-
sis, and its lack leads to hypothermia exacerbation [62]. 
LAT is a crucial adaptor molecule in the TCR signaling 
pathway, and directly recruiting from cell surface LAT to 
microclusters is also critical for T-cell activation [63, 64]. 
The level of T cell activation may be influenced by the 
quantity of LAT on the cell surface [64, 65]. The T cell dys-
function may cause immunosuppression after acute sep-
sis [1]. Furthermore, KM analysis showed that sepsis with 
high expression values of these five hub genes had a better 
prognosis, suggesting that these five hub genes may serve 
as important therapeutic targets or biomarkers for sepsis. 
Our preliminary experiment found that CD3E, IL2R and 
HLA-DR were significantly reduced in sepsis when com-
pared to healthy control.

Although mortality rates have improved, new drugs 
for sepsis are still required. Fourteen drugs targeting 
the above immune-related genes were obtained. Many 
of these compounds were previously approved and used 
as immunosuppressants or used to treat the diseases of 
immune cells in addition to cancer. Muromonab CD3, 
the treatment of acute solid organ transplant rejection, 
has proven an effective alternative and gives a substan-
tial new perspective on immunosuppressive therapy [66]. 
Anti-CD20/CD3 T-cell dependent bispecific (TDB) anti-
body mosunetuzumab is entirely humanized full-length 
and assembled utilizing the knobs-into-holes technol-
ogy [67, 68]. Mosunetuzumab and blinatumomab share a 
similar mode of action: B-cell lysis and T-cell activation 
result from mosunetuzumab’s dual binding to CD20 on 
malignant B-cells and CD3 on T-cells [69]. Catumaxomab 
increases the activation of immune cells by combining 
the cancer cells, T cells, and auxiliary immune cells into 
proximity. It makes it easier for the immune system to kill 
cancer cells [70]. Teplizumab alters  CD8+ T lymphocytes, 
which are believed to be the most critical effector cells 
that kill beta cells [71]. Interleukin-2 (Aldesleukin)  has 
been licensed by  the  Food and Drug Administration 
(FDA) for the treatment of individuals with advanced 
forms of renal cell carcinoma (metastatic RCC) and mel-
anoma [72]. Basiliximab or daclizumab in combination 
with triple treatment was an effective and safe immuno-
suppressive strategy, as indicated by a low incidence of 
acute rejections, excellent graft function, high survival 
rates, and an acceptable adverse event profile in adult 
patients one year after deceased donor renal transplan-
tation [73]. A recombinant fusion protein called denileu-
kin diftitox treats the cutaneous T cell lymphomas that 
express IL-2 receptors [57]. Human interleukin-2 (IL-
2) is linked to diphtheria toxin fragments A and B [57]. 
Three out of 14 were BTK and ITK inhibitors such as 
Pazopanib, Fostamatinib and Zanubrutinib. Cytoplasmic 
tyrosine kinases BTK and ITK are essential for forming 
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B and T cells, and loss-of-function mutations in either 
result in X-linked agammaglobulinemia and an increased 
risk of a severe, usually fatal Epstein-Barr virus infection, 
respectively [74]. Pazopanib, an approved medication for 
handling renal cell carcinoma and soft tissue sarcoma, is 
a VEGF receptor, platelet-derived growth factor receptor, 
fibroblast growth factor receptor, and stem cell receptor 
c-Kit inhibitor [75].  The abovementioned drugs are rel-
evant to the immune balance in other diseases and may 
benefit sepsis patients. For example, we demonstrated in 
this study that catumaxomab and aldesleukin (agonists 
targeting CD3E and IL2R separately) effectively restore 
T cells’ regulatory activity and suppress excessive inflam-
mation, which is critical in reducing the occurrence of 
septic shock. At present, antibiotic treatment of sepsis is 
facing the problem of microbial resistance. Our research 
is based on drug targets for host immune regulation that 
do not develop antimicrobial resistance and have better 
application prospects than antibiotics. However, future 
studies based on the investigations of in vitro or animal 
models will be necessary to confirm these possibilities.

Conclusion
In conclusion, sepsis is a complicated clinical disease 
characterized by dysregulated immune responses that 
can linger long after the initial recovery. Immunological 
suppression, persistent inflammation, and immunologi-
cal paralysis are frequently caused by this immune dys-
regulation, which may be a factor in patient death. The 
study used bioinformatics analysis and transcriptome 
research to investigate the complex biological mecha-
nisms involved in sepsis. Analyzing publicly available 
data sets, the study identified 537 differentially expressed 
genes (DEGs) with similar patterns, revealing significant 
sepsis-related genes such as MCEMP1, CD177, S100A12, 
ANXA3, and GYG1. Furthermore, the study also showed a 
notable enrichment of biological pathways and processes 
involved in T cell activation, leukocyte adhesion, differen-
tiation, and immunological responses, including Th1, Th2, 
and Th17 cell differentiation. This highlights the critical 
part T cells play in the onset and progression of sepsis, 
as well as their potential as biomarkers. The protein–
protein interaction network analysis revealed hub genes, 
including CD3E, HLA-DRA, IL2RB, ITK, and LAT, which 
are all involved in T cell activation and immune regula-
tion. Better outcomes for sepsis patients were associated 
with high expression of these hub genes. In addition, the 
study investigated potential drug candidates that target 
immune-related genes, some of which have demonstrated 
promise in immunosuppression and cancer treatment. 
These medications have the potential to treat sepsis, but 
more studies, especially those using in  vitro and animal 
models, are required to validate their effectiveness.
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