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Abstract 

Background  Considering the rapidly spreading monkeypox outbreak, WHO has declared a global health emergency. 
Still in the category of being endemic, the monkeypox disease shares numerous clinical characters with smallpox. This 
study focuses on determining the most effective combination of autoregressive integrated moving average model 
to encapsulate time dependent flow behaviour of the virus with short run prediction.

Methods  This study includes the data of confirmed reported cases and cumulative cases from eight most bur-
dened countries across the globe, over the span of May 18, 2022, to December 31, 2022. The data was assembled 
from the website of Our World in Data and it involves countries such as United States, Brazil, Spain, France, Colombia, 
Mexico, Peru, United Kingdom, Germany and Canada. The job of modelling and short-term forecasting is facilitated 
by the employment of autoregressive integrated moving average. The legitimacy of the estimated models is argued 
by offering numerous model performance indices such as, root mean square error, mean absolute error and mean 
absolute prediction error.

Results  The best fit models were deduced for each country by using the data of confirmed reported cases of mon-
keypox infections. Based on diverse set of performance evaluation criteria, the best fit models were then employed 
to provide forecasting of next twenty days. Our results indicate that the USA is expected to be the hardest-hit country, 
with an average of 58 cases per day with 95% confidence interval of (00—400). The second most burdened country 
remained Brazil with expected average cases of 23 (00—130). The outlook is not much better for Spain and France, 
with average forecasts of 52 (00—241) and 24 (00—121), respectively.

Conclusion  This research provides profile of ten most severely hit countries by monkeypox transmission 
around the world and thus assists in epidemiological management. The prediction trends indicate that the confirmed 
cases in the USA may exceed than other contemporaries. Based on the findings of this study, it remains plausible 
to recommend that more robust health surveillance strategy is required to control the transmission flow of the virus 
especially in USA.
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Introduction
Monkeypox (Mpox) is a relatively rare zoonotic 
disease,caused by the Mpox virus, a virus closely related 
to the variola virus (responsible for the small-pox dis-
ease) by belonging to the same genus of Orthopoxviruses 
[1]. As suggested by the name, the monkeypox virus was 
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first discovered during an outbreak amongst monkeys at 
a Danish laboratory in 1958 [2], but it was not until 1970 
when the first human, a 9-month-old baby, was diag-
nosed in the Democratic Republic of Congo (formerly 
Zaire) [3], and since then been referred to as human 
Mpox virus.

Mpox has been endemic to West and Central Africa, 
with the most affected country being the Democratic 
Republic of Congo (DRC), where regular outbreaks have 
been the norm for the past five decades [1, 4, 5]. More 
recently the WHO reported 4,594 new suspected cases 
between January and September 2020, in the DRC alone, 
suggesting a steady rise in incidence [6]. This was fol-
lowed by cases being reported in other parts of the world 
with around 3413 Mpox virus infections being reported 
across 50 countries. This led to the WHO declaring 
Mpox as an “evolving threat of moderate public health 
concern” in June 2022 [7, 8].

Till the 1980s transmission to humans originated from 
contact with wildlife reservoirs [9, 10]. More recently, 
most cases outside of Africa were due to animal-to-
human transmission, imported from endemic countries, 
or associated with imported pets [1, 11, 12]. Only in the 
1990s when the number of secondary cases by contact 
with an infected person began to increase was Mpox 
considered an important worldwide health concern [10]. 
The transmission of the virus occurs mostly through 
large respiratory droplets, close or direct contact with 
skin lesions, and possibly through contaminated fomites 
[7, 13]. Vertical transmission and fatal deaths have also 
been described [14]. The current spread has been shown 
to disproportionately affect men who are gay or bisexual 
and other men who have sex with men (GBMSM), which 
may suggest amplification of transmission through sex-
ual networks [15]. According to the UK Health Security 
Agency, of the 152 male confirmed reported cases 151 
were identified as GBMSM [16]. At present, it is still not 
clear whether Mpox can be transmitted through semen 
or vaginal fluid.

Although not as severe, Mpox disease shares many 
clinical characteristics with the smallpox disease such 
as an initial febrile prodrome lasting between 1 to 4 days 
with generalized headaches and fatigue. The initial pro-
dromal period is followed by (or concomitant with) the 
development of a maculopapular rash, that often first 
appears on the face and then appears in a centrifugal dis-
tribution on the body [17, 18]. These lesions may occur 
in the oral cavity causing difficulty swallowing [17]. The 
disease also characteristically results in maxillary, cer-
vical, or inguinal lymphadenopathy which is unique 
when compared to smallpox and suggests a more effec-
tive immune recognition and response (a hypothesis 
that requires further study) [17, 19]. Smallpox (Variola 

majorvariant) had a case fatality rate of 30%, fortunately 
the symptoms from Mpox disease are much less severe 
and self-limiting lasting with symptoms usually resolving 
within 2 to 4 weeks. Severe cases usually only appear in 
children and immunocompromised. Complications are 
rare but include pneumonitis, encephalitis, keratitis, and 
secondary bacterial infections [7].

The clinical differential diagnosis includes other rash 
illnesses, such as chickenpox, measles, bacterial skin 
infections, scabies, syphilis, and medication-associated 
allergies. All suspected cases of Mpox disease should be 
reported immediately to a local health department for 
proper infection control and contact tracing but given 
the current rarity of the disease and wide range of clini-
cal differential diagnoses, reaching a diagnosis of Mpox 
poses a challenge for physicians.

Combined with clinical and epidemiological infor-
mation diagnostic assays are the most powerful and 
important components for the identification of Ortho-
poxviruses as recommended by the WHO [19, 20]. 
McCollum et  al [17] discussed the pros and cons of 
multiple diagnostic assays, the most reliable of which is 
real-time polymerase chain reaction (PCR). These assays 
are highly sensitive and efficiently detect viral DNA but 
require high-quality laboratories that either use in rural 
and low-resource regions [17, 20].

The COVID-19 outbreak in 2019 has changed the way 
we view zoonotic infections but experts have been warn-
ing the public about the threat of zoonotic infections as 
far back as 2003 during the 2003 SARS outbreak [21]. The 
fear of another pandemic has led to taking measures to 
control the disease early on. Statistical analyses play an 
important role in the prediction of disease spread and can 
help prepare and control outbreaks through planning and 
policies. Since its inception as a field of study more than 
a century ago, infectious disease epidemiology has placed 
a high priority on the statistical representation and analy-
sis of infectious diseases [22, 23]. In recent years, in par-
ticular, for newly emerging disease outbreaks, forecasting 
modelling is in great demand and significantly contrib-
utes to emerging disease outbreaks and public health [8, 
24, 25]. The goals of modelling include identifying epi-
demiological characteristics to comprehend infectious 
diseases, forecasting disease trends, assessing control 
measures to guide decision-making, and investigating 
uncertainty. To study the spread of infectious diseases, 
numerous models have been developed, examined, and 
used [8, 26–31], a few cited therein.

The time series modelling has long and rich history in 
epidemiological pursuits. For example [32], studied the 
dynamics of influenza epidemics in space and time where 
disease counts were considered to follow multivariate 
autoregressive process. Further [28], proposed a dynamic 
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model based on SIR-type differential equation to enu-
merate impact of early health interventions in context 
of COVID-19 pandemic. Furthermore, SIR model was 
used by [26] to predict that H1N1 (the swine flu) would 
pose a serious threat to Israel’s public health. Moreover 
[29], used the Poisson-lognormal, Poisson-generalized 
Gamma, and Poisson-Weibull distributions to enumer-
ate the spread proportion of COVID-19 in Hong Kong, 
India, and Rwanda. Also, using a zero-truncated nega-
tive binomial model [33], conducted a study to infer 
the super spreading potential COVID-19 flow around 
the globe. Additionally [34], proposed a new zero-state 
coupled Markov switching negative binomial model in 
which the disease alternates between periods of presence 
and absence in each area using a series of partially hid-
den nonhomogeneous Markov chains coupled between 
nearby locations. The distribution of COVID-19 con-
firmed cases in China was examined by [35] With respect 
to the dynamics of Power law.

Mpox cases, on the same lines, are time-series data with 
some dynamic fluctuation trend in the various circum-
stances with epidemic prevention and control, making it 
appropriate to create a time-series model for prediction. 
Predicting the daily new cases and total confirmed cases 
of Mpox for all the most affected countries is therefore 
extremely important from a practical standpoint.

However, as time-series data, Mpox cases have some 
dynamic fluctuation trends in the various situation 
with epidemic prevention and control, which is suit-
able for establishing a time-series model for prediction. 
The Automatic Regressive Integrated Moving Aver-
age (ARIMA) model, which has a simple structure and 
immediate applicability, is one of the most popular time 
series models. The capability of ARIMA model in extract-
ing the trends in the data by considering moving averages 
and then obtain of the stationarity of the series by differ-
entiating, is well documented in research literature [36]. 
The ARIMA model has been widely used to predict and 
estimate the prevalence of common diseases, including 
COVID-19 [37, 38], typhoid fever [39], tuberculosis [22], 
and influenza [23, 40, 41]. ARIMA methods are capable 
of correlating regulation with short-term changing trends 
in time series despite their lack of reliance on mathemat-
ics and statistics. Therefore, the model is more suitable 
for predicting short-term epidemic diseases.

Therefore, it is of great practical significance to pre-
dict the daily new cases and cumulative confirmed cases 
of Mpox for all the most affected countries. This study 
develops best-fitted ARIMA models to predict daily new 
cases and cumulative confirmed cases of monkeypox in 
Spain, the United States, Germany, the United Kingdom, 
France, the Netherlands, Colombia, Mexico, Brazil, and 
Canada over the next 20 days and evaluates the model’s 

prediction accuracy to provide a further reference for 
the prediction and early warning of infectious diseases. 
These models may also be used to predict the more days 
by incorporating the more days of data.

Material and methods
Data collection
The data for this study were collected from the official 
Our World in Data website (https://​ourwo​rldin​data.​org/). 
Data consisted of daily confirmed cases and cumulative 
cases of Mpox disease from the eight most affected coun-
tries, namely Spain, United States, Germany, United King-
dom, France, Netherlands, Brazil, and Canada, from May 
18, 2022, to December 31, 2022. We dropped the initial 
ten days due to zero-inflated observations in all consid-
ered countries to develop stable and effective forecasting 
time series models. The data extraction methodology is 
also discussed in Fig. 1. The considered dataset (May 16, 
2022, to December 31, 2022) was then used to forecast 
new confirmed and cumulative disease cases across the 
countries over the next 20 days (January 01, 2023, to Janu-
ary 20, 2023). Supplementary Table S1 and Figs. 2, 3 and 
4 provide a statistical descriptive analysis of this raw data.

ARIMA model
One of the well-known and widely applied statistical 
techniques for time-series forecasting is the Auto Regres-
sive Integrated Moving Average (ARIMA) model. The 
standard dependencies that are specific to time series 
data are captured by this class of statistical algorithms. 
The Box—Jenkin model, first presented by Box and Jen-
kins in the 1970s [42], is a type of algorithm for the analy-
sis and forecasting of time series data. This model, which 
is used to estimate and extrapolate the state of something 
at some point in the future by analysing the pattern of 
historical data and making future predictions based on 
that pattern and historical data from the past and the 
present, is applied to non-stationary time series after 
smoothing the data [43]. The model can be regarded as 
suitable for forecasting because the daily new cases and 
total number of confirmed cases of monkeypox are ran-
dom series with nonlinear or seasonal character. ARIMA 
simulates and predicts how series of data will be in the 
future. The following actions are part of the ARIMA 
model [44]:

Step 1: Determining the functional form of the 
model.
Step 2: The estimation of the model’s parameters.
Step 3: Verify the model validation hypotheses.
Step 4: Modelling predictions is step four.

https://ourworldindata.org/
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Fig. 1  The proposed methodology of the Monkeypox forecasting flow

Fig. 2  Monkeypox cases in the eight most affected countries
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The ARIMA (p, d, q) model in general has the structure 
as of Eq. (1).

The parameters of the model are φa(a = 1, 2, . . . , p) and 
θb(b = 0, 1, 2, . . . , q) in Eq.  (1). yt and εt represents the 
starting value and random error at time step t , respec-
tively. With a mean and standard deviation of zero, the 
arbitrary error represented by εt represents the σ2 . When 
q is set to 0, Eq. (1) functions as an A.R. model with order 
p, and when p is set to 0, it transforms into an M.A. 
model with order q . Therefore, ( p, q ) are both significant 
parameters in establishing the ARIMA model.

Analytical tools and model evaluation
ACF and PACF test
The autocorrelation value for any sequence with lag val-
ues is given to us by the ACF, which is a complete auto-
correlation function. It briefly describes how closely that 
sequence’s present value and its past value are correlated. 

(1)
yt = φ1yt−1 + φ2yt−2+ · · · + φpyt−p−θ1εt−1 − θ2εt−2 · · · − θqεt−q .

PACF (Partial Autocorrelation Function) and determines 
the correlation between the residuals and the subsequent 
lag value rather than lags like ACF with the current. The 
linear relationship between the observations at time t and 
the observations at time t − n is displayed by an ACF. For 
a specific time series X , the ACF and PACF are defined 
as:

where n is the lag (or difference between Xt and Xt−n ) 
in the ACF plot and n = 2 in the PACF plot between the 
observed values Xt and Xt−n.

Performance indices
To measure the effectiveness of a model fitting and fore-
casting, following are the indices: RMSE (root mean 
square error), MAE (mean absolute error), MAPE (mean 
absolute prediction error) and ME (mean error), were 
applied. They were used to assess how well the developed 

(2)
ACF(Xt ,Xt−n) = Covariance(Xt ,Xt−n)

Variance(Xt )

PACF(Xt ,Xt−2) = Covariance(Xt,Xt−2/Xt−1)√
Variance(Xt /Xt−1)

√
Variance(Xt−2/Xt−1)

,

Fig. 3  Comparison of daily new confirmed Monkeypox cases in most eight affected countries from May 16, 2022, to July 25, 2022
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models predicted the future. A better data fit is indi-
cated by lower values aforementioned indices. These cri-
teria are expressed, respectively [43], in Eqs. (6 and 7). 
AIC (Akaike Information Criterion), and BIC (Bayesian 
Information Criterion) are information criterion classes 
used to assess the goodness of fit of a statistical model. 
It is based on the concept of entropy and can weigh the 
estimated model’s complexity against its goodness of 
fit to the data. This data is used to evaluate the model’s 
parameters and how well the model performed. To avoid 
excessive model complexity caused by excessive model 
accuracy in this study. As a result, the function returns 
the lower value.

(3)RMSE =
√

SSE

n
=

√

∑n
i=1 (Yi − Y i)

2

n

In Eqs.  (3, 4 and 5), where Yi is the actual expected 
output, Y i is the model’s prediction, i = 1 . . . n and n is 
the number of observations. In Eqs. (6 and 7), logL

(

̂θ

)

 
is the likelihood function, N is the number of observa-
tions, and n is the number of model parameters.

(4)MAE =
1

n

∑n

i=1
|Yi − Y i|

(5)MAPE =
100

n

∑n

i=1

∣

∣

∣

∣

∣

(

Yi − Y i

)

Yi

∣

∣

∣

∣

∣

(6)AIC = 2n− 2logL
(

̂θ

)

(7)BIC = nlogN − 2logL
(

̂θ

)

Fig. 4  Daily variation cumulative confirmed Monkeypox cases in most eight affected countries from May 16, 2022, to July 25, 2022
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Data analysis
Both new confirmed cases and cumulative cases of 
monkeypox exhibit time series properties. For the fol-
lowing 20  days, daily new and cumulative cases were 
predicted using best fitted ARIMA models. R soft-
ware with forecast package was used for forecasting. 
The generation of ARIMA model parameters generally 
involves the use of statistical methods like performing a 
difference to remove non-stationarity and plotting ACF 
and PACF graphs. Based on lower AIC and BIC, this 
package intuitively selects the optimal set of param-
eters ( p, d, q) for better forecasting.

One of the highly admired classes of statistical tools 
to capture the time-dependent delicacies prevalent 
in the data to assist the time-series forecasting is the 
ARIMA model [45]. In its simplest form, the ARIMA 
models facilitate the extrapolation of the future by 
simulating the patterns existent in the current state of 
matter while catering the time-related characters of the 
available information 32,42. Without losing the general-
ity, the order of an ARIMA model is commonly denoted 
as ARIMA (p,d,q). Here, p represents the degree of 
dependency of the current state on its lag values, and q 
denotes the order of the moving average process high-
lighting the access of past forecast error. Lastly, d shows 
the order of non-seasonal differences required to attain 
stationarity while integrating both auto-regressive and 
moving average parts. Formally the ARIMA model is 
written as;

Here, B is back shift operator with φ(B) being auto-
regressive operator such as, φ(B) = 1−

∑p
j=1φjB

j . 
Further, θ(B) represents the moving average operator 
where, θ(B) = 1+

∑q
i=1θiB

i and d indicates the non-
seasonal differences to gain stationarity. The diversity 
and flexibility of ARIMA models are noteworthy as it 
enables the analyst to not only extrapolate integrated 
formations but also the moving averages and auto-
regressive complexities alone as well as simultaneously. 
Due to these delicacies, the use of the ARIMA model is 
anticipated to be more elaborate in model and forecast-
ing the trends of monkeypox transmission.

Analytical tools and model evaluation
Autocorrelation function (ACF) and partial autocorrelation 
function (PACF)
The lack of independencies and so the linear predict-
ability of the current state based on lagged values 
is assessed by considering ACF. A more elaborative 

(8)φ(B)(1− B)dyt = θ(B)εt .

account of dependencies is offered while holding all 
other mediators constant by the launch of PACF.

Performance indices
The performance evaluation of the most prominent 
models is investigated on multiple fronts by consider-
ing numerous measures. The predictive capability of the 
models is assessed by considering the relevant indices 
such as RMSE, MAE, MAPE and ME. Whereas the loss 
of information concerning parametric estimation is enu-
merated by using entropy-based statistics such as AIC, 
BIC, and Corrected AIC (AICc) [42, 43].

Results and discussions
Exploratory analysis
The dynamic characteristics of the transmission of Mpox 
in eight countries are investigated by the launch of the 
well-celebrated general scheme of the ARIMA model. 
The data regarding the daily reported new cases and 
cumulative frequencies ranging from May 18, 2022, to 
December 31, 2022, were assembled from the official 
website of Our World in Data. The exploratory analysis 
reveals that the greatest number of confirmed cases dur-
ing the above-mentioned period was reported in United 
States which is 29,603 (Fig. 2).

It was then followed by the Brazil (10,508), Spain 
(7496), France (4114) and Colombia (4021). Where, 
United Kingdom, Germany, Peru and Mexico all show-
ing more than 3000 confirmed cases of the outbreak. 
Lastly, Canada reveals confirmed cases of Mpox virus 
infection as 1460. The display of daily reported cases data 
convincingly exhibits the time-inflicted characters which 
are then aggregated in cumulative cases. The time series 
display daily cases reported in the selected countries 
showed that the reported numbers gained momentum 
after the second week of June, however, intensities vary 
(see Figs. 3 and 4).

These findings remain verifiable from the graph of 
cumulative frequencies indicating a rise in the degree of 
flow with varying degrees (Fig.  4). The numerical sum-
maries of the data also pass various behavioural aspects 
of the time-dependent flow of the viral transmission 
(Supplementary Table S1).

On average United States seals its most affected situa-
tion concerning the outbreak with the highest mean value 
of 199 cases per day over eight months period. This is 
then followed by the Brazil, Spain, France, Germany, and 
the United Kingdom. Whereas Canada showed a mini-
mal average value of almost 9 cases per day. Moreover, 
the highest number of newly reported cases in a single 
is also associated with United States as 1500 cases. This 
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number is overwhelmingly distinctive from the following 
country of France and Spain with a maximum number of 
cases of 526 and 520 in one day. The least affected Can-
ada projected the maximum number of reported cases 
associated with a single day as 106.

Dynamic modelling
The dynamic parametric estimation and modelling of 
the time-dependent viral flow of the Mpox data related 

to eight selected countries forwarded different degrees of 
complexities. Both new confirmed cases and cumulative 
cases of Mpox exhibit time series properties. For the fol-
lowing 20 days, daily new and cumulative cases were pre-
dicted using best-fitted ARIMA models. RStudio (version 
4.1.2; RStudio, Boston, MA, USA) with forecast package 
was used for forecasting.

The generation of ARIMA model parameters generally 
involves the use of statistical methods like performing a 

Fig. 5  ACF and PACF of the residuals of the best fitted ARIMA models on the confirmed monkeypox cases
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difference to remove non-stationarity and plotting ACF 
and PACF graphs (Figs.  5  and  6). Based on lower AIC, 
AICc, and BIC, this package intuitively selects the opti-
mal set of parameters (p,d,q) for better forecasting 38. 
This function searches for a range of p, q values, after fix-
ing d by Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. 
It chooses the model having the lowest AIC score.

The daily reported data of Spain is best modelled 
with ARIMA (5,1,3) indicating the prevalence of auto-
regressive factors along with moving average part and 
non-seasonal effects. Similarly, ARIMA (2,1,2), ARIMA 
(2,1,1) and ARIMA (1,1,2) models are estimated con-
cerning Germany, Netherlands, and Canada. Further, the 
US, France, and Brazil showed a lack of auto-regressive 

Fig. 6  ACF and PACF of the residuals of the best-fitted ARIMA models on the cumulative monkeypox cases
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part in the modelling of daily reported data with esti-
mated models such as ARIMA (0,1,2), ARIMA (0,1,1) 
and ARIMA (0,1,1), respectively. The UK data, however, 
distinctively exhibited the existence of an auto-regressive 
part only with the estimated model of the order ARIMA 
(4,0,0). The display of ACF and PACF indicates the linear 
dependency structure after the launch of the most appro-
priate models (Figs. 5 and 6).

The agreeable behavioural display can be noticed con-
cerning each country’s estimation of daily reported data. 
Moreover, the model fitting and appropriateness criteria 
are compiled in the Table  1. One may notice the legiti-
macy of the estimated models on various fronts while 
trading off the multifaceted complexities of the viral flow 
of Mpox. As long as, the time-series modelling of cumu-
lative cases data is concerned a relatively lesser extent 
of complexity is observed. This character can be attrib-
uted to the availability of more synchronized informa-
tion. The ARIMA (2,2,2), ARIMA (2,2,1), ARIMA (1,2,1) 
and ARIMA (1,2,2) are estimated concerning Germany, 
Netherlands, Brazil, and Canada. Whereas ARIMA 
(0,2,3), ARIMA (0,2,2), ARIMA (0,1,1) and ARIMA 
(0,2,1) models gained prominence for Spain, US, UK, and 
France. The performance capacities of the argued models 
are substantiated while displaying the correlation forma-
tions through ACF and PACF (Figs. 5 and 6) along with 
relevant numerical summaries regarding the predictive 
power (Table 2).

Predictions
For each country, the best fit ARIMA model was used 
to forecast the spread of Mpox in ten countries: United 
States, Brazil, Spain, France, Colombia, Mexico, Peru, 
United Kingdom, Germany and Canada. The data used 
in the models spanned from May 18, 2022, to Decem-
ber 31, 2022, with predictions made for the next 20 days 

till January 10, 2023, with 95% confidence intervals. The 
graphical display offered in Figs. 7 and 8 presents the pre-
dictive behaviour for daily reported data.

The results of the predictions showed a range of 
expected cases per day, with the United States estimated 
to have the highest number of cases at an average of 62 

Table 2  Accuracy evaluation metrics of ARIMA models for 
forecasting Monkeypox cases

Cases Country Model fitting

ME RMSE MAE MAPE

Confirmed United 
States

1.0837 160.8289 93.6989 0.8021

Brazil 0.6142 52.8620 32.3485 1.1673

Spain -0.0148 80.7937 43.7184 1.5725

France -0.0025 53.1115 23.8431 2.4846

Colombia 0.0969 16.7897 11.1099 0.8945

Mexico -0.0376 14.2295 9.2355 0.8129

Peru 0.8109 27.1984 17.0360 0.9097

United 
Kingdom

0.5683 47.8629 30.2068 1.1890

Germany 0.0949 21.2443 12.2563 1.3640

Canada 1.2181 19.0702 13.9751 1.1023

Cumula-
tive

United 
States

1.0546 160.8288 93.6859 1.7463

Brazil 0.6121 52.8620 32.3425 1.8743

Spain 0.7233 80.7973 43.5809 2.2172

France 0.0659 55.0058 24.8170 1.8706

Colombia 0.0835 16.7879 11.1024 1.3917

Mexico -0.0418 14.2278 9.2216 1.0140

Peru 0.7166 27.1835 17.0301 1.6954

United 
Kingdom

0.4919 47.8497 30.2065 1.7379

Germany 0.0792 21.2429 12.2499 1.4778

Canada 1.2083 19.0657 13.9674 1.5947

Table 1  Estimation of optimal parameters for the best fitted ARIMA model Parameters and AICs of the ARIMA models for 8 countries

Country Confirmed Cases Cumulative Cases

Model Structure AICc BIC Model Structure AICc BIC

United States (0,1,1) 2956.78 2963.58 (0,2,1) 2944.78 2951.57

Brazil (3,1,1) 2459.14 2476.00 (3,2,1) 2449.36 2466.19

Spain (5,1,5) 2666.81 2706.45 (5,2,5) 2653.98 2690.37

France (5,1,5) 2475.54 2511.99 (3,2,4) 2475.18 2501.88

Colombia (2,1,3) 1941.21 1961.38 (2,2,3) 1933.68 1953.82

Mexico (4,1,5) 1874.28 1907.52 (4,2,5) 1867.08 1900.27

Peru (1,1,2) 2154.99 2168.51 (1,2,2) 2146.31 2159.81

United Kingdom (1,1,1) 2408.85 2419.02 (1,2,1) 2399.16 2409.31

Germany (2,1,1) 2042.54 2056.06 (2,2,1) 2034.56 2048.06

Canada (2,1,1) 1993.57 2007.09 (2,2,1) 1985.74 1999.24
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Fig. 7  The prediction of the best fitted ARIMA model (95% confidence interval) for the daily new cases (for the next 20 days) from July 26, 2022, 
to August 13, 2022
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Fig. 8  The prediction of the best-fitted ARIMA model (95% confidence interval) for the daily cumulative cases (for the next 20 days) from July 26, 
2022, to August 13, 2022
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per day and the Germany expected to have the lowest at 
7 per day. Meanwhile, countries like Peru, Brazil, France, 
the United Kingdom, and Canada, are forecasted to have 
averages of 32, 23, 24, 24, and 26 cases per day, respec-
tively. Colombia, and Mexico are expected to have num-
bers of cases at 12, and 12 cases per day, respectively. The 
results of the predictive analysis show a need for each 
country to prepare for their respective levels of risk to 
control the spread of Mpox.

Conclusions
In this study, the 10 most affected countries— United 
States, Brazil, Spain, France, Colombia, Mexico, Peru, 
United Kingdom, Germany and Canada—were examined 
about the current and short-term predicted possible daily 
confirmed and cumulative cases of the Mpox epidemic. 
The persistent trend and scope of the epidemic were esti-
mated using ARIMA models. It has been revealed that, 
among other countries, the United States will most likely 
be affected by Mpox in the future, prompting people to 
be more vigilant of this virus.

The current work can help respected governments 
develop emergency plans and allocate medical resources. 
Whereas in this study, authors used data from almost 
three months to forecast the next twenty-day scenario. If 
the data set is sizable, it can also accurately predict long 
periods.
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