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Abstract

Background The corona virus SARS-CoV-2 is the causative agent of recent most global pandemic. Its genome
encodes various proteins categorized as non-structural, accessory, and structural proteins. The non-structural proteins,
NSP1-16, are located within the ORF1ab. The NSP3, 4, and 6 together are involved in formation of double membrane
vesicle (DMV) in host Golgi apparatus. These vesicles provide anchorage to viral replicative complexes, thus assist rep-
lication inside the host cell. While the accessory genes coded by ORFs 33, 3b, 6, 73, 7b, 8a, 8b, 9b, 9¢, and 10 contribute
in cell entry, immunoevasion, and pathological progression.

Methods This in silico study is focused on designing sequence specific siRNA molecules as a tool for silencing

the non-structural and accessory genes of the virus. The gene sequences of NSP3, 4, and 6 along with ORF3a, 6, 73, 8,
and 10 were retrieved for conservation, phylogenetic, and sequence logo analyses. siRNA candidates were predicted
using siDirect 2.0 targeting these genes. The GC content, melting temperatures, and various validation scores were
calculated. Secondary structures of the guide strands and siRNA-target duplexes were predicted. Finally, tertiary struc-
tures were predicted and subjected to structural validations.

Results This study revealed that NSP3, 4, and 6 and accessory genes ORF3a, 6, 73, 8, and 10 have high levels

of conservation across globally circulating SARS-CoV-2 strains. A total of 71 siRNA molecules were predicted
against the selected genes. Following rigorous screening including binary validations and minimum free energies,
final siRNAs with high therapeutic potential were identified, including 7, 2, and 1 against NSP3, NSP4, and NSP6,
aswell as 3, 1,2, and 1 targeting ORF3a, ORF7a, ORF8, and ORF10, respectively.

Conclusion Our novel in silico pipeline integrates effective methods from previous studies to predict and validate
siRNA molecules, having the potential to inhibit viral replication pathway in vitro. In total, this study identified 17
highly specific siRNA molecules targeting NSP3, 4, and 6 and accessory genes ORF33a, 73, 8, and 10 of SARS-CoV-2,
which might be used as an additional antiviral treatment option especially in the cases of life-threatening urgencies.
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Background
An outbreak of a new strain of betacoronaviruses was
detected in Wuhan city, which is the capital of Hubei
province (China) in the month of December 2019. It was
found to be responsible for respiratory tract infection [1,
2]. Clinical symptoms of the viral infection include fever
accompanied by sore throat and respiratory distress
[3]. This novel virus was later termed as Severe acute
respiratory syndrome coronavirus-2 or simply SARS-
CoV-2, in February 2020 [4]. According to World Health
Organization report of April 2023, this potentially lethal
virus has caused about 766,440,796 infection cases and
6,932,591 deaths across the globe [5]. SARS-CoV-2 is
a highly mutable virus that has demonstrated a pro-
pensity to undergo genetic evolution. The emergence
of novel mutations in its genomic sequence have been
reported over time. These mutations arise in response
to the virus adapting to new hosts, as it spreads within
the populations [6].

SARS-CoV-2 is classified as an enveloped virus and is
a member of the Coronaviridae family. Its genetic mate-
rial approximately comprises of a 30 kilobase long, sin-
gle-stranded positive sense RNA molecule [7]. It encodes
for a total of 31 proteins, including 4 structural proteins,
11 accessory factors, and 16 non-structural proteins [8].
The structural makeup of SARS-CoV-2 is comprised of
structural proteins including spike glycoproteins, enve-
lope, membrane, and the nucleocapsid proteins. It also
encodes for eleven accessory proteins, having key roles
in the pathogenesis of virus [7, 8]. In addition, the non-
structural proteins encoded by ORF1lab including NSP1-
NSP16 also having an essential role in viral replication
[9]. Upon entering the cell, SARS-CoV-2 takes control of
host cell membranes organization and ultimately gener-
ates double membrane vesicles (DMVs) inside the Golgi
apparatus accompanied by the aggregation of lipid drop-
lets [10]. Similar to the mechanism followed by SARS-
CoV [11-13], the double membrane vesicle formation of
SARS-CoV-2 is facilitated by NSP3, in union with NSP4
and NSP6. The replication complexes of the virus are
enclosed in these virus-induced organelles. Upon their
release in cytoplasm, these replicative complexes facili-
tate the viral replication and proliferation [10]. On the
other hand, accessory proteins of SARS-CoV-2 also play
a critical role in viral entry inside the host cells, evasion
of immune response and pathogenesis progression [14].
Accessory proteins are proven to have a role in interferon
suppression also [14].

The biogenesis and assembly of double membrane vesi-
cles along with viral replication mechanism are desired to
be inhibited by silencing non-structural (NSP3, 4, and 6)
and accessory genes (ORF3a, 6, 7a, 8, and 10) using an
RNA interference technique. The RNA interference or
RNAi mechanism, which involves post-transcriptional
gene silencing or messenger RNA silencing, can be har-
nessed as an effective tool for down regulating the rep-
licative pathways of viruses in human hosts [15]. RNAi
employs short interference RNA and microRNA mol-
ecules for cleavage of specific sequences in the targeted
viral mRNA. These short non-coding or ncRNA mol-
ecules, bind to their corresponding complementary
sequences in mRNA molecules to inhibit their transla-
tion. Thus, RNAi mechanism ultimately results in silenc-
ing the expression of the viral genes [16, 17]. In silico
approaches utilizing computational biology tools and
databases have facilitated the design of siRNAs for tar-
geted gene silencing [16—18]. Earlier in silico and in vitro
studies reported siRNAs and miRNAs as an effective
defense against many viruses including Hepatitis C virus
[19], Human immunodeficiency virus [20], Influenza
virus [21], Nipah virus [22], Zika virus [23], MERS-CoV
[24, 25], and SARS-CoV-2 [16, 17, 26]. This in silico study
includes conservation and phylogenetic analyses of NSP3,
4, and 6 sequences of SARS-CoV-2 strains across the
globe along with the accessory genes including ORF3a,
6, 7a, 8, and 10. An ncRNA transcriptomics-based
approach has been utilized for the designing of siRNA
molecules against the selected non-structural as well as
accessory genes of SARS-CoV-2 and further structural
validations and verification of targeting specificity of the
designed siRNA molecules have been assessed using dif-
ferent computational tools and algorithms.

Methods

Retrieval of gene sequences from NCBI

A total of one hundred SARS-CoV-2 strains across the
globe were randomly selected from all the continents
using NCBI Virus web portal' and NCBI GenBank was
used to obtain nucleotide sequences of NSP3, NSP4, and
NSP6 from them (Additional file 1: Tables S1, S2). The
SARS-CoV-2 isolate Wuhan-Hu-1 (accession number:
NC_045512.2) was used as reference sequence. Subse-
quently, 17 whole-genome sequences of SARS-CoV-2
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Fig. 1 Phylogenetic analysis of NSP3 gene sequences of SARS-CoV-2
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Fig. 2 Phylogenetic analysis of NSP4 gene sequences of SARS-CoV-2 Fig. 3 Phylogenetic analysis of NSP6 gene sequences of SARS-CoV-2
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Fig. 4 Phylogenetic analysis of accessory genes sequences of SARS-CoV-2

were obtained randomly and NCBI graphics was used
to retrieve accessory gene sequences of ORF3a, ORF6,
ORF7a, ORF8, and ORF 10. After sequence retrieval,
NCBI ORF Finder? [27] was used to screen the retrieved
coding sequences (Additional file 1: Table S3). In order
to check the similarity of accessory genes among other
isolates of SARS-CoV-2, all CDS were individually sub-
jected to NCBI BLASTn [28]. The nucleotide sequences
of SARS-CoV-2 variants of concern were acquired for

MT434757.2 SARS-CoV-2/India/2020
MT582499.1 SARS-CoV-2/Germany/2020
MT628700.1 SARS-CoV-2/feline/HongKong/2020
MT628701.1 SARS-CoV-2/HongKong/2020
MT630431.1 SARS-CoV-2/Saudi Arabia/2020

MT810119.1 SARS-CoV-2/Koria/2020

MW565625.1 SARS-CoV-2/USA/2020 86 | MW495017.1 SARS-CoV-2/Brazil/2020

MW565625.1 SARS-CoV-2/USA/2020
MW888068.1 SARS-CoV-2/USA/2021
MZ054892.1 SARS-CoV-2/Libya/2021
MZ194280.1 SARS-CoV-2/USA/2021
MZ331947.1 SARS-CoV-2/New Zealand/2020
0L675863.1 SARS-CoV-2/Switzerland/2020
OMB40071.1 SARS-CoV-2/Austria/2022

OK664057.1 SARS-CoV-2/USA/2021

0L515307.1 SARS-CoV- 1

0L516117.1 SARS-CoV-2/USA/2021

0.00050

Tree for gene ORF10

0L675863.1 SARS-CoV-2/Switzerland/2020
OM640071.1 SARS-CoV-2/Austrial2022
0L516117.1 SARS-CoV-2/USA/2021
0L515307.1 SARS-CoV-2/USA2021

o) 1 SARS-CoV-2/L 1

MZ331947.1 SARS-CoV-2/New Zealand/2020
MZ194280.1 SARS-CoV-2/USA/2021
MZ054892.1 SARS-CoV-2/Libya/2021
MWw888068.1 SARS-CoV-2/USA/2021

MW565625.1 SARS-CoV-2/USA/2020

17.1 SARS-CoV.
MT810119.1 SARS-CoV-2/Koria/2020
MT630431.1 SARS-CoV-2/Saudi Arabia/2020
MT628701.1 SARS-CoV-2/HongKong/2020

MT628700.1 SARS-CoV.

MT582499.1 SARS-CoV-2/Germany/2020

MT434757.2 SARS-CoV.

conservation analysis and checked against the designed
siRNAs (Additional file 1: Table S2).

Conservation and phylogenetic analysis across the globe

The sequences were aligned using MEGA11 [29] phy-
logenetic trees were constructed for each gene to pre-
dict the evolutionary divergence. Maximum likelihood
method was used and bootstrap replications were kept
as 1000. WebLogo application® [30] was used to generate

2 https://www.ncbi.nlm.nih.gov/orffinder/

3 https://weblogo.berkeley.edu/logo.cgi
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Fig.5 Secondary structures and MFE of siRNA molecules targeting NSP3
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Fig. 6 Secondary structures and MFE of siRNA molecules targeting NSP4
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Fig. 7 Secondary structure and MFE of siRNA molecule targeting
NSP6
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Fig. 8 Secondary structures and MFE of siRNA molecules targeting ORF3a

sequence logos for the selected gene sequences. BioEdit
7.2 and Jalview 2.11.2.0 programs were used in order to
determine the consensus sequences.

Target specific prediction of siRNAs
The obtained consensus sequences of selected genes were
submitted to siDirect 2.0* [31] for designing siRNAs.

4 http://sidirect2.rnaijp/
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siDirect 2.0 is an online server that utilizes a fast and
sensitive homology search algorithm to minimize any
off-target effects and ensure functional siRNA design.
Various parameters were set, including a melting tem-
perature below 21.5°C and GC content between 31.6 and
57.9%, along with the use of specific algorithms, such as
Ui-Tei, Reynolds, and Amarzguioui combined rules to
predict potential siRNAs for targeting the genes of inter-
est. The stability of the seed-target duplex (T,,) was also
calculated to determine the RNA duplex’s formation
ability.

GC content calculations

To determine the exact GC content of predicted siRNAs
accurately, a web based server known as ENDMEMO GC
Content Calculator® was employed.

Validation of predicted siRNA molecules

To evaluate the efficacy and inhibiting potential of siRNA
molecules, the siRNApred online server® [32] was uti-
lized. The 21-mer predicted siRNAs were subjected to
screening against the Main21 dataset, using the support
vector machine (SVM) algorithm and the binary pat-
tern prediction approach. To further evaluate the pre-

ENERGY = 1.9 3

dicted siRNA molecules, the i-Score Designer tool’ [33]
was also employed using a second-generation algorithm
for the calculation of i-scores and s-Biopredsi scores
respectively.

5 http://www.endmemo.com/bio/gc.php

6 http://crdd.osdd.net/raghava/sirnapred/

7 https://www.med.nagoya-u.ac.jp/neurogenetics/i_Score/i_score.html
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Fig. 9 Secondary structure and MFE of siRNA molecule targeting
ORF6

Heat capacity calculations

The siRNA-duplexes have a collective heat capacity (C,),
and its melting temperature (T,,,C,) is determined as the
local maximum of C, curve when plotted against the
temperature. For the determination of melting tempera-
ture at which the concentration of duplexes become half
of their maximum value (referred to as T, (conc)), the
DINAmelt Server® [34] was used with the RNA option
selected, including the option “Hybridization of two dif-
ferent strands” The initial concentrations were set as
0.000005M for siRNAs targeting NSPs and default for
the accessory genes. All predicted siRNAs were ana-
lyzed using this method. The server generated the heat
capacity values through the numerical differentiation of
the ensembled free energy profiles, with respect to the
temperatures.

Prediction of secondary structures and minimum free
energy calculations

The siRNA secondary structures were predicted using
MaxExpect algorithm in RNAstructure program [35]

Page 10 of 27

ENERGY = 1.5 5

Fig. 10 Secondary structure and MFE of siRNA molecule targeting
ORF7a

as well as the respective free energy of folding. Default
values were used for other parameters. Subsequently,
RNA DuplexFold algorithm within the RNAstructure
program was also utilized to calculate thermodynamics
interaction between the viral siRNAs and their respec-
tive target sequences. The default values were main-
tained for other parameters including the maximum
percent of energy difference and the maximum number
of structures.

Tertiary structure prediction and validation
The selected siRNAs, which passed the validations were
further modelled using RNAComposer server’ [36] by

8 http://www.unafold.org/hybrid2.php

9 https://rnacomposer.cs.put.poznan.pl/
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Fig. 11 Secondary structures and MFE of siRNA molecules targeting ORF8

their secondary structure in Vienna dot-bracket for-
mat. The model obtained was validated using the Mol-
Probity server'® [37]. To find the most accurate 3D
model, all-atom contacts and geometry, RNA backbone
conformations, sugar puckers, Van der Waals forces,
and H-bonds were analyzed. The tertiary structures of
siRNA guide strands were viewed using UCSF Chimera
(version 1.16) [38].

Off-target minimization

Finally, to avoid any toxicity, the assessment of off-tar-
get binding effects of siRNA molecules, was made using
NCBI nucleotide BLAST [28]. The siRNA sequences
were screened against the Human Genomic + Transcript
Database.

Conservation analysis of designed siRNAs

against SARS-CoV-2 variants

The target sequences of the designed siRNAs at each pre-
dicted position were aligned to gene sequences of SARS-
CoV-2 variants of concern using MEGA11 [29] and were
analyzed for conservation.

Result

Conservation and phylogenetic analysis across the globe
The multiple sequence alignments of non-structural
and accessory gene sequences from different strains cir-
culating in different countries revealed a high level of

19 http://molprobity.manchester.ac.uk/
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Fig. 12 Secondary structure and MFE of siRNA molecule targeting
ORF10
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conservation. Phylogenetic trees of the selected gene  Target specific prediction of siRNAs

sequences of NSPs and accessory genes were constructed — The siDirect 2.0 web server utilized Ui-Tei, Amarzguioui,
using the Maximum Likelihood method and Tamura-Nei  and the Reynolds algorithms to predict 41 siRNAs for the
model (Figs. 1, 2, 3 and 4). NSP3 gene, 12 siRNAs for the NSP4 gene, and 3 siRNAs

ENERGY = -34.8

1 ‘ S—— ‘

ENERGY = -31.4 4 ENERGY = -31.5 5

Fig. 13 Secondary structures and MFE of siRNA-target duplexes for NSP3 regions
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Fig. 14 Secondary structures and MFE of siRNA-target duplexes for NSP4 regions

for the NSP6 gene. For accessory genes, it predicted 7, 1,
2, 4, and 1 potential siRNA molecules for ORF3a, ORF®6,
ORF7a, ORFS8, and ORF10 respectively. Notably, all the
predicted siRNA molecules had a seed target duplex sta-
bility value (T,,) below 21.5°C, thus indicating potential
minimization of off-target binding (Additional file 1:
Table S4, S5, S6, S7).

GC content calculations

The GC content of the predicted siRNA molecules
ranged from 33.33 to 42.86% for the NSP3 gene, 33.33
to 45.24% for NSP4 gene, and 33.33 to 40.48% for the
NSP6 gene (Additional file 1: Table S4, S5, S6). For
accessory genes, the GC content ranged from 33.33—
40.7, 35.71, 35.71-38.09, 38.09-42.85, and 35.71 for
ORF3a, ORF6, ORF7a, ORF8, and ORF10 genes respec-
tively (Additional file 1: Table S7).

Validation based selection of efficient siRNA molecules

The effectiveness of predicted siRNA molecules was
evaluated using siRNAPred.!! Overall, the siRNAs hav-
ing binary scores equal or closest to 1 were selected as
the most effective ones. A total of 12 out of 41 siRNA
molecules predicted for NSP3, 2 out of 12 for NSP4, and
1 out of 3 for NSP6 met the criteria and were found to
be highly effective. For accessory genes, the top 3, 1, 1,
3, and 1 potential siRNA molecules were found to be
potential candidates for ORF3a, ORF6, ORF7a, ORFS,
and ORF10 respectively. Primarily, these 24 siRNA mol-
ecules were selected for further analysis. The validity of
predicted siRNAs was also confirmed using the i-Score

! http://crdd.osdd.net/raghava/sirnapred/
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Designer calculating the s-Biopredsi scores and i-Scores
(Tables 1, 2).

Heat capacity calculation

Melting temperatures T,,(C,) and T, (Conc) for pre-
dicted siRNA molecules. The siRNA molecules exhibit
greater effectiveness when their melting temperatures
are elevated. For non-structural genes the T,,(C,) val-
ues ranged from 81.0 to 85.8°C and T, (Conc) values
ranged from 79.6 to 84.5°C (Table 1). For accessory
genes, the T (C,) values ranged from 81.3 to 86.2°C
and the T, (Conc) values ranged from 80.2 to 86.2°C
(Table 2).

Secondary structure prediction and minimum free energy
determination

The secondary structures of guide strands of the siRNA
molecules targeting non-structural genes were predicted
(Figs. 5, 6 and 7). The minimum free energy of fold-
ing ranged from 1.5 to 1.8kcal/mol for non-structural
genes (Table 1). For accessory genes, the secondary
structures of folding were also predicted (Figs. 8, 9, 10,
11 and 12), and the minimum free energy values ranged
from 1.4 to 1.9kcal/mol (Table 2). The MFE value for
one siRNA targeting ORF8 was found to be lower than
the cutoff value (1.5kcal/mol), thus, it was excluded
from further study. The secondary structures of siRNA-
target duplexes were also predicted for nonstructural
(Fig. 13, 14 and 15) and accessory genes (Figs. 16, 17, 18,
19 and 20). The minimum free energy of binding ranged
from —36.8 to —31.4kcal/mol for non-structural genes
(Table 1). For accessory genes, the minimum free energy
of hybridization values ranged from —35.7 to —29.9kcal/
mol (Table 2). The MFE value for siRNA targeting ORF6
was found to be greater than the cutoff value (—30kcal/
mol), thus, it was excluded from the study and further
assessments.

Tertiary structure prediction and validation

The tertiary structures of guide strands of final 17
siRNA molecules, which passed the validation crite-
ria were modelled and viewed using UCSF Chimera
1.16 (Figs. 21, 22, 23, 24, 25, 26 and 27). The 3D mod-
els obtained were further validated using MolProbity
server (Additional file 1: Table S8). The nucleic acid
geometry including probably wrong sugar puckers,
bad backbone conformations, bad angles, bad bonds,
and the chiral volume outliers for tertiary structures
of siRNA molecules and additional validations were
observed (Table 3).

Page 14 of 27
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Fig. 15 Secondary structure and MFE of siRNA-target duplex
for NSP6 regions

Off-target minimization

No off-target effects were found for target sequences of
predicted siRNA molecules in BLASTn results against
the Human Genomic + Transcript Database and the
E-values were found to be all non-significant.

Conservation analysis of designed siRNAs

against SARS-CoV-2 variants

The target sequences of designed siRNA molecules were
found to be highly conserved in the genome sequences
of SARS-CoV-2 variants at each targeted position. This
suggested that the designed siRNAs had capability to tar-
get the genome sequences of all SARS-CoV-2 variants of
concern efficiently (Tables 1, 2).
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Fig. 16 Secondary structures and MFE of siRNA-target duplexes for ORF3a regions

Discussion

When compared to the genomes of other RNA viruses,
coronaviruses have been found to possess largest
genome sizes. They are capable of establishing reser-
voirs in both human and zoonotic populations, ena-
bling their transmission and circulation among a range
of animal hosts, including bats, pangolins, civets, cats,
mice, pigs, whales, dogs, and raccoons [39]. Till date,
SARS-CoV-2 is regarded as the most lethal among the
family of coronaviruses. The genome of SARS-CoV-2
consists of fourteen Open Reading Frames (ORFs),
which encode for 16 non-structural proteins, 4 struc-
tural proteins and 11 accessory factors [7, 8]. The 2
major polyproteins, ORFla and ORFlab, are present
in SARS-CoV-2 proteome, which are to produce indi-
vidual replicase complex nonstructural proteins. These
nonstructural proteins (NSP1-16), play a crucial role in
regulating early transcription and facilitating genome
replication [9]. NSP3, NSP4, and NSP6 are collectively
involved in the formation and assembly of double mem-
brane vesicles (DMVs) within the Golgi apparatus of
the host. These DMVs provide a site for the anchorage

ENERGY = -35.1 @

ENERGY = -32.2 E

of viral replication complexes, which facilitate viral
genome replication and the production of progeny viri-
ons within the host cell upon their release, thus enabling
further infection [10]. On the other hand, accessory
genes of SARS-CoV-2 also play a major role in regulat-
ing replication and contribute in the pathogenicity of
virus. Previous studies reported deletion of accessory
genes ORF3a, 3b, 5a and 5b from avian coronavirus and
observed resultant mutated virus exhibiting reduced
pathogenicity [40]. Thus, targeting accessory genes of
SARS-CoV-2 can be an effective strategy for therapeu-
tic purposes. For this study, the sequences of non-struc-
tural (NSP3, 4, and 6) and accessory genes (ORF3a, 6,
7a, 8, and 10) were utilized to predict short interfering
RNA molecules that could potentially interfere with
SARS-CoV-2.

Sohrab et al., 2022 predicted 4 siRNAs for targeting
the receptor binding domain (RBD-S) of SARS-CoV-2
using an in silico pipeline. They found no cytotoxicity
in the Vero E6 cell line based experimental evaluation
of the predicted siRNAs and one out of four siRNAs
showed better antiviral activity based on qPCR Ct value
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Fig. 17 Secondary structures and MFE of siRNA-target duplex
for ORF6 regions

[26]. In another study by Sohrab et al., 2021, they identi-
fied 7 efficient siRNA molecules for targeting ORFlab
of MERS-CoV using siDirect 2.0 and their designed siR-
NAs showed no cytotoxic effects in Vero cells (ATCC
CCL-81) at different concentrations. They identified
2 out of 5 siRNAs for the inhibition of viral replica-
tion more efficiently on the basis of real-time PCR [25].
Perez-Mendez et al., 2021 also targeted the 5 UTR
region of Zika virus via an siRNA designed in silico. A
significant reduction in cycle thresholds was found in
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Fig. 18 Secondary structure and MFE of siRNA-target duplex
for ORF7a regions

C6/36 cells when transfection with 1 and 2pg of the
synthesized siRNA was done in infected cells at an MOI
of 0.001 for one hour (p < 0.05) [23]. ElHefnawi et al,,
2016 also predicted 2 siRNAs against 5° NTR of Hepati-
tis C virus. Both of the siRNAs (HCV353 and HCV258)
showed efficient inhibition of HCV replication mecha-
nism at low concentrations. Moreover, both siRNAs
suppressed the replication of HCV genotype 4 iso-
lates derived from infected Huh-7 cells efficiently. The
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long-term treatment of HCV replicon cells also did not
lead to the emergence of escape mutant viruses which
ensured the sustained effectiveness of the antiviral ther-
apy over an extended time period [19]. We developed
a novel in silico pipeline for predicting and validating
siRNA molecules that combines multiple effective in
silico methods used in the previous studies [19, 23, 25,
26], which demonstrated successful inhibition of viral
replication in vitro. This innovative pipeline confidently
aims to identify and validate siRNAs with the poten-
tial to inhibit viral replication in in vitro experiments
(Table 4).

Multiple sequence alignment of selected gene
sequences was performed for the conservation analy-
sis. The sequences of NSP3, NSP4, and NSP6 showed
high levels of conservation among the 100 selected
sequences of each gene in the circulating strains of
SARS-CoV-2 across the globe, from year 2019 to 2023.
It was also observed that the NSP3 sequences exhibited
a substantial frequency of mutations. Our observa-
tion is consistent with a previous study on conserva-
tion and mutational analysis of nonstructural genes of

ENERGY = -34.0 ‘ 7

Fig. 19 Secondary structures and MFE of siRNA-target duplexes for ORF8 regions
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SARS-CoV-2, on the basis of geographic distribution
by Anand et al., 2021, in which some of the highly
mutating positions in NSP3 were reported as “hotspot
zones” [41]. In another conservation and phyloge-
netic analysis by Fiaz et al.,, 2021, NSP3 was reported
as the most variable nonstructural gene [42]. Among
our target sequences, a point mutation was observed
in NSP3 sequence of a Japanese strain (accession num-
ber =0Q504245.1) showing Guanine in place of highly
conserved Adenine residues at position 1140. Another
mutation was observed in NSP4 sequences, showing
Thymine in place of conserved Cytosine residues at
position 732, in a strain from Switzerland (accession
number=0Q050229.1). Our conservation analysis of
accessory genes also revealed a high level of conser-
vation among the selected sequences. In a previous
conservation analysis of accessory proteins of SARS-
CoV-2, Li et al,, 2020 reported diverse mutations dis-
seminated within ORF3a and ORF8 [43].

The phylogenetic analyses demonstrated variability
across various geographic regions and revealed multi-
ple clades with distinct clusters. In phylogenetic tree
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ENERGY = -32.5 9

Fig. 20 Secondary structure and MFE of siRNA-target duplex
for ORF10 regions

constructed for NSP3 sequences, the clusters A, C,
D, and ] showed a uniform distribution of Asian and
European sequences predominantly. Among other
obtained clusters, NSP3 sequences of Pakistani strains
from years 2022 and 2023 fall in clusters D, F, and I
with Asian, European, and African sequences. Over-
all, phylogenetic analysis of NSP3 sequences revealed
highest rate of variations. In a previous genomic and
epidemiological study, Lamptey et al., 2021 also per-
formed phylogenetic analyses of nonstructural proteins
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of SARS-CoV-2 and found that NSP3 sequences con-
tained most variants [44]. The phylogenetic analysis
of NSP4 also revealed the same distribution pattern
of sequences from different continents across various
obtained clusters. Predominantly, most of the Euro-
pean sequences were found in cluster A (n=16/30)
along with Asian sequences (n=28/30). Cluster B con-
tained sequences from New Zealand strains of 2021
and 2022 sharing close relatedness with US strains.
Asian strains were found to be predominant in clus-
ters F and G also, along with a uniform distribution
of sequences from Europe and other continents. The
Pakistani sequences of NSP4 fell in clusters A and G
sharing close relatedness with European, Asian, and
US sequences. The phylogenetic analysis of NSP6
gene from circulating strains across the globe revealed
a uniform distribution of sequences throughout the
phylogenetic tree. The phylogenetic analysis of acces-
sory gene revealed high levels of conservation and
the sequences were uniformly distributed throughout
the respective clusters. Further sequence logo analy-
ses were performed and consensus sequences were
obtained using WebLogo application and Jalview pro-
gram respectively.

Short interfering RNAs are small (21 to 25nt) RNA
molecules that do not encode for proteins and have
the ability to bind to complementary messenger RNA
sequences. At post-transcriptional level, they can pre-
vent the mRNA from being translated into proteins,
thereby negatively regulating the expression of the tar-
get gene. An siRNA requires a high degree of comple-
mentarity between the guide strand of the siRNA and
its specific target mRNA. Since the discovery of siRNA
therapy, significant advancements have been made in
investigating the potential of small interfering RNA
(siRNA) as a therapeutic approach for targeting genes
of various viruses including Zika virus [23], Hepatitis
C virus [19], Nipah virus [22], Influenza A virus [21],
MERS-CoV [24], and SARS-CoV-2 [16, 17]. The web-
based siDirect 2.0 [31] server employs a highly effi-
cient algorithm and combined rational rules of Ui-Tei
along with Reynolds + Amarzguioui for the prediction
of functional siRNAs with minimal off-target effects.
These rules design siRNAs having A or U residues at
the 5' end of guide strand. The guide strands with
these thermodynamically unstable 5 ends contrib-
ute strongly to the incorporation of siRNA into RISC
complex and binding with Argonaute (Ago2) protein.
The Tm value of 21.5°C can be used as a threshold to
distinguish the seed sequences with minimized off-tar-
get effects from those that are likely to have off-target
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Fig. 21 Tertiary structures of siRNA molecules targeting NSP3

binding effects. Primarily, a total of 41, 12, and 3 siRNA
molecules were predicted against NSP3, NSP4, and
NSP6 genes respectively and 7, 1, 2, 4, and 1 siRNAs
were predicted for targeting regions of ORF3a, ORF6,
ORF7a, ORFS8, and ORF10 and further comprehensive
analyses were performed, taking into consideration
various filters to evaluate their effectiveness.
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The GC content of siRNA-target duplexes is one of
the significant parameters that may affect the efficacy of
siRNA. A higher GC content may lead to the formation
of secondary structures like hairpins and stems, which
can ultimately lead to reduced accessibility of siRNA to
its mRNA target. A lower GC content may result in an
unstable duplex formation reducing the gene silencing
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Fig. 23 Tertiary structure of siRNA molecule targeting NSP6

efficiency. Therefore, in our study, an optimal GC con-
tent range of 31.6 to 57.0% was set to design efficient
siRNAs. The predicted siRNA sequences were screened
against the Main21 dataset of siRNAPred server using
binary pattern [32]. Based on the highest binary scores
(>0.9), a total of 12, 2, and 1 siRNAs for NSP3, NSP4,
and NSP6 respectively, and in case accessory genes, a

total of 3, 1, 1, 3, and 1 siRNAs against ORF3a, 6, 7a,
8, and 10 respectively, were selected for the additional
assessment. Further scoring of siRNA molecules was
performed using i-Score Designer server that employs
several 1st and 2nd generation algorithms [33]. The
i-Scores (>65) and s-Biopredsi scores (< 1) were calcu-
lated for evaluation of specificity of predicted siRNA
sequences. In the heat capacity plots, C, is represented
as a function of temperature, referred to as Tme.
Whereas, T, (Conc) represents the point at which
concentrations of the siRNA-duplexes reach % of their
maximum value. The melting temperatures T,,C, and
Tm were calculated using DINAMelt server [34]. In
case of non-structural genes, the T, C, values ranged
from 81.0 to 85.8°C whereas the T, (conc) values
ranged from 79.6 to 84.5°C. For accessory genes, the
T,,C, values ranged from 81.3 to 86.2°C whereas the
T,, (conc) values ranged from 80.2 to 84.6°C. For the
visualization of folding and binding patterns along with
their corresponding minimum free energy values, RNA
structure program [35] was utilized. The secondary
structures of guide strands of siRNA molecules were
predicted using MaxExpect algorithm and their mini-
mum free energy values ranged from 1.5 to 1.8 kcal/mol
for NSPs and 1.4 to 1.9kcal/mol for accessory genes.
According to Hasan et al,, 2021, positive MFE value
indicates better siRNA molecules, as chances of folding
are rare among them [17]. The secondary structures of
target-siRNA duplexes were also predicted using RNA
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Fig. 24 Tertiary structures of siRNA molecules targeting ORF3a

14

Fig. 25 Tertiary structure of siRNA molecule targeting ORF7a

DuplexFold algorithm and the free energy of hybridiza-
tion with target sequences of predicted potential siR-
NAs were—34.8, —33.9, —35.0, —31.4, —31.5, —32.5,
—31.9, —34.2, —36.8, and —34.8kcal/mol respectively.
On the other hand, for accessory genes, the hybridiza-
tion of siRNA-target mRNA duplex along with mini-
mum free energy (MFE) for binding of both strands
were —32.9, —35.7, —32.2kcal/mol for ORF 3a, —29.9
for ORF6, —33.2kcal/mol for ORF7a, —34.0, —33.9,
—32.2kcal/mol for ORF 8, and-32.5kcal/mol for
ORF10. The MFE for an siRNA targeting ORF8 was
found to be lower than the threshold value (1.5kcal/
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mol), therefore, it was excluded from further analyses.
Similarly, Minimum free energy of binding for siRNA
targeting ORF6 was found to be greater than cutoff
value (—30kcal/mol), thus, it was also excluded from
further assessments. Next, we predicted the tertiary
structures of 17 siRNA molecules using RNAComposer
web server [36]. The chemical structure of RNA back-
bone is rotameric, and there is a probability of getting
nucleic acid geometry below or above the suggested
threshold values [45]. In order to validate the three-
dimensional structures and nucleic acid geometry of
our modelled siRNAs, we screened them using the
MolProbity server [37].

siRNA enters the cell and come in contact with
RNAI silencing machinery referred to as RNA induced
silencing complex (RISC). Guide strand then attaches
itself with this complex leaving the passenger strand,
which is then removed. It causes the attachment of this
complex with a protein namely, argonaute thereby acti-
vating the complex. Guide strand directs this complex
with its target mRNA sequence and binding occurs.
Out of 21 nucleotides of siRNA, 19 of them acts as rec-
ognition factor for the silencing of gene by its break-
down [46]. The nucleotides present at position 2-8
are termed as seed region which should not be com-
plementary to any nontargeted mRNA sequence to
prevent off target effects [47]. Therefore, finally we
performed nucleotide BLAST [28] (BLASTn) against
human genomic plus transcript database for investiga-
tion of any off-target effects and found no significant
E-values.

In a previous study conducted by Saadat et al,
2022, a total of 133 siRNA molecules were predicted
against a number of targeted proteins including
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Fig. 27 Tertiary structure of siRNA molecule targeting ORF10

non-structural and structural proteins and the 5' and
3" UTR sequences of SARS-CoV-2 [48]. They have
reported 45 siRNA molecules for targeting NSP3/
PLpro using siDirect 2.0, however, no siRNA candidate
shared sequence similarity with our predicted siRNAs.
In another study, Hasan et al. 2021 reported a total
of 10 siRNA molecules, predicted against ORFlab of
SARS-CoV-2 using the same tool [17]. Our study, on
the other hand, was focused on predicting siRNAs for
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NSP3, NSP4, and NSP6 of SARS-CoV-2 and identified
10 potential siRNA molecules. Among these, 3 siRNA
molecules targeting NSP3 (siRNA no. 1, 2, and 3) were
found to have complete sequence similarity with the
siRNAs predicted by Hasan et al. 2021, thus validating
our findings. Additional in vitro and in vivo experi-
ments are needed to validate the effectiveness and role
of the predicted siRNAs in suppressing NSP3, 4, and
6 along with accessory genes for inhibiting the double
membrane vesicle formation and replicative pathway
of SARS-CoV-2.

Conclusion

siRNAs (short interfering RNAs) are a promising
approach for treatment of a number of viral infec-
tions by targeting conserved regions of viral genomes.
In this in silico methodology, we conducted a conser-
vation analysis of the three non-structural genes of
SARS-CoV-2, which participate in formation of double
membrane vesicles (DMVs), as well as the viral acces-
sory genes. A total of 17 highly specific and potential
candidate siRNAs were selected after passing a num-
ber of filters and validation criteria including 7, 2, and
1 siRNA molecules against NSP3, NSP4, and NSP6, and
3, 1, 2, and 1 siRNAs against ORF3a, ORF7a, ORFS,
and ORF10 respectively. We designed a unique in silico
pipeline for predicting and validating siRNA molecules
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based on multiple effective pipelines used for designing
siRNAs in previous studies demonstrating successful
in vitro inhibition of viral replication. This computa-
tional study might prove useful for development of an
effective antiviral therapy for inhibiting viral replication
and might prove to be an additional reputed interven-
tion in life threatening conditions.

Abbreviations

COVID-19 Coronavirus disease of 2019

G Heat Capacity

DMV Double membrane vesicle

ncRNA Non-coding RNA

NSP Non-structural protein

ORF Open reading frame

RNAI RNA interference

SIRNA Short interfering RNA

SARS-CoV-2  Severe acute respiratory syndrome coronavirus 2
T Melting Temperature
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