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Abstract
Background Herpes simplex virus type 1 (HSV-1) infection is a common viral disease that mainly causes oral lesions, 
but can also cause genital lesions in some instances. Current treatments with nucleoside analogs are limited by the 
emergence of drug resistance. Therefore, novel anti-HSV-1 drugs are urgently needed.

Methods In this study, we screened a library of 2080 compounds for anti-HSV-1 activity using a plaque formation 
assay. We selected 11 potential inhibitors of HSV-1 and further evaluated their antiviral effects by plaque reduction 
assay and real-time polymerase chain reaction (qPCR).

Results Five compounds, namely ginsenoside Rd, brassinolide, rosamultin, 3’-hydroxy puerarin, and clinafloxacin HCl, 
showed potent anti-HSV-1 activity and completely suppressed plaque formation at a concentration of 10 µM. Among 
them, clinafloxacin HCl, a fluoroquinolone antibiotic, exhibited a high selectivity index for HSV-1.

Conclusions Our findings suggest that these five compounds have potential antiviral properties against HSV-1 and 
may have different mechanisms of action. Further studies are warranted to elucidate the antiviral mechanisms of 
these compounds and to explore their therapeutic potential for HSV-1 infection.
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Introduction
In children, HSV-1 is a common cause of mucosal dis-
eases, including orofacial infections, keratitis, and 
encephalitis, which can lead to morbidity and mortality 
[1, 2]. Keratitis caused by HSV-1 infection usually results 
in corneal scarring and loss of vision [3]. Disseminated 
HSV-1 infection in the newborn will lead to neurodevel-
opmental disorders [4]. Increasing evidence suggests that 
HSV-1 is becoming an important infectious risk factor 
for neonatal and immunocompromised patients [5–7]. 
Stress may increase the susceptibility to primary HSV-1 
infection and reactivate the latent virus in neurons [8]. 
Acyclovir is the most effective antiviral drug for HSV 
infections, as it has high selectivity, bioavailability, and 
safety [9]. This drug belongs to the class of nucleoside 
analogues, which are widely used for treating HSV infec-
tion [10, 11]. Drug resistance is a major concern when 
treating HSV-1 infections with nucleoside analogs, such 
as acyclovir. These drugs cannot prevent HSV-1 from 
establishing latency in neurons, which poses a major 
clinical challenge [10]. Moreover, immunosuppressed 
patients who undergo prolonged treatment may develop 
acyclovir-resistant strains [12, 13].

Drug screening is a crucial approach for identifying 
novel antiviral inhibitors. Most antiviral drug screen-
ings for HSV focused on a functional target of the viral 
particle. Virtual screening using molecular docking of 
inhibitors and cyclin-dependent kinase 2 (CDK2) has 
been reported [14]. Infected cell protein 0 (ICP0 protein) 
of HSV has been used to screen inhibitors blocking its 
E3 Ubiquitin ligase activity in an in vitro screening assay 
[15].

Previously, an improved plaque assay-based high-
throughput antiviral drug screening method has been 
documented [16]. In the current study, an antiviral drug 
screening was performed using a HSV-1/Vero system 
based on an improved plaque assay, screening 11 poten-
tial inhibitors from a library of 2080 compounds. This 
method based on a single infectious viral particle can 
theoretically help discover novel antiviral inhibitors 
associated with different viral life cycle stages including 
attachment, entry, replication, maturation and release.

Materials and methods
Cell cultures and viruses
We cultured Vero cells (CCL-81, ATCC) and SK-N-SH 
cells (HTB11, ATCC) in DMEM supplemented with 10% 
fetal bovine serum. To obtain the HSV-1 strain GZ21P2, 
which is sensitive to acyclovir, we isolated it from a clini-
cal sample and purified it by selecting a single plaque 
under agarose overlay medium. We then propagated the 
purified viral stock of GZ21P2 in Vero cells and assessed 
its titers using the plaque formation method.

Drug preparation
A library of 2,080 unique compounds (Table S1) was 
provided to us by Selleck (Shanghai) in 30 µL tubes of 
10 mM DMSO. The verification compounds were dis-
solved in DMSO as per the manufacturer’s instructions. 
Subsequently, stock solutions of 100 mM or lower were 
prepared and diluted with DMEM to obtain different 
concentrations.

Drug screening
We screened a library of 10 mM compounds for anti-
HSV-1 activity using Vero cells infected with HSV-1 
strain GZ21P2. We added 1.6 µL of each compound to 
the overlay medium containing 1.2% RC-591 (FMC Poly-
mer, USA) in 96-well plates (two replicates per well). We 
used acyclovir (100 µM) as a positive control and DMSO 
as a negative control (four wells each). The final concen-
tration of DMSO in each well was 1% (v/v). After four 
days, we fixed and stained the cells with formaldehyde 
(8%) and neutral red (0.3%). We considered the experi-
ment valid if the positive control wells had no plaques 
and the negative control wells had plaques. We selected 
the compounds that prevented plaque formation (intact 
cell monolayer) as potential inhibitors. We tested these 
inhibitors again at 100 µM, 50 µM, and 10 µM in a sec-
ond round using the same procedure. The drugs that 
completely inhibited plaque formation at 10 µM were 
effective candidate drugs for the following inhibition 
effect verification. We followed our previously published 
method with minor modifications for this part [16].

CCK-8 cytotoxicity assay
In brief, SN-N-SH cells were initially seeded into 96-well 
plates at a density of 1 × 104 cells per well and incubated at 
37 ℃ in a 5% CO2 incubator. After a 24-hour incubation, 
100 µL of medium containing different concentration 
of drugs were added to each well, replacing the previ-
ous medium. We also used DMSO as a zero-concentra-
tion negative control. The final concentration of DMSO 
in each well was 0.1% (v/v). Following another 48-hour 
incubation period, the culture medium in each well was 
again replaced with 100 µL of fresh medium containing 
10 µL of CCK-8 solution (Dojindo). After a further two-
hour incubation, the plates were subjected to absorbance 
measurement at 450  nm using a microplate reader. The 
50% cytotoxic concentration (CC50) of each compound 
was estimated by performing a linear regression analysis. 
We followed the manufacturer’s protocol for the CCK-8 
solution.

Plaque reduction assay
To assess the anti-HSV-1 effect of these compounds 
against HSV-1, Vero cells were grown in 24-well plates 
(5 × 104 cells/well). After 24 h, the cells were infected with 
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HSV-1 at a multiplicity of infection (MOI) of 0.1 for 1 h, 
and then the supernatant was removed and replaced with 
fresh DMEM containing various concentrations of the 
compounds (DMSO as a negative control with zero drug 
concentration). The final concentration of DMSO in each 
well is 0.1% (v/v). After 24 h of incubation, the cells were 
lysed by three cycles of freeze-thaw, and the supernatant 
was collected by centrifugation at 5, 000 rpm. The super-
natant was serially diluted, and 60 µL of the dilutions was 
added to Vero cell monolayers in 96-well plates. After 1 h 
of incubation at 37℃, an overlay medium (100 µL) con-
taining 1.2% RC-591 was added directly to each well. The 
cells were then fixed and stained as described in the drug 
screening section. The number of plaques was counted, 
and viral inhibition percentage was calculated using the 
following formula: viral inhibition (%) = [1-(number of 
plaques) inhibitor/ (number of plaques) control] ×100 [17]. 
The half-maximal inhibitory concentration (IC50) was 
determined using Graphpad Prism 8.0.

Quantification of viral DNA
To evaluate the antiviral effects of candidate compounds 
based on the viral DNA concentration, we performed the 
following steps. SN-N-SH cells seeded in 24-well plates 
a density of 4 × 104 cells per well. The cells were pre-
treated with the different concentrations of the candidate 

compounds for 24 hours, followed by addition of viral 
stock (0.1 MOI) to each well for 1 hour to allow infec-
tion. Subsequently, the supernatant was removed and 
cells were cultured with drug-containing medium at 
37℃ for an additional 24 hours. DMSO was used as a 
negative control with zero drug concentration. The final 
concentration of DMSO in each well is 0.1% (v/v). The 
viral DNA was extracted from the supernatant using 
the TIANamp Virus DNA/RNA Kit (Tiangen) and ana-
lyzed by qPCR. The primer pairs targeting the pol gene of 
HSV-1 (PL 5’-ATCAACTTCGACTGGCCCTTC-3’, and 
PR, 5’-CCGTACATGTCGATGTTCACC-3’) were previ-
ously described by Lakeman and Whitley [18].

Statistical analysis
The data are expressed as the Mean ± SD and analyzed 
using an unpaired Student’s t-test. The level of signifi-
cance was set at p < 0.05, p < 0.01, P < 0.001 to determine 
the statistical significance of the results.

Results
Screening of a unique compound library for inhibitors of 
HSV-1
The diagram in Fig. 1 outlines the screening process used 
in this study (Fig.  1). In the initial screening phase, 88 
compounds were evaluated at a concentration of 100 µM. 

Fig. 1 Antiviral drug screening for inhibitors of HSV-1 from a 2080-compound library. (a) Timeline of drug screening. b) Flowchart for drug screening. 
(c) Verification of five inhibitors. This result is based on plaque reduction effects of candidate inhibitors and their cytotoxicity against SK-N-SH cells. (d) 
Chemical structures of five candidate inhibitors
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These compounds demonstrated complete inhibition of 
plaque formation, whereas the remaining compounds in 
the drug library did not exhibit this effect. Additionally, 
those compounds that exhibited cytotoxic activity against 
Vero cells completely caused cellular detachment at the 
bottom of wells in 96-well plates. From the initial screen-
ing, 11 candidate inhibitors were selected in the second 
round of screening. These compounds were found to 
completely suppress plaque formation at a concentration 
of 10 µM (Fig. 1).

Cytotoxicity
The majority of the 11 compounds evaluated in this study 
displayed negligible cytotoxicity against SK-N-SH cells, 
with the exception of ginsenoside Rd and clinafloxa-
cin HCl, which exhibited cytotoxic effects at concen-
trations exceeding 200 µM and 150 µM, respectively. 
Interestingly,certain compounds appeared to stimulate 
SK-N-SH growth at specific concentrations (Fig. 2).

Verification of candidate Drugs
To verify the antiviral activity of the 11 candidate drugs 
that were identified by our screening assay, we conducted 
the plaque reduction assay, which is widely regarded as 
the gold standard method in virology. Ginsenoside Rd, 
brassinolide, rosamultin, 3’-hydroxy puerarin and clina-
floxacin HCl significantly inhibited virus production at 
the concentration of 100 µM (Fig.  3a). The calculated 
selectivity index (SI, CC50/IC50) were displayed in Fig. 1c. 
The plaque reduction assay of brassinolide was shown in 
Fig.S1.

To investigate the compounds’ inhibitory effects on 
viral replication, relative quantification of viral DNA was 
performed. The results demonstrated that these com-
pounds can dose-dependently reduce HSV-1 DNA, with 
ginsenoside Rd and Clinafloxacin HCl exhibiting signifi-
cant inhibitory effects at a concentration of 5 µM (Fig. 4).

Discussion
The current treatment utilizing nucleoside analogs that 
interfere with viral polymerase is indeed effective at 
eliminating a sensitive HSV strain in patients with acute 
infections. However, these drugs are ineffective for latent 
infections due to their poor availability to the nervous 
system. A promising drug candidate, IM-250, a helicase-
primase inhibitor with sufficient exposure to the target 
tissue, has been reported to be effective against latent 
neural HSV infections [19, 20]. Nevertheless, this novel 
anti-HSV inhibitor has yet to be approved for clinical use.

The 11 lead drug candidates identified in this study 
are from natural sources with the exception of clina-
floxacin HCl, a synthetic antibiotic. These drugs exhibit 
a wide range of bioactivities, such as anti-inflammatory, 
anti-tumor and antibacterial effects. One of the most 

important inclusion criteria was that the drugs had not 
been reported to have anti-HSV-1 activity in published 
literature. Some may have been reported in patents, but 
there are no practical examples.

Brassinolide is a plant hormone well-known for its ver-
satile roles in promoting cell elongation, plant growth, 
seed germination, and responses to stress [21]. Epibrassi-
nolide, which differs slightly from brassinolide in molec-
ular conformation, has proven to be pro-apoptotic to 
cancer cells through the Wnt signaling pathway [22]. Our 
results showed that brassinolide can significantly sup-
press the HSV-1 proliferation in SN-N-SH cells, which 
was confirmed by plaque reduction assay and real time 
PCR. In general, this is consistent with the description of 
two published patents [23, 24].

Ginsenoside is a compound isolated from the root 
of Panax ginseng Meyer, a traditional herbal medicine 
used in East Asian countries. Ginsenoside 20(R)- Rh2 
was reported to possess inhibitory effects on the rep-
lication of mice and human gammaherpesviruses [25]. 
Ginsenoside 20(S)-Rg3 demonstrated inhibitory effects 
on both HSV-1 and HSV-2 [26]. Ginsenoside Rb1 could 
inhibit nerve cell apoptosis caused by HSV-1 infections. 
Ginsenoside Rd is also a multi-functional natural com-
pound, effective in neurologic disorders, cardiovascular 
diseases and tumors [27–30]. This type of ginsenoside 
has not been reported to have significant antiviral activ-
ity against any virus [31]. In our experiment, Ginsen-
oside Rd can significantly inhibit the HSV-1 at a low 
concentration(IC50 = 3.0, SI > 66.67)in vitro, although 
it showed obvious cytotoxicity against SK-N-SH cells at 
concentrations higher than 200 µM.

Rosamultin, isolated from Rosa rugose root, has been 
reported to possess anti-hepatotoxic effects, protec-
tive effects against H2O2-induced oxidative stress, and 
anti-apoptosis in cardiomyocytes [32, 33]. Additionally, 
it was reported that rosamultin exhibits antiviral activ-
ity by inhibiting HIV-1 protease in vitro [34]. 3’-hydroxy 
puerarin, one of isoflavones isolated from the flowers of 
Pueraria lobate, has been identified as an inhibitor of lac-
tate dehydrogenase [35]. Our study demonstrated that 
both compounds can inhibit HSV-1 at high concentra-
tions, although no antiviral activity of these plant-derived 
compounds has been reported previously. Picfeltarraenin 
IB, one of cucurbitacins isolated from picria fel-terrae, 
showed no antiviral activity against HSV [36]. However, 
our results indicate that it can slightly inhibit the replica-
tion of HSV-1 in SK-N-SH cells at the concentration of 
100 µM (Fig. 3).

As a member of the fourth generation fluoroquinolones 
with broad antibacterial activity, clinafloxacin can inhibit 
both gram-negative and gram-positive bacteria by target-
ing DNA gyrase or topoisomerase [37]. To date, although 
fluoroquinolones such as enoxacin, ciprofloxacin, 
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Fig. 2 Cell viability of 11 candidate inhibitors of HSV-1. After adding candidate inhibitors with different concentrations, the viability of SK-N-SH cells was 
measured by a cell counting kit (CCK-8)
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Fig. 3 Percent inhibition of 11 candidate inhibitors against HSV-1 and dose-response effects of five inhibitors(a) Percent inhibition at the concentration 
of 100 µM. This is based on results of plaque reduction assay. This concentration is also used in first-round screening. (b-g) Dose-response curves of five 
inhibitors. A log transformation of these concentrations has been conducted
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Fig. 4 Inhibitory effects by relatively quantifying viral DNA in infected SK-N-SH cells. Data are presented as mean + SD. *P < 0.05, **P < 0.01, ***P < 0.001 
vs. ‘o’ group
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levofloxacin, and moxifloxacin have been reported to 
exhibit low antiviral activity against SARS-CoV-2 and 
MERS-CoV in vitro, no literature has shown that clina-
floxacin has antiviral effects [38]. In our study, clinafloxa-
cin HCl, with much higher solubility than clinafloxacin 
itself, demonstrated significant anti-HSV-1 activity in 
vitro, although its antiviral mechanism remains unclear.

Brevianamide F, a tryprostatin-type compound isolated 
from actinomycete, is a potential natural plant growth 
inhibitor or a broad-spectrum systemic herbicide [39]. 
On the other hand, brevianamide F has shown good anti-
BCG (tuberculosis) activity [40].

6-biopterin, a cofactor of NO synthase, is an oxidized 
product of (6R)5,6,7,8 tetrahydrobiopterin (6-BH4) and 
exhibits extreme cytotoxicity to human melanocytes [41]. 
In our cytotoxicity test, 6-biopterin seems to be able to 
promote SK-N-SH cell growth in vitro (Fig.  2). On the 
other hand, it can suppress HSV-1 growth in host cells 
(Fig. 3).

Taurochenodeoxycholic acid (TCDCA), a bioactive 
substance of animal bile produced by the liver, acts as an 
agonist of farnesoid X receptor (FXR) in the digestive sys-
tem [42, 43]. While it has been proposed as a compound 
for treating enveloped viral infections such as influenza, 
parainfluenza ,human immunodeficiency, and herpes 
viruses, no antiviral activity of this compound has been 
reported against HSV-1 so far [44]. Allopregnanolone, 
an endogenous reproductive neurosteroid, plays a vital 
role in controlling inflammatory processes and behav-
ior. Owing to its neuroprotective effect, allopregnano-
lone also plays an important role in promoting fetal brain 
development [45]. It can affect the inflammatory reaction 
and repair alveolar respiratory epithelium damaged by 
influenza virus infection [46]. Epiandrosterone (EA) and 
Dehydroepiandrosterone (DHEA) demonstrated in vitro 
antiviral activity against Junin virus(JUNV)and adenovi-
rus (AdV) replication by inhibiting protein synthesis [47, 
48].

In a previous study, a screening method was employed 
to discover anti-EV71 inhibitors from a small library, and 
several candidate drugs belonging to flavonoids were 
identified in the final [16]. This screening strategy does 
not target any specific part of viruses or host cells, allow-
ing for the inclusion of almost all kinds of antiviral com-
pounds in screened libraries. While this may increase the 
success rate of discovering effective antiviral drugs, it may 
also result in a lager workload for efficacy verification and 
mechanism research, particularly when numerous candi-
date drugs are identified after the final screening round.

The plaque inhibition test was performed to screen 
for potential inhibitors of HSV-1 infection. A total of 88 
compounds were identified as candidates at a concentra-
tion of 100 µM, which completely blocked the viral life-
cycle and prevented the formation of plaques on Vero 

cell monolayers by single infectious HSV-1 particles. This 
concentration was chosen to simplify the interpretation 
of results by using a binary criterion (presence or absence 
of plaques). A dose-dependent reduction of plaque size 
would be expected in a plaque inhibitory test, but it was 
not assessed in this screening round.

We have identified 11 potential inhibitors of HSV-1 
infection by using an improved plaque inhibition test in 
a two-round screening process. Five of these inhibitors 
were confirmed by two independent methods in a short 
time. These inhibitors may have novel mechanisms of 
action that are not yet known, or they may have exist-
ing antiviral effects that have not been reported before. 
To further explore the mode of action of these inhibitors, 
we plan to conduct more experiments to investigate how 
they affect different stages of the viral replication cycle, 
such as attachment, entry, uncoating, genome replica-
tion, assembly, and release. This will help us understand 
the molecular basis of their antiviral activity and opti-
mize their therapeutic potential.
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